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Abstract
As a fine-grained task, the annotation cost of
aspect term extraction is extremely high. Re-
cent attempts alleviate this issue using domain
adaptation that transfers common knowledge
across domains. Since most aspect terms are
domain-specific, they cannot be transferred di-
rectly. Existing methods solve this problem
by associating aspect terms with pivot words
(we call this passive domain adaptation be-
cause the transfer of aspect terms relies on the
links to pivots). However, all these methods
need either manually labeled pivot words or
expensive computing resources to build asso-
ciations. In this paper, we propose a novel
active domain adaptation method. Our goal
is to transfer aspect terms by actively supple-
menting transferable knowledge. To this end,
we construct syntactic bridges by recognizing
syntactic roles as pivots instead of as links to
pivots. We also build semantic bridges by re-
trieving transferable semantic prototypes. Ex-
tensive experiments show that our method sig-
nificantly outperforms previous approaches.

1 Introduction

Aspect term extraction (ATE) is a fundamental task
in aspect-based sentiment analysis. Given a re-
view sentence “The pizza here is also absolutely
delicious.”, ATE aims to extract the term pizza. Re-
cent studies define ATE as a sequence tagging task
and propose supervised taggers (Wang et al., 2017;
Xu et al., 2018). However, due to the high cost
of token-level annotation, the lack of labeled data
becomes the main obstacle (Chen and Qian, 2019).

To alleviate the data deficiency issue, unsuper-
vised domain adaptation is proposed to transfer
knowledge from the labeled source domain to the
unlabeled target domain. Since ATE is a token-
level task, it is natural to conduct token-level do-
main adaptation. Then a problem arises: many
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Figure 1: The proportion of source aspect terms that
appear in target data. R (Restaurant), L (Laptop), and
D (Device) are three datasets from different domains.

aspect terms are domain-specific and cannot be
transferred directly. We present the proportion of
source aspect terms that also appear in target test
data in Figure 1. As can be seen, in distant trans-
fer pairs like R→L, only less than 10% of source
aspect terms have appeared in target data. Even
in a close pair L→D, the proportion is no more
than 40%. In other words, there is a wide discrep-
ancy between the data from different domains, and
many aspect terms have to be transferred under the
guidance of proper references.

To solve this problem, previous studies try to
associate aspect terms with specific pivot words1.
We name these methods passive domain adaptation
because the transfer of aspect terms is dependent
on their links to the pivots. There are two types of
methods along this line. (1) Opinion terms as piv-
ots. Since aspect and opinion terms usually appear
in pairs, it is straightforward to extract aspect terms
with the indication from opinion terms. Early stud-
ies (Li et al., 2012; Ding et al., 2017) use common
opinion seeds (e.g., good, fancy) and pre-defined
rules (e.g., good→amod→NN) to extract aspect
terms across domains. However, it is hard to col-
lect a complete set of seeds or define high-quality
rules, and thus these methods often produce inferior
performance. Several studies (Wang and Pan, 2018,
2019b) manually annotate all opinion terms in re-
views and design neural models to capture aspect-
opinion relations via multi-task learning. While

1Pivot words are words which behave in the same way for
discriminative learning in both domains (Blitzer et al., 2006).
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getting improvements, these methods induce ad-
ditional annotation costs. (2) Context terms as
pivots. Since pre-trained language models (PLMs)
like BERT represent words w.r.t their contexts, re-
cent studies (Xu et al., 2019; Gong et al., 2020)
leverage PLMs to transfer aspect terms with com-
mon context terms2. However, not all context terms
qualify as pivots (e.g., eat). In addition, PLMs like
BERT build word associations mainly based on
semantic similarity in co-occurring contexts. For
an aspect term like pizza, BERT tends to link it to
hamburger via a flow like pizza→eat→hamburger.
Consequently, it is hard for these methods to iden-
tify keyboard in the target domain based on the
labeled term pizza in the source domain.

Figure 2: Illustration of syntactic and semantic bridges.

In this paper, we propose a novel active domain
adaptation method. Concretely, we construct two
types of bridges for all words, which can help trans-
fer aspect terms across domains. An example in
Figure 2 shows how to identify the unseen target
term keyboard based on the source term pizza. (1)
The syntactic bridge aims to recognize transfer-
able syntactic roles for the words across domains.
Though pizza and keyboard have almost no seman-
tic relatedness, they often play a similar role in
parse trees. In view of this, we treat the involved
syntactic roles (including POS tag and dependency
relations) of a certain word as its syntactic bridge.
Previous studies also utilize dependency informa-
tion. However, we differ our method from existing
ones in that we do not use dependency relations to
associate pivot words with aspect terms. Instead,
we treat syntactic roles themselves as pivot fea-
tures and do not need any manually annotated pivot
words. (2) The semantic bridge moves one step
further by retrieving transferable prototypes. Intu-
itively, if we correlate pizza with some prototype
target terms like {disk, OS, mouse}, the domain dis-
crepancy between the training and testing reviews
can be largely reduced. Hence we regard the proto-

2Context terms denote all words that are not aspect terms.
Hence opinion terms form a subset of context terms.

types of a certain word as its semantic bridge and
design a syntax-enhanced similarity metric to re-
trieve them. Compared with previous opinion and
context term-based methods, building a semantic
bridge directly links aspect terms across domains
and only requires unlabeled source and target data.

Based on the syntactic/semantic bridges, we then
develop an end-to-end tagger to fuse reviews with
these transferable bridges. We conduct extensive
experiments on three datasets. The results show
that our method achieves a new state-of-the-art
performance with a low computational cost.

2 Related Work

Aspect Term Extraction Early researches for
ATE mainly involve pre-defined rules (Hu and Liu,
2004; Popescu and Etzioni, 2005; Wu et al., 2009;
Qiu et al., 2011) and hand-crafted features (Li et al.,
2010; Liu et al., 2012, 2013; Chen et al., 2014).
With the development of deep learning, supervised
sequence taggers have become the mainstream due
to their promising performance (Liu et al., 2015;
Wang et al., 2016, 2017; Xu et al., 2018; Ma et al.,
2019; Chen and Qian, 2020a). More recently,
there emerge many studies that interact ATE with
other tasks like aspect-level sentiment classifica-
tion (Wang et al., 2018; He et al., 2019; Chen and
Qian, 2020b). Since these methods highly depend
on abundant domain-specific training data, they
can hardly scale across the domains where labeled
data is absent. Hence it would be more practical to
develop unsupervised domain adaptation methods
for ATE.

Domain Adaptation Many domain adaptation
methods have been proposed to solve coarse-
grained tasks like text classification (Blitzer et al.,
2006; Ganin and Lempitsky, 2015; Guo et al.,
2020). The basic idea in coarse-grained tasks is to
transfer pivot words, which does not fit ATE well
since most aspect terms are domain-specific non-
pivot words. There have been a few attempts to this
problem, which fall into two lines. (1) One is to
model aspect-opinion relations. Early researches
use common opinion seeds and pre-defined depen-
dency link rules to build manual features (Jakob
and Gurevych, 2010), conduct bootstrapping (Li
et al., 2012), and create pseudo target labels (Ding
et al., 2017). Due to the incompleteness of seeds
and the inflexibility of rules, they often produce
inferior performance. Subsequent studies (Wang
and Pan, 2018, 2019a,b; Li et al., 2019) manually
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annotate all opinion terms in reviews and design
trainable neural models to capture the relations via
multi-task learning. However, they induce extra
annotation costs. (2) The other aims to find aspect-
context relations. Xu et al. (2019) post-trains BERT
on the cross-domain corpus to enhance its domain
adaptation ability. Gong et al. (2020) and Pereg
et al. (2020) further incorporate external syntactic
information into BERT with auxiliary tasks or mod-
ified attention mechanisms, but they still rely on
the prior knowledge in BERT. These methods often
have more than 100M parameters and involve lots
of computing power. Unlike all the aforementioned
methods, we do not associate aspect terms with
pivot words but actively transfer them via bridges.

3 Methodology

In this section, we first introduce the cross-domain
ATE task. We then illustrate how to construct syn-
tactic and semantic bridges. Lastly, we present the
bridge-based sequence tagging.

3.1 Problem Statement

Given a review x = {x1, ..., xn}, we formulate
ATE as a sequence tagging task that aims to predict
a tag sequence y = {y1, ..., yn}, where each yi ∈
{B, I,O} denotes the beginning of, inside of, and
outside of an aspect term. In this paper, we focus
on the unsupervised domain adaptation for ATE,
i.e., labeled training data is not available in the
target domain. Specifically, given a set of labeled
data DS = {(xSj , ySj )}

NS
j=1 from the source domain

and a set of unlabeled data DU = {(xUj )}
NU
j=1 from

the target domain, our goal is to predict labels yT

for the unseen target test data DT = {(xTj )}
NT
j=1.

3.2 Bridge Construction

Given a review sentence x from either domain,
we map it with a lookup table E ∈ Rde×|V |, and
generate word embeddings E = {e1, ..., en} ∈
Rde×n, where |V | is the vocabulary size, and de is
the embedding dimension. For cross-domain ATE,
we construct bridges for reviews to help directly
transfer aspect terms across two domains.

Syntactic Bridge In natural language, linguis-
tic expressions are rich and flexible. In contrast,
the syntactic structures are limited and are general
across domains. Based on this observation, we
propose to build connections between source and
target words based on their syntactic roles (POS

tags and dependency relations) rather than the lexi-
cal items. For example, from the parsing results in
the upper part of Figure 3, the word pizza with a
POS tag NN and dependency relations {det, nsubj}
might be an aspect term, while those with the RB
tag and advmod relation might not. Note the sen-
tence “The keyboard is in reasonable size.” in the
target domain has similar parsing results. Hence
the syntactic roles can serve as supplementary evi-
dence for recognizing aspect terms across domains.

Several prior studies (Wang and Pan, 2018,
2019b; Pereg et al., 2020) also make use of pars-
ing results. However, they only use dependency
relations to link words or to propagate word rep-
resentations. For example, given a dependency

great
nsubj−→ pizza in DS , where great is a known

pivot and pizza is an aspect term, the goal is to
extract keyboard as an aspect from the target re-
view “The keyboard is great” in DT . The typical
syntax based method Hier-Joint (Ding et al., 2017)
first locates the pivot great, then utilizes the nsubj
dependency to identify the term keyboard. Other
methods like RNSCN (Wang and Pan, 2018) com-
bine the embedding of the child node (pizza) with
that of the parent node (great) according to the re-
lation type, or reversely (depending on the specific
design). It can be seen that the dependency relation
nsubj here is only used as a link to the pivot.

Figure 3: Construction of the syntactic bridge. If a POS
tag or dependency relation is involved, its correspond-
ing entry in the vector is set to 1, and otherwise 0.

We start in the opposite direction, i.e., we aim to
fully exploit syntactic roles by recognizing them-
selves as pivots instead of treating them as links
to pivots. To achieve this, we present a novel data
structure to encode the POS and dependency in-
formation by grounding them into involved words.
As shown in the lower part of Figure 3, for a word
xi, we use a one-hot vector bpos ∈ RNpos and
a multi-hot vector bdep ∈ RNdep to represent its
POS tag and dependency relation(s), where Npos

and Ndep are the number of tag/relation types. For
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bdep, we merge all relations involved with xi re-
gardless of the direction (i.e., being the governor
or dependent)3.

To enlarge the learning capability, we project
bpos and bdep to the same dimensionality with
learnable weight matrices4 and concatenate them
to form the syntactic bridge bsyn:

bsyn = (Wpos × bpos)⊕ (Wdep × bdep), (1)

where bsyn ∈ Rde has the same dimensionality
with the word embedding e. In training, Wpos and
Wdep get trained by labeled samples. In testing, we
fix them and obtain bsyn for DT . By doing this,
our proposed method well preserves two types of
syntactic information throughout the entire learning
process. As a result, we can take full advantage of
their transferable information.

Semantic Bridge The semantic bridge takes the
syntactic roles above as a basis but moves one
step further to retrieve transferable prototypes. Un-
like previous passive methods that construct in-
formation flows like pizza→good→keyboard via
opinion terms or pizza→offer→keyboard via con-
text terms, we aim to construct a direct flow like
pizza→keyboard. For example, to transfer knowl-
edge from pizza in DS to keyboard in DT , we aim
to introduce some supplementary target terms like
{disk, OS, mouse} in DU for pizza and directly
improve its semantic relatedness with keyboard.
We call these supplementary terms prototypes and
will retrieve them to build the semantic bridges5.

PLMs like BERT can find a set of semantically
similar terms like {hamburger, salad} for pizza,
which can also serve as prototypes. However, such
prototypes are not suitable for the domain adapta-
tion task, because aspect terms in one domain are
often far away from those in another domain in the
semantic space. To address this problem, we de-
sign a syntax-enhanced similarity metric to retrieve
transferable semantic prototypes.

Before starting, we filter the words in DU by
frequency and only preserve those appearing more
than τ times. We regard these words in unlabeled
target data as candidate prototypes and build a pro-
totype bank Ṽ from DU accordingly. We then con-
duct retrieval following the procedure in Figure 4.

For a query word v ∈ V S (vocabulary of DS),

3This simplification almost has no side effects. If a word
has a NN tag and det relation, it must be the governer.

4In all equations, W denotes a trainable weight matrix.
5We retrieve prototypes for all words in the review due to

the existence of domain-specific context terms like eat.

Figure 4: Construction of the semantic bridge. For a
query word, the top-K prototypes are retrieved from the
prototype bank and aggregated to its semantic bridge.

we want to find a prototype term ṽ ∈ Ṽ that play a
similar syntactic role in the target domain. Specifi-
cally, we first summarize the global usages of v by
merging its POS and dependency embeddings in
all reviews where v appear in DS :

bgpos = {bpos,j=1 | bpos,j=2 |...| bpos,j=NS},
bgdep = {bdep,j=1 | bdep,j=2 |...| bdep,j=NS},

(2)

where | is the dimension-wise OR operation and
NS is the number of reviews in DS . Similarly, we
can obtain b̃gpos and b̃gdep for ṽ. We then define the
syntax-enhanced similarity between v and ṽ:

s.sim(v, ṽ) = c(bgpos, b̃
g
pos)×c(bgdep, b̃

g
dep)×c(e, ẽ), (3)

where e and ẽ are word embeddings and c(·, ·) is
the cosine similarity. Here the POS and depen-
dency similarities are used to find similar syntactic
roles, while the word similarity is used to reduce
the noise of prototypes6. Consequently, we can
obtain a s.sim score matrix MS∈R|V S |×|Ṽ |. After
ranking, for v, we select the top-K words {ṽk}Kk=1

with their s.sim scores {s̃k}Kk=1 from the proto-
type bank. Lastly, we aggregate these prototypes
into the semantic bridge bsem of v:

bsem =

K∑
k=1

s̃k · ẽk. (4)

Following the way for DS , we also retrieve
transferable prototypes for DU and DT using Ṽ .
In this way, source and target words with the
same prototypes can be directly correlated to each
other. For DU , we can generate a score matrix
MU ∈ R|V U |×|Ṽ | by calculating the s.sim for all
words in DU and all candidate prototypes in Ṽ .
Then we can obtain the semantic bridge bsem for
each word in DU in training. In testing, DT is
unseen and the global bgpos/b

g
dep are not available.

Therefore, for a word w in DT , we obtain bsem
using MU if w has appeared in DU . Otherwise, we
temporarily use the local bpos/bdep of w in current
tesing sample to replace the global bgpos/b

g
dep and

calculate the s.sim.

6A domain-invariant word that appears frequently in both
domains should preserve its own information. It will have a
maximum similarity score with itself since c(e, ẽ) = 1.
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3.3 Bridge-based Sequence Tagging

Based on the syntactic and semantic bridges, we
now propose a lightweight end-to-end sequence
tagger for aspect term extraction. As shown in
Figure 5, the tagger receives a mixture of DS and
DU for training and then makes predictions for DT

in testing. We then illustrate the details.

Figure 5: Training of bridge-based sequence tagging.

Bridge Fuser Our constructed bridges have two
properties. (1) Bridges are domain-invariant and
should be preserved. (2) Bridges can help extract
domain-invariant information from ei. Therefore,
we propose to enhance the embedding ei of a word
xi with its transferable bridges bsyn,i and bsem,i.
Specifically, we use a gating operation to fuse
bridges. Take the syntactic bridge as an example,
we first calculate a dimension-wise gate gsyn,i:

gsyn,i = σ (Wsyn(ei ⊕ bsyn,i)), (5)

where Wsyn ∈ R2de×2de , σ is the Sigmoid func-
tion, ⊕ is concatenation. We then scale the con-
catenated vector ei ⊕ bsyn,i with gsyn,i and obtain
the syntactic bridge enhanced embedding esyn,i:

esyn,i = gsyn,i � (ei ⊕ bsyn,i), (6)

where � is an element-wise multiplication. The
semantic bridge enhanced embedding esem,i can
be calculated similarly. We term the model with
ei, esyn,i, and esem,i input as BaseTagger, Syn-
Bridge, and SemBridge, respectively. Three types
of embeddings are collectively called einput,i .

Feature Extractor Previous studies (Xu et al.,
2018) show that low-level token features are insuf-
ficient for tagging terms. Therefore, we use a CNN
encoder containing L stacked convolutional lay-
ers with ReLU activation to extract the high-level
features fi ∈ Rdf :
f l+1
i = ReLU(f li−c:i+c ∗Kl + bl), f0

i = einput,i, (7)

where K ∈ Rdf×(dinput×ks) is the kernel group,
ks = 2c+ 1 is the kernel size.

Token Classifier For recognizing aspect and
opinion terms, we send fL

i in the last layer to a
token classifier:

ŷi = Softmax(WA × fLi ), (8)

where ŷi is the prediction of the word xi.

Domain Classifier Besides BIO tagging, we
further enhance the domain-invariance of bridge-
based features via domain adversarial training.
Specifically, we first aggregate fL

i to a global rep-
resentation fg:

fg =MaxPool(fL1:n). (9)

Then we add a Gradient Reversal Layer (GRL)
(Ganin and Lempitsky, 2015) to fg with the scale
coefficient λ and train a domain classifier to distin-
guish the domain that fg belongs to:

ŷd = Softmax(WO ×MLP (GRLλ(fg))), (10)

where ŷd is the domain prediction, and MLP con-
tains LD layers with ReLU activation.

Training Procedure In training, only samples
from DS have corresponding BIO labels yS for
token classification. The goal is to minimize the
tagging loss for recognizing aspect terms:

LBIO = −
∑
DS

n∑
i=1

`(ŷi, yi), (11)

where ` is the cross-entropy loss function. On the
other hand, the samples from DS and DU are used
to train the domain classifier and minimize the fol-
lowing domain classification loss:

LDOM = −
∑
DS∪DU

`(ŷd, yd), (12)

where yd = 0 forDS and yd = 1 forDU . The final
loss for training the end-to-end tagger is defined as
L = LBIO + LDOM . Notice that DT is only used
in testing. There is no data leakage in training, and
the task setting is strictly inductive.

4 Experiment

4.1 Experimental Setup

Datasets We use three conventional English
datasets from different domains and construct six
directed transfer pairs, where R and L are from Se-
mEval 2014 and 2015 (Pontiki et al., 2014, 2015),
and D is collected by Hu and Liu (2004). Follow-
ing previous studies (Wang and Pan, 2018, 2019b;
Pereg et al., 2020), we use three different splits and
each split has a fixed train-test ratio 3:1. The de-
tailed statistics of datasets are presented in Table 17.

Table 1: The statistics of datasets.
Dataset Domain Total Train Test

R Restaurant 5841 4381 1460
L Laptop 3845 2884 961
D Device 3836 2877 959

7Our code and data are available at https://github.com/
NLPWM-WHU/BRIDGE.

https://github.com/NLPWM-WHU/BRIDGE
https://github.com/NLPWM-WHU/BRIDGE
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Table 2: Comparison of different methods. Baselines with 4 use annotated opinion terms. The best scores are in
bold and the second best ones are underlined. Averaged results with † and ‡ are significantly better than BERT-
Cross and BaseTagger (p < 0.05) based on one-tailed unpaired t-test, respectively. The upper bounds of three
datasets (achieved by BaseTagger trained on in-domain labeled data) are 76.43 (R), 75.60 (L), and 57.10 (D).

Type Model Embedding R→L L→R R→D D→R L→D D→L AVG.

I

TCRF Manual 19.72 28.19 21.07 6.59 29.96 24.22 21.63
RAP Manual 25.92 46.90 22.63 45.44 34.54 28.22 33.94
SAL Word2vec 29.03 44.57 22.82 38.89 38.82 47.25 36.90

Hier-Joint Word2vec 33.66 48.10 33.20 47.97 31.25 34.74 38.15
RNSCN4 Word2vec 40.43 52.91 35.10 48.36 40.42 51.14 44.73
TRNN4 Word2vec 40.15 53.78 37.33 51.17 41.19 51.66 45.88
TIMN4 Word2vec 43.68 54.12 35.45 53.82 38.63 52.46 46.36

II

BERT-Base BERT 33.89 42.74 35.30 36.86 43.54 46.06 39.73
UDA BERT 44.24 50.52 40.04 53.39 41.48 52.33 47.00

SA-EXAL4 BERT 47.59 54.67 40.50 54.54 42.19 47.72 47.87
BERT-Cross BERT 46.30 51.60 43.68 53.15 44.22 50.04 48.17

III
BaseTagger Word2vec 48.86 61.42 40.56 57.67 43.75 51.95 50.70†

SynBridge Word2vec 51.53 63.90 42.76 59.40 44.97 52.44 52.50†‡

SemBridge Word2vec 51.53 65.96 43.03 60.61 45.37 53.77 53.38†‡

Settings We pre-process each dataset by lowercas-
ing all words. We use the same word2vec vectors
as previous studies (Wang and Pan, 2018, 2019a,b)
to generate word embeddings, and set the dimen-
sionality de=100. In the syntactic bridge, we use
Stanford CoreNLP (Manning et al., 2014) for de-
pendency parsing. There are 45 classes of POS tags
and 40 classes of dependency relations in three
datasets. In the semantic bridge, we set the fre-
quency threshold τ=5, the number of prototypes
K=10. In the end-to-end tagger, we set the number
of convolution layers L=4, and the kernel size ks
of each layer is 3, 5, 5, 5, respectively, the num-
ber of MLP layers LD=3, and dropout (Srivastava
et al., 2014) is applied to layers’ outputs with the
probability 0.5. The dimensionality of features
df=256, the scale coefficient of GRL λ=0.1. We
train the tagger for 100 epochs using Adam opti-
mizer (Kingma and Ba, 2015) with the learning
rate 1e-4 and batch size 8 in a 1080Ti GPU.
Evaluation For each transfer pair, we use the la-
beled training data from the source domain and
unlabeled training data from the target domain to
train the tagger. Then we evaluate the tagger on
unseen test data from the target domain. We use the
mean F1-scores of aspect terms over three splits
with three random seeds (i.e., nine runs for each
transfer pair) for evaluation8.

4.2 Compared Methods
We classify all models into three categories.
Type-I denotes the opinion term-based methods.
TCRF (Jakob and Gurevych, 2010), RAP (Li et al.,
2012), and Hier-Joint (Ding et al., 2017) use man-
ually defined dependency rules. RNSCN and

8The hyperparameter ranges are presented in Appendix A.

TRNN (Wang and Pan, 2018, 2019a) model de-
pendency trees with trainable recursive networks.
SAL (Li et al., 2019) and TIMN (Wang and Pan,
2019b) replace the dependency tree with trainable
memory interaction.
Type-II denotes context term-based methods.
BERT-Base uses vanilla base BERT (Devlin et al.,
2019) for ATE. BERT-Cross (Xu et al., 2019) post-
trains BERT on a combination of Yelp and Amazon
corpus. UDA (Gong et al., 2020) and SA-EXAL
(Pereg et al., 2020) incorporate syntactic informa-
tion into BERT with auxiliary tasks and modified
attention mechanisms9.
Type-III denotes the proposed active domain adap-
tation strategy. BaseTagger is the tagger without
bridges, while SynBridge and SemBridge use syn-
tactic and semantic bridges, respectively.

4.3 Main Results

The comparison results for all methods are shown
in Table 2. It is clear that our proposed model
achieves a new state-of-the-art performance in
terms of the average F1-scores. For example, Sem-
Bridge outperforms the best TIMN in Type-I by
7.02% and BERT-Cross in Type-II by 5.21%, re-
spectively. We also notice that our BaseTagger
already outperforms all baselines. We attribute this
to the design of CNN feature extractor and domain
adversarial training (DAT). CNN focuses on the N-
gram feature rather than a single word and reduces
the side effects of non-pivot aspect terms. DAT
is applied to the sentence-level features, such that
they are not misled by the common N-grams that
are labeled both 0 and 1.

9Since SAL and UDA use extra aspect sentiment labels,
we show how to make them fair competitors in Appendix B.
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SynBridge and SemBridge further improve Base-
Tagger with a 1.80% and 2.68% absolute gain, re-
spectively. This proves the effectiveness of our
proposed active domain adaptation strategy. Mean-
while, SemBridge is a bit superior to SynBridge.
The reasons are two-fold. (1) The semantic bridges
come from prototype words that possess prior em-
bedding knowledge and also contain syntactic in-
formation, while the syntactic bridges are merely
trained from scratch. (2) The retrieved top-K terms
make the supplementary information in SemBridge
more diverse and abundant than that in SynBridge.

Among the baselines, early methods using com-
mon opinion seeds and pre-defined rules are in-
ferior. Relying on annotated opinion terms, the
methods like TIMN get some improvements but
induce extra annotation costs. By incorporating
pre-trained BERT with external dependency and
cross-domain corpus, UDA, SA-EXAL, and BERT-
Cross outperform previous methods, but they need
high computational resources. In contrast, by using
the static Word2vec embeddings, our model can
outperform those with dynamic BERT representa-
tions. This is instructive for other researches in
that there is still room for improvement by explor-
ing the syntactic and semantic features beyond the
popular BERT-based models10.

5 Analysis

5.1 What If There Is an OTE Task?

With the proposed active domain adaptation strat-
egy, we do not need any manually labeled opinion
terms for ATE. However, this does not mean that
our method cannot handle opinion term extraction
(i.e., OTE). In contrast, if the labeled opinion terms
are provided in DS , we can also conduct the OTE
task for DT by simply modifying the tagger. In
specific, we add an opinion term prediction layer
in Eq.8 and then extract aspect and opinion terms
simultaneously. The results are shown in Table 3.

Obviously, our method again outperforms all
baselines11. We find a small performance decrease
in AVG-AS compared with that in Table 2. Similar
results are also observed in BERT-Base. The reason
is that the objective of ATE and OTE may interfere
with each other without proper balancing and a
sophisticated multi-task learning framework.

10We also make some explorations about combining Syn-
Bridge and SemBridge, please refer to Appendix C.

11Please refer to Appendix D for detailed results for all
transfer pairs.

Table 3: Comparison of different methods. AVG-AS
and AVG-OP are F1-scores for ATE and OTE averaged
on all transfer pairs.

Model AVG-AS AVG-OP
RNSCN 44.73 67.44

TRNN-GRU 45.88 67.12
TIMN 46.36 68.21

BERT-Base 39.52 66.22
SA-EXAL 47.87 69.15

BERT-Cross 48.35 69.47
BaseTagger 50.12 71.73
SynBridge 51.86 71.73
SemBridge 52.53 72.08

5.2 Ablation Study
We conduct a series of ablation study to validate
the effectiveness of our method. The results are
shown in Table 4.

Table 4: Ablation study. The scores denote the decrease
of performance after removing(−) or replacing(→) a
specific component.

Index Model Variant AVG.
1 BaseTagger − LDOM 1.94
2 CNN→BiLSTM 8.47
3

SynBridge

− bpos 1.68
4 − bdep 1.49
5 bdep→Tree-LSTM 3.97
6 bdep→GCN 4.21
7

SemBridge

− c(e, ẽ) 1.82
8 − c(bpos, b̃pos) 2.30
9 − c(bdep, b̃dep) 2.52

Results 1∼2 conform to our previous discussion
about BaseTagger that both CNN and domain ad-
versarial training contribute to overall good perfor-
mance. Results 3∼6 show the effectiveness of POS
and dependency embeddings in SynBridge. Specif-
ically, in 5∼6, we replace our proposed structure
for dependency with frequently-used Tree-LSTM
and GCN to model the dependency tree and find a
significant drop in performance. Results 7∼9 show
the importance of all three types of similarity for
retrieving prototypes in SemBridge.

5.3 Parameter Study
There are three key hyperparameters in our method:
the scale coefficient of GRL λ, the frequency
threshold τ , and the number of prototypes K. We
vary λ in the range 10−4 ∼ 1.0 and τ/K in 1 ∼ 10
to investigate their impacts and present the results
in Figure 6.

In Figure 6(a), when increasing λ from 10−4 to
10−1, we enlarge the scale of domain adversarial
training in GRL and get small improvements. How-
ever, the performance does not keep rising when
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Table 5: Case study. The left columns present the selected target testing examples, and the words in red are aspect
terms. The right columns denote the extraction results of corresponding models.
Pair Example RNSCN BERT-Cross SynBridge SemBridge

R→LS1.
it has usb ports, 1 sd memory card reader
and an sd memory car expansion.

None 7
card reader,7

sd memory car expansion
usb ports, sd memory card reader,

sd memory car expansion
usb ports, sd memory card reader,

sd memory car expansion

L→RS2.
The asparagus, truffle oil, parmesan bruschetta
is a winner!

None 7
asparagus,
bruschetta

7
asparagus,truffle oil
parmesan bruschetta

asparagus,truffle oil
parmesan bruschetta

L→RS3.They showed up 15 minutes after the tuna melt.tuna melt 7 None 7 tuna melt 7 tuna

(a) Impact of λ. (b) Impact of τ/K.
Figure 6: Impacts of hyperparameters λ, τ , and K.

λ = 1.0. This result shows that simply forcing
non-pivots to transfer knowledge is not suitable for
domain adaptation. In Figure 6(b), τ is used to
balance diversity and accuracy. A low τ means
that prototypes are diverse, but some of them are
long-tail words and contribute little to the reduc-
tion of domain discrepancy. On the contrary, a high
τ only preserves frequent prototypes, and some
meaningful prototypes are filtered out. Therefore,
a middle τ=5 is an appropriate choice. For K, the
curve is generally upward when more prototypes
are introduced. This trend is reasonable since more
prototypes equal to more target information.

(a) Impact of PU . (b) Impact of PN .
Figure 7: Impacts of PU and PN .

In Figure 7, we further analyze the impacts of the
percentage of unlabeled data PU and the percent-
age of parsing noise PN . For PU , the performance
is generally better when more unlabeled target data
is introduced. Moreover, around 20%∼40% unla-
beled data is enough to achieve satisfactory perfor-
mance. Notice that SemBridge without unlabeled
data will degenerate into BaseTagger since no pro-
totypes can be retrieved. For PN , we manually dis-
turb the parsing results to observe the robustness
of our method. Clearly, after introducing noises on
parsing, the performance begins to degrade, but not
by a large margin. Our method has the ability to

resist parsing errors for two reasons. First, beyond
syntactic roles, we also incorporate embedding sim-
ilarity when retrieving prototypes (for SemBridge
only). Second, the gating mechanism can further
filter useless syntactic information and maintain
the quality of word representations.

5.4 Case Study

To have a close look, we select a few samples from
testing target data for a case study. S1 and S2 show
the positive impacts of bridges. Due to the space
limit, we illustrate S1 in detail. Since most words
in S1 are domain-specific terms in L, RNSCN fails
to recognize any aspect terms by simply propagat-
ing word representations with dependency. BERT-
Cross only extracts a part of aspect terms based on
its prior knowledge. For our bridge-based method,
SynBridge supplements syntactic roles {nummod,
compound, obj, conj, NNS} for port. These syntac-
tic roles also join the representation of usb and help
to extract usb ports correctly. For SemBridge, the
analysis is much straightforward. usb is the proto-
type of typical aspect terms in R like {garlic, thai,
banana}, thus the tagger with semantic bridges can
easily recognize usb as an aspect term.

S3 further illustrates how SemBridge helps re-
cover from the wrong parsing results. Such results
make two syntax based methods RNSCN and Syn-
Bridge stop working. In contrast, tuna is the pro-
totype of noun words like {nvidia, amd, blade} in
L and melt has the verb prototype like {imagine,
hang, relax} in R, thus SemBridge correctly ex-
tracts tuna and filters out melt in the same time.

In Table 6, We further present several sample
prototypes of the training data from the transfer
pairs R→L (upper three) and L→R (lower three)
in SemBridge, where three terms on the left are
aspect term, opinion term, and context term, re-
spectively. For a source non-pivot term like pro-
cessor in L, SemBridge enhances it with typical
target words like soup and burger. As a result, the
domain discrepancy between the source and target
data is largely reduced with the help of prototypes.
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Table 6: Top-10 prototypes in SemBridge. Words are
ranked by their s.sim scores.

Term Prototypes

food machine,product,keyboard,netbook,service,
computer,screen,value,touchpad,processor

delicious amazing,wonderful,awesome,great,good,nice,
fantastic,beautiful,perfect,lightweight

cook use,load,plug,work,turn,break,charge,change,
help,run

processorsoup,burger,meal,sauce,flavor,cheese,food,
salad,seafood,fan

efficient attentive,impressive,affordable,friendly,reason-
able,pleasant,simple,courteous,helpful,hungry

freeze eat,hang,stop,die,bring,stay,leave,start,give,keep

5.5 Analysis on Computational Cost

In practice, for any transfer pairs, the one-time con-
struction of syntactic and semantic bridges can fin-
ish within 30 seconds. Therefore, we focus on the
end-to-end training costs of SynBridge/SemBridge.
We run five top-performing methods on the trans-
fer pair R→L and present the trainable parameter
number and running time per epoch of each method
in Table 7. We can conclude that our proposed
method maintains a quite low computational cost.

Table 7: Computational cost of each method.
Parameter Runtime

TIMN 0.8M 132s
BERT-Cross 109M 84s
BaseTagger 1.3M 11s

SynBridge/SemBridge 1.4M 12s

6 Conclusion

In this paper, we propose a novel active domain
adaptation method for aspect term extraction. Un-
like previous studies that conduct passive domain
adaptation by associating aspect terms with piv-
ots, we actively enhance the terms’ transferabil-
ity by constructing syntactic and semantic bridges
for them. We then design a lightweight end-to-
end tagger for bridge-based sequence tagging. Ex-
periments on six transfer pairs demonstrate that
our method achieves a new state-of-the-art perfor-
mance with a quite low computational cost.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. The work described in this pa-
per is supported by the NSFC projects (61572376,
91646206), and the 111 project (B07037).

References
John Blitzer, Ryan T. McDonald, and Fernando Pereira.

2006. Domain adaptation with structural correspon-
dence learning. In EMNLP, pages 120–128.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In ACL, pages 347–358.

Zhuang Chen and Tieyun Qian. 2019. Transfer capsule
network for aspect level sentiment classification. In
ACL, pages 547–556.

Zhuang Chen and Tieyun Qian. 2020a. Enhancing
aspect term extraction with soft prototypes. In
EMNLP, pages 2107–2117. Association for Compu-
tational Linguistics.

Zhuang Chen and Tieyun Qian. 2020b. Relation-aware
collaborative learning for unified aspect-based senti-
ment analysis. In ACL, pages 3685–3694.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Ying Ding, Jianfei Yu, and Jing Jiang. 2017. Recur-
rent neural networks with auxiliary labels for cross-
domain opinion target extraction. In AAAI, pages
3436–3442.

Yaroslav Ganin and Victor S. Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
ICML, pages 1180–1189.

Chenggong Gong, Jianfei Yu, and Rui Xia. 2020. Uni-
fied feature and instance based domain adaptation
for aspect-based sentiment analysis. In EMNLP,
pages 7035–7045.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2020. Multi-source domain adaptation for text clas-
sification via distancenet-bandits. In AAAI, pages
7830–7838.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2019. An interactive multi-task learning
network for end-to-end aspect-based sentiment anal-
ysis. In ACL, pages 504–515.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In SIGKDD, pages 168–
177.

Niklas Jakob and Iryna Gurevych. 2010. Extracting
opinion targets in a single and cross-domain setting
with conditional random fields. In EMNLP, pages
1035–1045.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Fangtao Li, Chao Han, Minlie Huang, Xiaoyan
Zhu, Yingju Xia, Shu Zhang, and Hao Yu. 2010.
Structure-aware review mining and summarization.
In COLING, pages 653–661.

https://www.aclweb.org/anthology/W06-1615/
https://www.aclweb.org/anthology/W06-1615/
https://doi.org/10.3115/v1/p14-1033
https://doi.org/10.3115/v1/p14-1033
https://doi.org/10.18653/v1/p19-1052
https://doi.org/10.18653/v1/p19-1052
https://doi.org/10.18653/v1/2020.emnlp-main.164
https://doi.org/10.18653/v1/2020.emnlp-main.164
https://www.aclweb.org/anthology/2020.acl-main.340/
https://www.aclweb.org/anthology/2020.acl-main.340/
https://www.aclweb.org/anthology/2020.acl-main.340/
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14865
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14865
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14865
http://proceedings.mlr.press/v37/ganin15.html
http://proceedings.mlr.press/v37/ganin15.html
https://doi.org/10.18653/v1/2020.emnlp-main.572
https://doi.org/10.18653/v1/2020.emnlp-main.572
https://doi.org/10.18653/v1/2020.emnlp-main.572
https://aaai.org/ojs/index.php/AAAI/article/view/6288
https://aaai.org/ojs/index.php/AAAI/article/view/6288
https://doi.org/10.18653/v1/p19-1048
https://doi.org/10.18653/v1/p19-1048
https://doi.org/10.18653/v1/p19-1048
https://doi.org/10.1145/1014052.1014073
https://doi.org/10.1145/1014052.1014073
https://www.aclweb.org/anthology/D10-1101/
https://www.aclweb.org/anthology/D10-1101/
https://www.aclweb.org/anthology/D10-1101/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/C10-1074/


326

Fangtao Li, Sinno Jialin Pan, Ou Jin, Qiang Yang, and
Xiaoyan Zhu. 2012. Cross-domain co-extraction of
sentiment and topic lexicons. In ACL, pages 410–
419.

Zheng Li, Xin Li, Ying Wei, Lidong Bing, Yu Zhang,
and Qiang Yang. 2019. Transferable end-to-end
aspect-based sentiment analysis with selective adver-
sarial learning. In EMNLP-IJCNLP, pages 4589–
4599.

Kang Liu, Heng Li Xu, Yang Liu, and Jun Zhao. 2013.
Opinion target extraction using partially-supervised
word alignment model. In IJCAI, pages 2134–2140.

Kang Liu, Liheng Xu, and Jun Zhao. 2012. Opinion
target extraction using word-based translation model.
In EMNLP, pages 1346–1356.

Pengfei Liu, Shafiq R. Joty, and Helen M. Meng. 2015.
Fine-grained opinion mining with recurrent neural
networks and word embeddings. In EMNLP, pages
1433–1443.

Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie,
and Houfeng Wang. 2019. Exploring sequence-to-
sequence learning in aspect term extraction. In ACL,
pages 3538–3547.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL, pages 55–60.

Oren Pereg, Daniel Korat, and Moshe Wasserblat. 2020.
Syntactically aware cross-domain aspect and opin-
ion terms extraction. In COLING, pages 1772–
1777.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In SemEval, pages 486–495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos,
Harris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In SemEval, pages
27–35.

Ana-Maria Popescu and Oren Etzioni. 2005. Extract-
ing product features and opinions from reviews. In
EMNLP, pages 339–346.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extrac-
tion through double propagation. Computational
Linguistics, 37(1):9–27.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–
1958.

Feixiang Wang, Man Lan, and Wenting Wang. 2018.
Towards a one-stop solution to both aspect extrac-
tion and sentiment analysis tasks with neural multi-
task learning. In IJCNN, pages 1–8.

Wenya Wang and Sinno Jialin Pan. 2018. Recursive
neural structural correspondence network for cross-
domain aspect and opinion co-extraction. In ACL,
pages 2171–2181.

Wenya Wang and Sinno Jialin Pan. 2019a. Syntacti-
cally meaningful and transferable recursive neural
networks for aspect and opinion extraction. CL,
45(4):705–736.

Wenya Wang and Sinno Jialin Pan. 2019b. Transfer-
able interactive memory network for domain adap-
tation in fine-grained opinion extraction. In AAAI,
pages 7192–7199.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2016. Recursive neural conditional
random fields for aspect-based sentiment analysis.
In EMNLP, pages 616–626.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2017. Coupled multi-layer attentions
for co-extraction of aspect and opinion terms. In
AAAI, pages 3316–3322.

Yuanbin Wu, Qi Zhang, Xuanjing Huang, and Lide Wu.
2009. Phrase dependency parsing for opinion min-
ing. In EMNLP, pages 1533–1541.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2018. Dou-
ble embeddings and cnn-based sequence labeling for
aspect extraction. In ACL, pages 592–598.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2019.
BERT post-training for review reading compre-
hension and aspect-based sentiment analysis. In
NAACL-HLT, pages 2324–2335.

A Ranges of Hyperparameters

We present the hyperparameter ranges in Table 8.
We select all hyperparameters via manual tuning.

Table 8: Ranges of Hyperparameters.
Hyperparameter Range Best

frequency threshold τ 1,2,3,4,5,6,7,8,9,10 5
number of prototypes K 1,2,3,4,5,6,7,8,9,10 10
number of CNN layers L 1,2,3,4,5 4
dimension of CNN features df 64, 128, 256 256
kernel size ks of CNN layer 1 3,5,7,9 3
kernel size ks of CNN layer 2 3,5,7,9 5
kernel size ks of CNN layer 3 3,5,7,9 5
kernel size ks of CNN layer 4 3,5,7,9 5
number of MLP layers LD 1,2,3,4,5 3
the scale coefficient of GRL λ 10[−4,−3,−2,−1,0] 10−1

https://www.aclweb.org/anthology/P12-1043/
https://www.aclweb.org/anthology/P12-1043/
https://doi.org/10.18653/v1/D19-1466
https://doi.org/10.18653/v1/D19-1466
https://doi.org/10.18653/v1/D19-1466
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6795
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6795
https://www.aclweb.org/anthology/D12-1123/
https://www.aclweb.org/anthology/D12-1123/
https://doi.org/10.18653/v1/d15-1168
https://doi.org/10.18653/v1/d15-1168
https://doi.org/10.18653/v1/p19-1344
https://doi.org/10.18653/v1/p19-1344
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.18653/v1/2020.coling-main.158
https://doi.org/10.18653/v1/2020.coling-main.158
https://doi.org/10.18653/v1/s15-2082
https://doi.org/10.18653/v1/s15-2082
https://doi.org/10.3115/v1/s14-2004
https://doi.org/10.3115/v1/s14-2004
https://www.aclweb.org/anthology/H05-1043/
https://www.aclweb.org/anthology/H05-1043/
https://doi.org/10.1162/coli_a_00034
https://doi.org/10.1162/coli_a_00034
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1109/IJCNN.2018.8489042
https://doi.org/10.1109/IJCNN.2018.8489042
https://doi.org/10.1109/IJCNN.2018.8489042
https://doi.org/10.18653/v1/P18-1202
https://doi.org/10.18653/v1/P18-1202
https://doi.org/10.18653/v1/P18-1202
https://doi.org/10.1162/coli_a_00362
https://doi.org/10.1162/coli_a_00362
https://doi.org/10.1162/coli_a_00362
https://doi.org/10.1609/aaai.v33i01.33017192
https://doi.org/10.1609/aaai.v33i01.33017192
https://doi.org/10.1609/aaai.v33i01.33017192
https://doi.org/10.18653/v1/d16-1059
https://doi.org/10.18653/v1/d16-1059
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14441
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14441
https://www.aclweb.org/anthology/D09-1159/
https://www.aclweb.org/anthology/D09-1159/
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/P18-2094
https://doi.org/10.18653/v1/n19-1242
https://doi.org/10.18653/v1/n19-1242


327

Table 9: Comparison of different methods when there is an OTE task. The best scores are in bold and the second
best ones are underlined. AS and OP denote aspect and opinion F1-scores. Averaged results with * are significantly
better than the best baseline BERT-Cross (p < 0.01) based on one-tailed unpaired t-test.

Models
R→L L→R R→D D→R L→D D→L AVG.

AS OP AS OP AS OP AS OP AS OP AS OP AS OP
RNSCN 40.43 65.85 52.91 72.51 35.10 60.17 48.36 73.75 40.42 61.15 51.14 71.18 44.73 67.44
TRNN 40.15 65.63 53.78 73.40 37.33 60.32 51.17 74.37 41.19 60.20 51.66 68.79 45.88 67.12
TIMN 43.68 68.44 54.12 73.69 35.45 59.05 53.82 76.52 38.63 62.22 52.46 69.32 46.36 68.21

BERT-Base 34.70 73.84 37.07 80.12 37.17 64.52 40.54 60.45 43.45 59.59 44.19 58.77 39.52 66.22
SA-EXAL 47.59 75.79 54.67 80.05 40.50 63.33 54.54 71.57 42.19 60.19 47.72 63.98 47.87 69.15

BERT-Cross 44.00 75.38 54.31 81.97 43.12 66.57 51.97 70.58 44.35 58.49 50.01 63.81 48.35 69.47
BaseTagger 47.78 70.61 58.39 79.53 39.71 63.63 57.56 80.18 44.49 64.14 52.77 72.30 50.12 71.73∗

SynBridge 50.59 70.74 60.94 79.86 42.42 63.37 59.92 79.88 45.30 64.22 51.97 72.33 51.86∗ 71.73∗

SemBridge 50.67 71.51 63.04 80.48 43.34 63.46 60.19 80.21 44.91 64.15 53.02 72.63 52.53∗ 72.08∗

B Modification of SAL and UDA

Since SAL and UDA are designed for end-to-end
cross-domain aspect-based sentiment analysis, they
have access to the aspect sentiment labels in train-
ing. As previous studies show, aspect term extrac-
tion and aspect-level sentiment classification can
benefit each other. Therefore, it is unfair to directly
compare our method with SAL and UDA.

We choose to modify SAL and UDA and make
them fair competitors. We degrade the collapsed
tags {B-POS, I-POS, B-NEG, I-NEG, B-NEU, I-
NEU, O} to {B, I, O} thus remove the aspect-
level sentiment classification task. Following other
BERT-based methods, we use BERT-Base as the
backbone of UDA.

C Can We Combine SynBridge and
SemBridge?

Since SynBridge and SemBridge contain transfer-
able syntactic and semantic information, it is in-
tuitive to combine them for a better performance
than either individual model. Here we apply a very
simple operation for combination.

For a word xi with embedding ei, we first obtain
its syntactic and semantic bridges bsyn,i and bsem,i,
and merge them into a combined bridge:

bcom,i = (Wsyn × bsyn,i) + (Wsem × bsem,i), (13)

Then we conduct a similar gating operation and get
the combined bridge enhanced embedding ecom,i:

gcom,i = σ (Wcom(ei ⊕ bcom,i))

ecom,i = gcom,i � (ei ⊕ bcom,i),
(14)

Lastly, we regard ecom,i as the input of tagger and
make predictions for aspect terms. We term this
model ComBridge and present the results in Ta-
ble 10.

Table 10: Comparison of different bridge-based meth-
ods. The best scores are in bold and the second best
ones are underlined.

Model R→L L→R R→D D→R L→D D→L AVG.
BaseTagger 48.86 61.42 40.56 57.67 43.75 51.95 50.70
SynBridge 51.53 63.90 42.76 59.40 44.97 52.44 52.50
SemBridge 51.53 65.96 43.03 60.61 45.39 53.77 53.38
ComBridge 53.32 66.20 42.56 60.99 44.74 53.32 53.52

ComBridge slightly outperforms SemBridge and
achieves the optimal results in all bridge-based
methods. The small improvement is explicable
since SemBridge already contains most of the syn-
tactic information in SynBridge and we do not use
any sophisticated methods in combination.

D Detailed Results for an Additional
OTE Task

When opinion terms are labeled, our method can
also conduct aspect term extraction and opinion
term extraction simultaneously. For recognizing
aspect and opinion terms, we only need to add an
opinion term prediction layer:

ŷa,i = Softmax(WA × fLi ),

ŷo,i = Softmax(WO × fLi ),
(15)

where ŷa,i / ŷo,i are the predictions of {B, I,O}
for the aspect / opinion terms. And the resulted
BIO loss is calculated as follow:

LBIO = −
∑
DS

n∑
i=1

`(ŷa,i, ya,i) + `(ŷo,i, yo,i) (16)

where ` is the cross-entropy loss function.
We present the detailed results in Table 9. Ob-

viously, our proposed SynBridge and SemBridge
outperform other baselines in both aspect and opin-
ion F1-scores.


