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Abstract

Large pre-trained models such as BERT are
known to improve different downstream NLP
tasks, even when such a model is trained on
a generic domain. Moreover, recent studies
have shown that when large domain-specific
corpora are available, continued pre-training
on domain-specific data can further improve
the performance of in-domain tasks. How-
ever, this practice requires significant domain-
specific data and computational resources
which may not always be available. In this
paper, we aim to adapt a generic pretrained
model with a relatively small amount of
domain-specific data. We demonstrate that by
explicitly incorporating the multi-granularity
information of unseen and domain-specific
words via the adaptation of (word based) n-
grams, the performance of a generic pretrained
model can be greatly improved. Specifically,
we introduce a Transformer-based Domain-
aware N-gram Adaptor, T-DNA, to effectively
learn and incorporate the semantic represen-
tation of different combinations of words in
the new domain. Experimental results illus-
trate the effectiveness of T-DNA on eight low-
resource downstream tasks from four domains.
We show that T-DNA is able to achieve sig-
nificant improvements compared to existing
methods on most tasks using limited data with
lower computational costs. Moreover, further
analyses demonstrate the importance and ef-
fectiveness of both unseen words and the in-
formation of different granularities.'

1 Introduction

Pre-trained language models have achieved great
success and shown promise in various applica-
tion scenarios across natural language understand-
ing (Devlin et al., 2019; Liu et al., 2019; Tian et al.,
2020a) and generation (Lewis et al., 2020; Zhang

'0ur code is available at https://github.com/
shizhediao/T—-DNA.

et al., 2020; Yang et al., 2020). Normally applying
pre-trained language models to different applica-
tions follows a two-stage paradigm: pre-training on
a large unlabeled corpus and then fine-tuning on a
downstream task dataset. However, when there are
domain gaps between pre-training and fine-tuning
data, previous studies (Beltagy et al., 2019; Lee
et al., 2020) have observed a performance drop
caused by the incapability of generalization to new
domains. Towards filling the gaps, the main re-
search stream (Beltagy et al., 2019; Alsentzer et al.,
2019; Huang et al., 2019; Lee et al., 2020) on
adapting pre-trained language models starts from
a generic model (e.g., BERT, RoBERTa) and then
continues pre-training with similar objectives on
a large-scale domain-specific corpus. However,
without providing sufficient understanding of the
reason for the performance drop during the domain
shift, it is prone to failure of adaptation. There-
fore, many aspects of continuous pre-training are
expected to be enhanced. First, although generic
pre-trained models offer better initialization for
continuous pre-training models, it still costs con-
siderable time (and money) that are beyond the
reach of many institutions.> Second, it is clumsy
to pre-train domain-specific models repeatedly for
each domain on large-scale corpora.® Therefore, it
is helpful to have an efficient and flexible method
for being able to adapt pre-trained language models
to different domains requiring limited resources.
Starting from the observed vocabulary mismatch
problem (Gururangan et al., 2020), we further show
empirically that the domain gap is largely caused by
domain-specific n-grams.* Motivated by this find-

For example, BioBERT (Lee et al., 2020), initialized by
generic BERT, was trained on biomedical corpora for 23 days
on eight NVIDIA V100 GPUs.

3For example, SciBERT (Beltagy et al., 2019) needs to
be trained from scratch if one wants to use a domain-specific
vocabulary (i.e., SciVocab in their paper).

*We explain it in detail in the following section.
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ing, we propose a light-weight Transformer-based
Domain-aware N-gram Adaptor (T-DNA) by in-
corporating n-gram representations to bridge the
domain gap between source and target vocabulary.
Specifically, the proposed model is able to explic-
itly learn and incorporate better representations of
domain-specific words and phrases (in the form of
n-grams) by the adaptor networks with only requir-
ing small pieces of data. With this adaptor, once
entering a new domain, one can choose to train the
adaptor alone or train it with a Transformer-based
backbone (e.g., BERT) together, where the joint
training paradigm could provide more improve-
ment. In addition, although it is designed for a low-
resource setting, the adaptor is still able to work
with enough data, which ensures its generalization
ability in different scenarios.

Experimental results demonstrate that T-DNA
significantly improves domain adaptation perfor-
mance based on a generic pre-trained model and
outperforms all baselines on eight classification
tasks (on eight datasets). The results confirm that
incorporating domain-specific n-grams with the
proposed T-DNA is an effective and efficient solu-
tion to domain adaptation, showing that the infor-
mation carried by larger text granularity is highly
important for language processing across domains.
Moreover, further analyses investigate the factors
that may influence the performance of our model,
such as the amount of available data, the train-
ing time cost and efficiency, and the granularity
of domain-specific information, revealing the best
way and setting for using the model.

2 The Motivation

As observed in Gururangan et al. (2020), the trans-
fer gain of domain-specific pre-training becomes
increasingly significant when the source and tar-
get domain are vastly dissimilar in terms of the
vocabulary overlap. Motivated by this association
between transfer gain and vocabulary distribution,
we further investigate the shift of words and phrases
across domains and attempt to alleviate the degra-
dation of language models without large domain-
specific corpora.

In particular, we start with a RoBERTa-base
model from the generic domain and then fine-tune
it on the IMDB (Maas et al., 2011) dataset. We
investigate the outputs predicted by the [CLS] em-
bedding on the IMDB development set and divide
them into two categories: correct predictions (true
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Figure 1: The proportion of domain-specific n-grams
in correct predictions and false predictions over 10 dif-
ferent random seeds.

positive/negative) and false predictions (false pos-
itive/false negative). To examine the vocabulary
mismatch problem during the domain shift, we
extract the top 1K most frequent n-grams> from
these two categories respectively. We identify the
n-grams not in the top 10K most frequent n-grams
of source data® as domain-specific n-grams. As
revealed in Figure 1, a larger proportion of domain-
specific n-grams are captured when the model is
misled to make wrong predictions, which suggests
that the shifts in semantic meaning for both words
and phrases might account for the domain shift.
Furthermore, we conjecture that the representations
of domain-specific n-grams are unreliable, which
exacerbates the model degradation. While more
details will be presented in §6.3, we briefly men-
tion here that the tokens usually improperly attend
to other tokens in the sentence but omit the most
important words and phrases.

In light of this empirical evidence, we are moti-
vated to design a framework to not only capture the
domain-specific n-grams but also reliably embed
them to extrapolate in the novel domain.

3 The T-DNA

Our approach follows the standard recipe of pre-
training and fine-tuning a language model, which
receives a sentence X = titg---t;---tp with
t; indicating the i-th token, and outputs the rep-
resentation of each token. The overall architec-
ture of our approach is shown in Figure 2. In
the middle, a generic pre-trained encoder, such

Here we set n to 5.
®We sample a subset from English Wikipedia.
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Figure 2: The overall architecture of our model.

as BERT or RoBERTa, provides a representation
at the subword-level without any target domain
knowledge. The right-hand side shows the pro-
posed T-DNA to enhance the backbone pre-trained
encoder, where word based n-grams in X are ex-
tracted from a pre-constructed lexicon £, and are
represented through n-gram attention module. The
left-hand side shows the n-gram matching matrix
and the integrating process of domain-specific rep-
resentation and generic encoding.

In this section, we start with a detailed descrip-
tion of lexicon construction, then introduce our
n-gram encoding module and how to integrate n-
gram encoding with the backbone model to get
domain-aware representation, and end with an il-
lustration of two training strategies.

3.1 Lexicon Construction and N-gram
Extraction

To better represent and incorporate unseen and
domain-specific n-grams, we first need to find and
extract them. Here we propose to use an unsuper-
vised method, pointwise mutual information (PMI),
to find domain-specific words and phrases by col-
locations and associations between words.

Given a sentence X = xixo---xx with K
words, for any two adjacent words (e.g., T, T)

within the sentence, their PMI is calculated by
PMI(z,7) = log _pEr) (1)
p(z)p(Z)
where p(x) is the probability of an n-gram x. When
a high PMI score is detected between the adja-
cent T and 7, it suggests they are good collocation
pairs, because they have a high probability of co-
occurrence and are more likely to form an n-gram.
On the contrary, a delimiter is inserted between
the two adjacent words if their PMI(z, ) is less
than a threshold o, i.e., X = z1x9---Z/T -+ k.
As a result, those consecutive words without a de-
limiter are identified as candidate domain-specific
n-grams. After using PMI to segment each sen-
tence in the training set of a target task, we could
select among candidate n-grams to obtain the final
n-gram lexicon £, where each n-gram appears with
a frequency of at least f.

In light of this lexicon, for each training in-
put sentence X = tity---t; - - tp with T tokens,
where t; denotes the i-th token of X, we extract
those sub-strings of X that exist in the lexicon
to form domain-specific n-gram sequence S =
,8j,++,8N, with s; indicating the j-th
n-gram of X’. At the same time, an n-gram match-
ing matrix, M € RT*¥ can be built to record the

5152, -
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positions of the extracted domain-specific n-gram
set and its associated tokens, where m;; = 1 for
ti € s; and m;; = 0 for t; ¢ s;. The matching
matrix is shown in the left hand size of Figure 2.

3.2 Domain-aware Representation

The backbone pre-trained encoder is a Transformer
architecture (Vaswani et al., 2017) with L layers, S
self-attention heads and H hidden dimensions ini-
tialized from any pre-trained encoder (e.g., BERT
or RoBERTa). The input sentence is passed through
it, resulting in a generic hidden state h; for each
input token z;. To get the domain-aware hidden
representation, the n-gram adaptor network is im-
plemented by a Transformer encoder with [ layers,
S self-attention heads and H hidden dimensions.
First, the embeddings of domain-specific n-grams
could be obtained by an n-gram embedding layer
and then they are fed into the n-gram encoder to
get a sequence of hidden states g via a multi-head
attention mechanism. The n-gram encoder is able
to model the interactions among all extracted n-
grams and dynamically weighs n-grams to empha-
size truly useful n-grams and ignores noisy infor-
mation. The combination of the generic representa-
tion and domain-specific n-gram representation are
computed by

hp=hi+ Y gk )
k

where 1} is the desired domain-aware representa-
tion, and g; ;. is the resulting hidden state for the
i-th token and the k-th n-gram associated with this
token according to the matching matrix M. The n-
gram encoding process and hidden state integration
is repeated layer-by-layer along with the generic
encoder for [ layers from the bottom.

3.3 Training Strategies

Several training strategies could be used and we
adopt two in our experiments: fine-tuning (FT)
and task-adaptive pre-training (TAPT). For fine-
tuning, we operate on the hidden state of the special
classification token [CLS]. Following the tradition
citation, we simply add a fully-connected layer
as a classifier on top of the model and obtain the
probabilities via a softmax layer. The classifier and
the whole model are fine-tuned on the labeled task
data in the target domain with cross-entropy loss.
To inject unsupervised target domain knowledge,
we leverage the task-adaptive pre-training proposed

in (Gururangan et al., 2020) which strips the labels
in downstream task training data and trains the
model on this unlabeled data. We use the masked
language model (MLM) as our objective and do
not include the next sentence prediction (NSP) task
following Liu et al. (2019); Lan et al. (2020).
Note that, our model also supports other train-
ing strategies such as domain-adaptive pre-training,
which proves to be effective in Gururangan et al.
(2020). One can pre-train our model on a far larger
domain corpus (normally beyond 10GB) at the be-
ginning, and then do the task-adaptive pre-training
and fine-tuning. Because our main goal is to adapt
our model in a low-resource setting in terms of data
size and time cost, we leave it for future research.’

4 Experiment Settings

In this section, we first introduce eight benchmark-
ing datasets. Then the baseline models, evaluation
metrics, and implementation details are presented
in the following three subsections, respectively.

4.1 Datasets

Following Gururangan et al. (2020), we conduct

our experiments on eight classification tasks from

four domains including biomedical sciences, com-
puter science, news and reviews. The datasets are
described as follows.

e CHEMPROT (Kringelum et al., 2016), a man-
ually annotated chemical—protein interaction
dataset extracted from 5,031 abstracts for rela-
tion classification.

e RCT (Dernoncourt and Lee, 2017), which con-
tains approximately 200,000 abstracts from pub-
lic medicine with the role of each sentence
clearly identified.

e CITATIONINTENT (Jurgens et al., 2018), which
contains around 2,000 citations annotated for
their function.

e SCIERC (Luan et al., 2018), which consists
of 500 scientific abstracts annotated for relation
classification.

e HYPERPARTISAN (Kiesel et al., 2019), which
contains 645 articles from Hyperpartisan news
with either extreme left-wing or right-wing stand-
point used for partisanship classification.

e AGNEWS (Zhang et al., 2015), consisting of
127,600 categorized articles from more than
2000 news source for topic classification.

"We show some analyses and discussion of data size in
Section 6.2.
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DOMAIN \ BIOMED CS NEWS REVIEWS
DATASET \ CP RCT CI SE HP AG AM IMDB
S# 4.1K 1.8K 1.6K 3.2K 516 1.1K 1.1K 2.0K
TRAIN T# 895K 267K 376K 619K 1.7M 213K 1.0M 2.6M
O.S# 4.1K 180K 1.6K 3.2K 516 115K 115K 20K
O.T# 895K  27.4M 376K 619K 1.7”M  214M 989M 259M
DEV S# 24K 30K 114 455 64 5K 5K 5K
T# 547K 4.6M 24K 89K 194K 929K 4.4M 6.6M
TEST S# 34K 30K 139 974 65 7.6K 25K 25K
T# 773K 4.6M 31K 187K 238K 1.4M  21.5M  31.8M
CLASSES 13 5 6 7 2 4 2 2

Table 1: The statistics of the eight task datasets in four target domains. To limit the computational resources and
maintain all datasets on thousand-level, we only take 10% of IMDB training set, and 1% of RCT, AG and AM
training sets. O.S# and O.T# refer to the number of sentences and the number of tokens in the original datasets,
respectively. S# denotes the number of sentences and T# is the number of tokens. CP, CI, SE, HP, AG and AM
denote CHEMPROT, CITATIONINTENT, SCIERC, HYPERPARTISAN,AGNEWS and AMAZON, respectively.

o AMAZON (McAuley et al., 2015), consisting of
145,251 reviews on Women’s and Men’s Cloth-
ing & Accessories, each representing users’ im-
plicit feedback on items with a binary label sig-
nifying whether the majority of customers found
the review helpful.

e IMDB (Maas et al., 2011), 50,000 balanced
positive and negative reviews from the Internet
Movie Database for sentiment classification.

To create a low-resource setting, we constrain
the size of all datasets into thousand-level. To do so,
we randomly select a subset for RCT, AG, Amazon,
IMDB with the ratio 1%, 1%, 1%, 10%, respec-
tively. The details can be found in Table 1.

4.2 Baselines

In our experiments, the following two models serve

as the main baselines.

o ROBERTA+FT: fine-tuned off-the-shelf
RoBERTa-base model for downstream tasks.

e ROBERTA+TAPT: task-adaptive pre-trained
on unlabeled task data starting from RoBERTa
and then fine-tuned on labeled data.

4.3 Evaluation Metrics

Following Beltagy et al. (2019), we adopt macro-
F1 for Citationlntent, SciERC, HyperPartisan,
AGNews, Amazon, IMDB, and micro-F1 for
ChemProt and RCT as evaluation metrics. Macro-
F1 will compute the F1 metric independently for
each class and then take the average, whereas
micro-F1 will aggregate the contributions of all
classes to compute the average metric. In a

multi-class classification setup, micro-F1 is prefer-
able if there is class imbalance, which is true for
ChemProt and RCT.

4.4 Implementation

We implement the ROBERTa-base architecture and
initialize it with pre-trained weights by Hugging-
face’s Transformers library®. In order to obtain
a fast and warm start for n-gram representations,
we utilize fastText (Bojanowski et al., 2017) to ini-
tialize n-gram embeddings. Considering the small
amount of data and based on our experience, the
number of N-gram encoding layers [ is set to 1.

For unsupervised task-adaptive pre-training
(TAPT), the batch size is set to 16 and training
epochs range from 10 to 15. We adopt Adam
(Kingma and Ba, 2015) as the optimizer , where the
corresponding learning rates of different datasets
can be found in our code. The dropout rate is set to
0.5. For the task-specific fine-tuning (FT), we use
similar hyperparameter settings and the details are
elaborated in the Appendix. All the experiments
are implemented on Nvidia V100 GPUs.

S Experimental Results

We compare the performance of the RoOBERTa
model with and without T-DNA on the aforemen-
tioned datasets. In both fine-tuning and task adap-
tive pre-training experiments, T-DNA shows sig-
nificant improvements over the pre-trained generic
RoBERTa.

8https://github.com/huggingface/transformers
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DOMAIN BIOMED CS NEWS REVIEWS
DATASET Cp RCT CI SE HP AG AM IMDB
RoBERTa+FT 81.10070 80.72040 56.74547 T74.06525 88.15151 88.60001 63.0d0so  92.29023
+T-DNA 82.66051 81.52041 64.95:08 78.61200 92.49060 88.9100s 63.92062 92.9107
RoBERTa+TAPT | 82.24133 82.73023 63.44230 77.85112 92.70073 88.84001 64.13022 92.77025
+T-DNA 83.8907c 83.94027 69.73257 79.4004s 9391145 89.05005 64.3603¢+ 93.130.15

Table 2: The overall performance of T-DNA and the comparison against existing models on eight target down-
stream datasts. We report average scores across five random seeds, with standard deviations as subscripts.

5.1 Fine-Tuning

The results of fine-tuning on eight datasets are re-
ported in Table 4. In general, the ROBERTa model
with T-DNA outperforms that without T-DNA on
all datasets, clearly indicating the effectiveness of
T-DNA by emphasizing multi-granularity infor-
mation. On average, T-DNA is able to bring an
improvement of performance by around 2.66%.
Across all eight datasets, it is observed that T-
DNA achieves the greatest improvement (8.21%)
on the CitationIntent dataset and the least improve-
ment on the AGNews dataset. One reasonable ex-
planation for different improvements is that the
domain gap between the RoBERTa pre-training
domain and the CS domain is the greatest so that
far more gains could be obtained by an effective
adaptation strategy. To confirm this, we follow Gu-
rurangan et al. (2020) to characterize the domain
similarity by analyzing vocabulary overlap and we
draw the same conclustion that ROBERTa’s pre-
training domain has a similar vocabulary to News
and Reviews, but far more dissimilar vocabulary to
BioMed and CS. In light of this observation, we
recognize that the proposed method is more appli-
cable when the domain gap is large. In this sce-
nario, the potential of incorporating multi-grained
information by domain-specific n-grams is greatly
exploited to boost the performance of adaptation.
When comparing the improvements over four
domains, T-DNA is able to offer 1.18%, 6.38%,
2.33%, 0.75% gains on BioMed, CS, News, Re-
views, respectively. The improvement on the CS
domain is the best while on the Reviews domain
it is the poorest, which is consistent with previous
analyses across datasets for similar reasons.

5.2 Task-Adaptive Pre-Training

In the previous section, we show that T-DNA is
helpful in fine-tuning. Additionally, we would like
to explore whether T-DNA is complementary to
more training strategies, such as task-adaptive pre-
training (TAPT). TAPT has been shown useful for
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Figure 3: Effects of Different Granularities

(N=0,1,2,3).

pre-trained models in previous studies (Howard
and Ruder, 2018; Gururangan et al., 2020), by pre-
training on the unlabeled task dataset drawn from
the task distribution. The experimental results of
two models with and without T-DNA are reported
in the bottom two rows in Table 4. From the re-
sults, we can clearly see that the model with T-
DNA achieves better performance on all datasets
compared to the generic ROBERTa model with-
out T-DNA. The T-DNA helps to improve the
performance by approximately 1.59% on average,
which shows that the effectiveness of T-DNA does
not vanish when combined with TAPT. Instead,
it further leads to a large performance boost for
pre-trained models, indicating that T-DNA is a
complementary approach, where explicitly model-
ing domain-specific information helps the unsuper-
vised learning of representations (i.e., the masked
language model (MLM) pre-training objective).
Overall, for both FT and TAPT experiments, the
results show that T-DNA significantly improves
domain adaptation performance based on a generic
pre-trained model. We attribute this improvement
to the essential domain-specific semantic informa-
tion that is carried by n-grams and the valid repre-
sentation of n-grams from the T-DNA network.

6 Analyses

We analyze several aspects of T-DNA, including
the effects of different granularities and the effects
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Task RCT AG AM IMDB
Model | w.o w. W.0 w. W.0 w. W.0 W.
10% | 80.78 82.23TL%  90.11 92.01T199  63.13 64.101997 92.29 92.9110.62
20% | 8522 86.16M09% 9171 92.141043 6401 65.12™11 92,11 92.8910-78
50% | 87.10 87.6910°9 9217 92.58M041 6552 66.101058 93.13 93.3210-19
100% | 87.31 87.691038 9375 94.001025 66.79 67.141035 9434 94811047

Table 3: Performance gains of T-DNA w.r.t. different sampling ratios of RCT, AG, AM and IMDB datasets. w.
and w.o indicate whether the model is equipped with T-DNA or not. The uparrow marks where a positive gain is

obtained.

of data size. In addition, we examine the attention
mechanism to verify the effects of n-gram repre-
sentations during the domain shift. The details are
illustrated in this section.

6.1 Effects of Different Granularities

The lexical unit in RoBERTa is a subword obtained
from byte pair encoding (BPE) (Sennrich et al.,
2016) tokenization, resulting in a smaller token
space and more training data for each token. Our
approach provides coarse-grained information car-
ried by the larger lexical units, n-gram.

To verify the contribution of larger granularity
information, we compare the improvement brought
by T-DNA with information of different granular-
ities, for n from O to 3. Note that here n means
that we extract and incorporate all n-grams with a
length smaller or equal to n (within a certain granu-
larity). For example, n = 3 means that we include
all unigrams, bigrams and trigrams. Two consis-
tent observations could be made. First, adding
only 1-gram is able to bring improvements over
0-gram (i.e., without T-DNA) on all eight datasets,
as shown in Figure 3. As we know, the tokens in the
generic encoder are at the subword-level and our
unigrams are at the word-level, which can be seen
as a combination of subwords. Therefore, the re-
sults suggest that adding unseen words through our
adaptor network is effective, which could enhance
the interaction between subwords of the same word,
especially for the new words in the target domain.

Moreover, based on 1-gram, involving larger
granularity offer further gains. Comparing 2-gram
and 3-gram v.s. 1-gram, the consistent improve-
ments of T-DNA demonstrate that the potential
boundary information presented by n-grams plays
an essential role in learning representations by pro-
viding explicit and better guidance.

6.2 Effects of Data Size

In the previous section, we explored the virtue
of incorporating multi-grained information under
resource-limited settings, where only a small sub-
set of specific datasets can be accessed. In addition,
we are curious whether T-DNA could work well
on a larger scale. To this end, we sample differ-
ent ratios (i.e., 10%, 20%, 50%, 100%) of four
datasets (i.e., RCT, AGNews, Amazon and IMDB)
and investigate how T-DNA performs at different
data scales. As shown in Table 3, the model with
T-DNA always outperforms that without T-DNA
w.r.t. any subsets of four datasets. This demon-
strates that models with T-DNA could easily adapt
to any size of dataset with the help of domain-
specific n-gram information. However, it is also
noted that the performance gains of our method
decayed with the increase of the amount of training
data, dropping from 1.24% (proportion=10%) to
0.36% (proportion=100%). It is not surprising be-
cause with adequate data, a model is able to learn a
good representation with supervised learning with-
out the need of prior knowledge. However, since
sufficient data normally could not be accessed in re-
ality, especially labeled data, we argue that T-DNA
is desirable and necessary for domain adaptation.

6.3 Visualization of N-gram Representations

To verify the effects of n-gram representations dur-
ing the domain shift, we examine the attention
mechanism of ROBERTa and T-DNA by plotting
the attention maps and salience maps using the
LIT tool (Tenney et al., 2020). In the attention
map of RoBERTa without T-DNA, we found that
the tokens usually improperly attend to other to-
kens in the sentence. For example, in Figure 4,
“Barbie” attributes more attentions to “animated”
and “scary” but omits “creepy” and fails to capture
“scary as hell” as an integrated phase. In contrast,
when the model is equipped with T-DNA, this vari-
ant will shift its attention to include “creepy” and
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model attention maps and salience maps prediction label

That creepy animated Barbie is scary as hell ! | want to stop talking about her now .
That creepy animated Barbie is scary\as hell ! I want to stbp talking about her now .

RoBERTa positive negative
That  creepy Barbie is as hell !
I ‘want to stop  talking about | her| now
That creepy animated Barbie is scary as hell ! | want to stop talking about her now .

TT‘?;EE That creepy animated Barbie is scary as hell ! | want to stbp talking about her now . negative | negative
That | creepy Barbie is as hell !
I want to stop  talking about | her now

Figure 4: The visualization of attention maps and salience maps of ROBERTa and RoBERTa+T-DNA. The upper
region of each row shows the attention map, where thicker lines denote higher attention weights. The bottom region
illustrates the salience map, where the darker color box denotes the more dominant weights for the prediction.

force the model to focus on the informative phrase
“scary as hell”. Furthermore, the salience map
of RoBERTa without T-DNA suggests that “an-
imated” and “scary” dominate its prediction while
“creepy” and “scary as hell” are captured by our T-
DNA, which is consistent with the decision process
of human beings.

Due to the space limitations, more visualized
examples are not shown here. However, based on
considerable empirical evidence, we conclude that
the unreliable representations of domain-specific
n-grams (words and phrases) might be one of the
main causes for model degradation.

7 Related Work

A large performance drop of pre-trained models
caused by domain shift has been observed and
many domain-specific BERT models (Beltagy et al.,
2019; Alsentzer et al., 2019; Huang et al., 2019;
Lee et al., 2020) have been introduced to bridge the
domain gap. For example, SCiBERT (Beltagy et al.,
2019) is trained on 1.14M scientific papers from
Semantic Scholar corpus (Ammar et al., 2018) for
7 days on TPU v3-8 machine and BioBERT (Lee
et al., 2020) is trained on PubMed abstracts and
PMC full text articles for 23 days on eight NVIDIA
V100 GPUs. Clinical BERT (Alsentzer et al., 2019)
is trained on about 2 million notes in the MIMIC-III

v1.4 database (Johnson et al., 2016) for 17-18 days
on a single GeForce GTX TITAN X 12 GB GPU.
However, they all incur a huge computational cost,
which is not affordable for many university labs
or institutions. This is precisely why we believe
that our efficient adaptor is useful to the commu-
nity. Although Gururangan et al. (2020) introduced
task-adaptive pre-training (TAPT) to save time by
training on unlabeled downstream task data, we
demonstrate that our plug-in adaptor is faster and
more effective because of the explicit learning strat-
egy and efficient model architecture.

Out of vocabulary (OOV) words refer to those
words that are not in the vocabulary list and have
received a lot of attention in recent years. One way
to handle OOV words is to simply utilize and learn
an “unknown” embedding during training. Another
way is to add in-domain words into the original vo-
cabulary list and learn their representation by pre-
training from scratch (Beltagy et al., 2019; Gu et al.,
2020), which requires substantial resources and
training data. Moreover, SciBERT (Beltagy et al.,
2019) found that in-domain vocabulary is helpful
but not significant while we attribute it to the ineffi-
ciency of implicit learning of in-domain vocabulary.
To represent OOV words in multilingual settings,
the mixture mapping method (Wang et al., 2019)
utilized a mixture of English subwords embedding,
but it has been shown useless for domain-specific
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words by Tai et al. (2020). ExBERT (Tai et al.,
2020) applied an extension module to adapt an aug-
menting embedding for the in-domain vocabulary
but it still needs large continuous pre-training. Sim-
ilar to our work, they highlight the importance of
the domain-specific words but all of these work nei-
ther explore the understanding of performance drop
during a domain shift nor examine the importance
of multi-grained information. Large granularity
contextual information carried by spans or n-grams
has proven to be helpful to enhance text representa-
tion for Chinese (Song et al., 2009; Song and Xia,
2012; Ouyang et al., 2017; Kim et al., 2018; Peng
et al., 2018; Higashiyama et al., 2019; Tian et al.,
2020e,b; Li et al., 2020; Diao et al., 2020; Song
et al., 2021) and English (Joshi et al., 2020; Xiao
et al., 2020; Tian et al., 2020c,d). In addition to text
encoders on pre-training, the KNN-LM (Khandel-
wal et al., 2019) proposes to augment the language
model for effective domain adaptation, by varying
the nearest neighbor datastore of similar contexts
without further training. However, all of the previ-
ous studies focused on either general pre-training
procedures or different tasks (e.g., language model-
ing), and did not explore the effectiveness of multi-
grained information for domain adaptation. We
hence view them as orthogonal to our work.

8 Conclusion

In this work, we first reveal a novel discovery be-
hind the performance drop during a domain shift,
demonstrating that an unreliable representation of
domain-specific n-grams causes the failure of adap-
tation. To this end, we propose an innovative
adaptor network for generic pre-trained encoders,
supporting many training strategies such as task-
adaptive pre-training and fine-tuning, both leading
to significant improvements to eight classification
datasets from four domains (biomedical, computer
science, news and reviews). Our method is easy
to implement, simple but effective, implying that
explicitly representing and incorporating domain-
specific n-grams offer large gains. In addition, fur-
ther analyses consistently demonstrate the impor-
tance and effectiveness of both unseen words and
the information carried by coarse-grained n-grams.
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A Description of Computing Infrastructure

All the experiments are implemented on Nvidia V100 GPUs with 32GB memory.

B Run Time
DOMAIN BIOMED CS NEWS REVIEWS
DATASET CP RCT CI SE HP AG AM IMDB
RoBERTa+FT 95 40 37 74 50 102 130 114
+T-DNA 93 39 40 72 52 104 131 113
RoBERTa+TAPT | 300 132 117 234 285 389 402 392
+T-DNA 320 128 114 240 290 390 400 394

Table 4: Running time per epoch of models, in the unit of second.

C Validation Performance

DOMAIN B1IOMED CS NEWS REVIEWS
DATASET CP RCT CI SE HP AG AM IMDB
RoBERTa+FT 80.08 81.21 58.06 75.33 9350 88.70 62.50 93.04
+T-DNA 81.17 82.00 62.98 79.62 91.81 88.64 63.40 92.83
RoBERTa+TAPT | 81.27 8098 60.11 77.08 93.50 88.90 64.30 92.38
+T-DNA 82.58 83.24 67.89 80.69 9374 89.31 64.27 93.11

Table 5: The validation performance.

D Evaluation Measures

We use manual tuning and adopt macro-F1 for CitationIntent, SCIERC, HyperPartisan, AGNews, Amazon,
IMDB, and micro-F1 for ChemProt and RCT as evaluation metrics. Macro-F1 will compute the F1 metric
independently for each class and then take the average, whereas micro-F1 will aggregate the contributions
of all classes to compute the average metric. In a multi-class classification setup, micro-F1 is preferable if
there is class imbalance, which is true for ChemProt and RCT.

E Bounds of Hyperparameters

Hyperparameter Assaignment
number of epochs 3(FT) or 15(TAPT)
patience 1
batch size [4,8,16,32,64]
learning rate [le-5,1e-4]
dropout 0.5
classification layer [1,2]
learning rate optimizer Adam
Adam epsilon le-8
Adam beta 0.9, 0.999
learning rate optimizer Adam

Table 6: Bounds of hyperparameters.
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Configuration of Best Model

Hyperparameter Assaignment
number of epochs 3(FT) or 15(TAPT)
patience 1
batch size 32
learning rate 4e-5
dropout 0.5
classification layer 1
learning rate optimizer Adam
Adam epsilon le-8
Adam beta 0.9, 0.999
learning rate optimizer Adam

Table 7: Configuration of the best model.
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