
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 3322–3335

August 1–6, 2021. ©2021 Association for Computational Linguistics

3322

Meta-Learning to Compositionally Generalize

Henry Conklin1∗, Bailin Wang1∗, Kenny Smith1 and Ivan Titov1,2

1University of Edinburgh 2University of Amsterdam
{henry.conklin, bailin.wang, kenny.smith}@ed.ac.uk, ititov@inf.ed.ac.uk

Abstract

Natural language is compositional; the mean-
ing of a sentence is a function of the mean-
ing of its parts. This property allows hu-
mans to create and interpret novel sentences,
generalizing robustly outside their prior ex-
perience. Neural networks have been shown
to struggle with this kind of generalization,
in particular performing poorly on tasks de-
signed to assess compositional generalization
(i.e. where training and testing distributions
differ in ways that would be trivial for a com-
positional strategy to resolve). Their poor per-
formance on these tasks may in part be due
to the nature of supervised learning which as-
sumes training and testing data to be drawn
from the same distribution. We implement
a meta-learning augmented version of super-
vised learning whose objective directly op-
timizes for out-of-distribution generalization.
We construct pairs of tasks for meta-learning
by sub-sampling existing training data. Each
pair of tasks is constructed to contain relevant
examples, as determined by a similarity metric,
in an effort to inhibit models from memorizing
their input. Experimental results on the COGS
and SCAN datasets show that our similarity-
driven meta-learning can improve generaliza-
tion performance.

1 Introduction

Compositionality is the property of human lan-
guage that allows for the meaning of a sentence
to be constructed from the meaning of its parts and
the way in which they are combined (Cann, 1993).
By decomposing phrases into known parts we can
generalize to novel sentences despite never having
encountered them before. In practice this allows
us to produce and interpret a functionally limitless
number of sentences given finite means (Chomsky,
1965).

∗Equal contribution.

Whether or not neural networks can generalize
in this way remains unanswered. Prior work as-
serts that there exist fundamental differences be-
tween cognitive and connectionist architectures
that makes compositional generalization by the lat-
ter unlikely (Fodor and Pylyshyn, 1988). However,
recent work has shown these models’ capacity for
learning some syntactic properties. Hupkes et al.
(2018) show how some architectures can handle
hierarchy in an algebraic context and generalize in
a limited way to unseen depths and lengths. Work
looking at the latent representations learned by
deep machine translation systems show how these
models seem to extract constituency and syntactic
class information from data (Blevins et al., 2018;
Belinkov et al., 2018). These results, and the more
general fact that neural models perform a variety
of NLP tasks with high fidelity (eg. Vaswani et al.,
2017; Dong and Lapata, 2016), suggest these mod-
els have some sensitivity to syntactic structure and
by extension may be able to learn to generalize
compositionally.

Recently there have been a number of datasets
designed to more formally assess connectionist
models’ aptitude for compositional generalization
(Kim and Linzen, 2020; Lake and Baroni, 2018;
Hupkes et al., 2019). These datasets frame the prob-
lem of compositional generalization as one of out-
of-distribution generalization: the model is trained
on one distribution and tested on another which
differs in ways that would be trivial for a composi-
tional strategy to resolve. A variety of neural net-
work architectures have shown mixed performance
across these tasks, failing to show conclusively that
connectionist models are reliably capable of gener-
alizing compositionally (Keysers et al., 2020; Lake
and Baroni, 2018). Natural language requires a
mixture of memorization and generalization (Jiang
et al., 2020), memorizing exceptions and atomic
concepts with which to generalize. Previous work

3323

looking at compositional generalization has sug-
gested that models may memorize large spans of
sentences multiple words in length (Hupkes et al.,
2019; Keysers et al., 2020). This practice may not
harm in-domain performance, but if at test time the
model encounters a sequence of words it has not
encountered before it will be unable to interpret it
having not learned the atoms (words) that comprise
it. Griffiths (2020) looks at the role of limitations in
the development of human cognitive mechanisms.
Humans’ finite computational ability and limited
memory may be central to the emergence of robust
generalization strategies like compositionality. A
hard upper-bound on the amount we can memo-
rize may be in part what forces us to generalize
as we do. Without the same restriction models
may prefer a strategy that memorizes large sections
of the input potentially inhibiting their ability to
compositionally generalize.

In a way the difficulty of these models to gener-
alize out of distribution is unsurprising: supervised
learning assumes that training and testing data are
drawn from the same distribution, and therefore
does not necessarily favour strategies that are ro-
bust out of distribution. Data necessarily under-
specifies for the generalizations that produced it.
Accordingly for a given dataset there may be a
large number of generalization strategies that are
compatible with the data, only some of which will
perform well outside of training (D’Amour et al.,
2020). It seems connectionist models do not reli-
ably extract the strategies from their training data
that generalize well outside of the training distribu-
tion. Here we focus on an approach that tries to to
introduce a bias during training such that the model
arrives at a more robust strategy.

To do this we implement a variant of the model
agnostic meta-learning algorithm (MAML, Finn
et al., 2017a). The approach used here follows
Wang et al. (2020a) which implements an objec-
tive function that explicitly optimizes for out-of-
distribution generalization in line with Li et al.
(2018). Wang et al. (2020a) creates pairs of tasks
for each batch (which here we call meta-train and
meta-test) by sub-sampling the existing training
data. Each meta-train, meta-test task pair is de-
signed to simulate the divergence between training
and testing: meta-train is designed to resemble the
training distribution, and meta-test to resemble the
test distribution. The training objective then re-
quires that update steps taken on meta-train are

also beneficial for meta-test. This serves as a kind
of regularizer, inhibiting the model from taking up-
date steps that only benefit meta-train. By manipu-
lating the composition of meta-test we can control
the nature of the regularization applied. Unlike
other meta-learning methods this is not used for
few or zero-shot performance. Instead it acts as a
kind of meta-augmented supervised learning, that
helps the model to generalize robustly outside of
its training distribution.

The approach taken by Wang et al. (2020a) re-
lies on the knowledge of the test setting. While
it does not assume access to the test distribution,
it assumes access to the family of test distribu-
tions, from which the actual test distribution will be
drawn. While substantially less restrictive than the
standard iid setting, it still poses a problem if we
do not know the test distribution, or if the model is
evaluated in a way that does not lend itself to being
represented by discrete pairs of tasks (i.e. if test
and train differ in a variety of distinct ways). Here
we propose a more general approach that aims to
generate meta-train, meta-test pairs which are popu-
lated with similar (rather than divergent) examples
in an effort to inhibit the model from memorizing
its input. Similarity is determined by a string or
tree kernel so that for each meta-train task a corre-
sponding meta-test task is created from examples
deemed similar.

By selecting for similar examples we design the
meta-test task to include examples with many of
the same words as meta-train, but in novel com-
binations. As our training objective encourages
gradient steps that are beneficial for both tasks we
expect the model to be less likely to memorize
large chunks which are unlikely to occur in both
tasks, and therefore generalize more composition-
ally. This generalizes the approach from Wang
et al. (2020a), by using the meta-test task to apply
a bias not-strictly related to the test distribution:
the design of the meta-test task allows us to de-
sign the bias which it applies. It is worth noting
that other recent approaches to this problem have
leveraged data augmentation to make the training
distribution more representative of the test distribu-
tion (Andreas, 2020). We believe this line of work
is orthogonal to ours as it does not focus on getting
a model to generalize compositionally, but rather
making the task simple enough that compositional
generalization is not needed. Our method is model
agnostic, and does not require prior knowledge of

3324

the target distribution.
We summarise our contributions as follows:
• We approach the problem of compositional

generalization with a meta-learning objective
that tries to explicitly reduce input memoriza-
tion using similarity-driven virtual tasks.

• We perform experiments on two text-to-
semantic compositional datasets: COGS and
SCAN. Our new training objectives lead to
significant improvements in accuracy over a
baseline parser trained with conventional su-
pervised learning. 1

2 Methods

We introduce the meta-learning augmented ap-
proach to supervised learning from Li et al. (2018);
Wang et al. (2020a) that explicitly optimizes for out-
of-distribution generalization. Central to this ap-
proach is the generation of tasks for meta-learning
by sub-sampling training data. We introduce three
kinds of similarity metrics used to guide the con-
struction of these tasks.

2.1 Problem Definition

Compositional Generalization Lake and Ba-
roni (eg. 2018); Kim and Linzen (eg. 2020) in-
troduce datasets designed to assess compositional
generalization. These datasets are created by gen-
erating synthetic data with different distributions
for testing and training. The differences between
the distributions are trivially resolved by a compo-
sitional strategy. At their core these tasks tend to
assess three key components of compositional abil-
ity: systematicity, productivity, and primitive appli-
cation. Systematicity allows for the use of known
parts in novel combinations as in (a). Productiv-
ity enables generalization to longer sequences than
those seen in training as in (b). Primitive applica-
tion allows for a word only seen in isolation during
training to be applied compositionally at test time
as in (c).

(a) The cat gives the dog a gift→ The dog gives
the cat a gift

(b) The cat gives the dog a gift→ The cat gives
the dog a gift and the bird a gift

(c) made→ The cat made the dog a gift

1Our implementations are available at https://
github.com/berlino/tensor2struct-public.

Algorithm 1 MAML Training Algorithm

Require: Original training set T
Require: Learning rate α, Batch size N

1: for step← 1 to T do
2: Sample a random batch from T as a virtual

training set Bt
3: Initialize an empty generalization set Bg
4: for i← 1 to N do
5: Sample an example from p̃(· | Bt[i])
6: Add it to Bg
7: end for
8: Construct a virtual task τ := (Bt,Bg)
9: Meta-train update:

θ′ ← θ − α∇θLBt(θ)
10: Compute meta-test objective:

Lτ (θ) = LBt(θ) + LBg(θ′)
11: Final Update:

θ ← Update(θ,∇θLτ (θ))
12: end for

A compositional grammar like the one that gener-
ated the data would be able to resolve these three
kinds of generalization easily, and therefore perfor-
mance on these tasks is taken as an indication of a
model’s compositional ability.

Conventional Supervised Learning The com-
positional generalization datasets we look at are
semantic parsing tasks, mapping between natural
language and a formal representation. A usual su-
pervised learning objective for semantic parsing is
to minimize the negative log-likelihood of the cor-
rect formal representation given a natural language
input sentence, i.e. minimising

LB(θ) = −
1

N

N∑
i=1

log pθ(y|x) (1)

where N is the size of batch B, y is a formal rep-
resentation and x is a natural language sentence.
This approach assumes that the training and testing
data are independent and identically distributed.

Task Distributions Following from Wang et al.
(2020a), we utilize a learning algorithm that can
enable a parser to benefit from a distribution of
virtual tasks, denoted by p(τ), where τ refers to an
instance of a virtual compositional generalization
task that has its own training and test examples.

2.2 MAML Training
Once we have constructed our pairs of virtual

tasks we need a training algorithm that encourages

https://github.com/berlino/tensor2struct-public
https://github.com/berlino/tensor2struct-public

3325

compositional generalization in each. Like Wang
et al. (2020a), we turn to optimization-based meta-
learning algorithms (Finn et al., 2017b; Li et al.,
2018) and apply DG-MAML (Domain Generaliza-
tion with Model-Agnostic Meta-Learning), a vari-
ant of MAML (Finn et al., 2017b). Intuitively, DG-
MAML encourages optimization on meta-training
examples to have a positive effect on the meta-test
examples as well.

During each learning episode of MAML training
we randomly sample a task τ which consists of a
training batch Bt and a generalization batch Bg and
conduct optimization in two steps, namely meta-
train and meta-test.

Meta-Train The meta-train task is sampled at
random from the training data. The model performs
one stochastic gradient descent step on this batch

θ′ ← θ − α∇θLBt(θ) (2)

where α is the meta-train learning rate.

Meta-Test The fine-tuned parameters θ′ are eval-
uated on the accompanying generalization task,
meta-test, by computing their loss on it denoted
as LBg(θ′). The final objective for a task τ is then
to jointly optimize the following:

Lτ (θ) = LBt(θ) + LBg(θ′)
= LBt(θ) + LBg(θ − α∇θLβ(θ))

(3)

The objective now becomes to reduce the joint loss
of both the meta-train and meta-test tasks. Opti-
mizing in this way ensures that updates on meta-
train are also beneficial to meta-test. The loss on
meta-test acts as a constraint on the loss from meta-
train. This is unlike traditional supervised learning
(Lτ (θ) = LBt(θ) +LBg(θ)) where the loss on one
batch does not constrain the loss on another.

With a random Bt and Bg, the joint loss func-
tion can be seen as a kind of generic regularizer,
ensuring that update steps are not overly beneficial
to meta-train alone. By constructing Bt and Bg in
ways which we expect to be relevant to composi-
tionality, we aim to allow the MAML algorithm
to apply specialized regularization during training.
Here we design meta-test to be similar to the meta-
train task because we believe this highlights the
systematicity generalization that is key to compo-
sitional ability: selecting for examples comprised
of the same atoms but in different arrangements.
In constraining each update step with respect to
meta-train by performance on similar examples

Source Example: The girl changed a sandwich beside the table .

Neighbours using Tree Kernel Similarity
A sandwich changed . 0.55
The girl changed . 0.55
The block was changed by the girl . 0.39
The girl changed the cake . 0.39
change 0.32

Neighbours using String Kernel
The girl rolled a drink beside the table . 0.35
The girl liked a dealer beside the table . 0.35
The girl cleaned a teacher beside the table . 0.35
The girl froze a bear beside the table . 0.35
The girl grew a pencil beside the table . 0.35

Neighbours using LevDistance
The girl rolled a drink beside the table . -2.00
The girl liked a dealer beside the table . -2.00
The girl cleaned a teacher beside the table . -2.00
The girl froze a bear beside the table . -2.00
The girl grew a pencil beside the table . -2.00

Table 1: Top scoring examples according to the tree
kernel, string kernel and Levenshtein distance for the
sentence ‘The girl changed a sandwich beside the ta-
ble .’ and accompanying scores.

in meta-test we expect the model to dis-prefer a
strategy that does not also work for meta-test like
memorization of whole phrases or large sections of
the input.

2.3 Similarity Metrics
Ideally, the design of virtual tasks should reflect
specific generalization cases for each dataset. How-
ever, in practice this requires some prior knowledge
of the distribution to which the model will be ex-
pected to generalize, which is not always available.
Instead we aim to naively structure the virtual tasks
to resemble each other. To do this we use a number
of similarity measures intended to help select ex-
amples which highlight the systematicity of natural
language.

Inspired by kernel density estimation (Parzen,
1962), we define a relevance distribution for each
example:

p̃(x′, y′|x, y) ∝ exp
(
k([x, y], [x′, y′]/η

)
(4)

where k is the similarity function, [x, y] is a train-
ing example, η is a temperature that controls the
sharpness of the distribution. Based on our ex-
tended interpretation of relevance, a high p̃ implies
that [x, y] is systematically relevant to [x′, y′] - con-
taining many of the same atoms but in a novel
combination. We look at three similarity metrics
to guide subsampling existing training data into
meta-test tasks proportional to each example’s p̃.

3326

Sentence: A rose was helped by Emma .
Logical Form: ∃x help′(rose′(x), Emma)
Dependency Tree: help

rose emma
Partial Trees:

help

rose

help

emma

help rose emma

Sentence: A rose was helped by a dog .
Logical Form: ∃x,y help′(rose′(x), dog′(y))
Dependency Tree: help

rose dog
Partial Trees:

help

rose

help

dog

help rose dog

Figure 1: The dependency-tree forms for the logical
forms of two sentences. Shown below each tree are its
partial trees. As there are three partial trees shared by
the examples their un-normalized tree kernel score is 3.

Levenshtein Distance First, we consider Leven-
shtein distance, a kind of edit distance widely used
to measure the dissimilarity between strings. We
compute the negative Levenshtein distance at the
word-level between natural language sentences of
two examples:

k([x, y], [x′, y′]) = −1 ∗ LevDistance(x, x′) (5)

where LevDistance returns the number of edit oper-
ations required to transform x into x′. See Table 1
for examples.

Another family of similarity metrics for discrete
structures are convolution kernels (Haussler, 1999).

String-Kernel Similarity We use the string sub-
sequence kernel (Lodhi et al., 2002):

k([x, y], [x′, y′]) = SSK(x, x′) (6)

where SSK computes the number of common sub-
sequences between natural language sentences at
the word-level. See Table 1 for examples. 2

2We use the normalized convolution kernels in this work,
i.e., k′(x1, x2) = k(x1, x2)/

√
k(x1, x1)k(x2, x2)

Tree-Kernel Similarity In semantic parsing, the
formal representation y usually has a known gram-
mar which can be used to represent it as a tree
structure. In light of this we use tree convolution
kernels to compute similarity between examples: 3

k([x, y], [x′, y′]) = TreeKernel(y, y′) (7)

where the TreeKernel function is a convolution ker-
nel (Collins and Duffy, 2001) applied to trees. Here
we consider a particular case where y is represented
as a dependency structure, as shown in Figure 1.
We use the partial tree kernel (Moschitti, 2006)
which is designed for application to dependency
trees. For a given dependency tree partial tree ker-
nels generate a series of all possible partial trees:
any set of one or more connected nodes. Given two
trees the kernel returns the number of partial trees
they have in common, interpreted as a similarity
score. Compared with string-based similarity, this
kernel prefers sentences that share common syntac-
tic sub-structures, some of which are not assigned
high scores in string-based similarity metrics, as
shown in Table 1.

Though tree-structured formal representations
are more informative in obtaining relevance, not all
logical forms can be represented as tree structures.
In SCAN (Lake and Baroni, 2018) y are action
sequences without given grammars. As we will
show in the experiments, string-based similarity
metrics have a broader scope of applications but
are less effective than tree kernels in cases where y
can be tree-structured.

Sampling for Meta-Test Using our kernels we
compute the relevance distribution in Eq 4 to con-
struct virtual tasks for MAML training. We show
the resulting procedure in Algorithm 1. In order to
construct a virtual task τ , a meta-train batch is first
sampled at random from the training data (line 2),
then the accompanying meta-test batch is created
by sampling examples similar to those in meta-train
(line 5).

We use Lev-MAML, Str-MAML and Tree-MAML
to denote the meta-training using Levenshtein dis-
tance, string-kernel and tree-kernel similarity, re-
spectively.

3Alternatively, we can use tree edit-distance (Zhang and
Shasha, 1989).

3327

3 Experiments

3.1 Datasets and Splits

We evaluate our methods on the following seman-
tic parsing benchmarks that target compositional
generalization.

SCAN contains a set of natural language
commands and their corresponding action se-
quences (Lake and Baroni, 2018). We use the Max-
imum Compound Divergence (MCD) splits (Key-
sers et al., 2020), which are created based on the
principle of maximizing the divergence between
the compound (e.g., patterns of 2 or more action
sequences) distributions of the training and test
tests. We apply Lev-MAML and Str-MAML to
SCAN where similarity measures are applied to the
natural language commands. Tree-MAML (which
uses a tree kernel) is not applied as the action se-
quences do not have an underlying dependency
tree-structure.

COGS contains a diverse set of natural lan-
guage sentences paired with logical forms based
on lambda calculus (Kim and Linzen, 2020). Com-
pared with SCAN, it covers various systematic lin-
guistic abstractions (e.g., passive to active) includ-
ing examples of lexical and structural generaliza-
tion, and thus better reflects the compositionality
of natural language. In addition to the standard
splits of Train/Dev/Test, COGS provides a gen-
eralization (Gen) set drawn from a different dis-
tribution that specifically assesses compositional
generalization. We apply Lev-MAML, Str-MAML
and Tree-MAML to COGS; Lev-MAML and Str-
MAML make use of the natural language sentences
while Tree-MAML uses the dependency structures
reconstructed from the logical forms.

3.2 Baselines

In general, our method is model-agnostic and can
be coupled with any semantic parser to improve
its compositional generalization. Additionally Lev-
MAML, and Str-MAML are dataset agnostic pro-
vided the dataset has a natural language input. In
this work, we apply our methods on two widely
used sequence-to-sequences models. 4

LSTM-based Seq2Seq has been the backbone
of many neural semantic parsers (Dong and La-
pata, 2016; Jia and Liang, 2016). It utilizes

4Details of implementations and hyperparameters can be
found in the Appendix.

LSTM (Hochreiter and Schmidhuber, 1997) and
attention (Bahdanau et al., 2014) under an encoder-
decoder (Sutskever et al., 2014) framework.

Transformer-based Seq2Seq also follows the
encoder-decoder framework, but it uses Transform-
ers (Vaswani et al., 2017) to replace the LSTM
for encoding and decoding. It has proved success-
ful in many NLP tasks e.g., machine translation.
Recently, it has been adapted for semantic pars-
ing (Wang et al., 2020b) with superior performance.

We try to see whether our MAML training can
improve the compositional generalization of con-
temporary semantic parsers, compared with stan-
dard supervised learning. Moreover, we include
a meta-baseline, referred to as Uni-MAML, that
constructs meta-train and meta-test splits by uni-
formly sampling training examples. By compar-
ing with this meta-baseline, we show the effect
of similarity-driven construction of meta-learning
splits. Note that we do not focus on making compar-
isons with other methods that feature specialized
architectures for SCAN datasets (see Section 5),
as these methods do not generalize well to more
complex datasets (Furrer et al., 2020).

GECA We additionally apply the good enough
compositional augmentation (GECA) method laid
out in Andreas (2020) to the SCAN MCD splits.
Data augmentation of this kind tries to make the
training distribution more representative of the test
distribution. This approach is distinct from ours
which focuses on the training objective, but the
two can be combined with better overall perfor-
mance as we will show. Specifically, we show the
results of GECA applied to the MCD splits as well
as GECA combined with our Lev-MAML variant.
Note that we elect not to apply GECA to COGS, as
the time and space complexity 5 of GECA proves
very costly for COGS in our preliminary experi-
ments.

3.3 Construction of Virtual Tasks

The similarity-driven sampling distribution p̃ in
Eq 4 requires computing the similarity between ev-
ery pair of training examples, which can be very ex-
pensive depending on the size of of the dataset. As
the sampling distributions are fixed during training,
we compute and cache them beforehand. However,
they take an excess of disk space to store as essen-
tially we need to store an N ×N matrix where N

5See the original paper for details.

3328

Model MCD1 MCD2 MCD3
LSTM 4.7 ±2.2 7.3 ±2.1 1.8 ±0.7

Transformer 0.4 ±0.4 1.8 ±0.4 0.5 ±0.1

T5-base 26.2 ±1.7 7.9 ±1.6 12.1 ±0.1

T5-11B 7.9 2.4 16.8

LSTM 27.4 ±8.2 31.0 ±0.4 9.6 ±3.7

w. Uni-MAML 44.8 ±5.4 31.9 ±3.4 10.0 ±1.4

w. Lev-MAML 47.6 ±2.3 35.2 ±3.9 11.4 ±3.0

w. Str-MAML 42.2 ±2.6 33.6 ±4.3 11.4 ±2.2

Transformer 2.6 ±0.8 3.1 ±1.0 2.3 ±1.3

w. Uni-MAML 2.8 ±0.7 3.2 ±1.0 3.2 ±1.6

w. Lev-MAML 4.7 ±1.8 6.7 ±1.4 6.5 ±1.2

w. Str-MAML 2.8 ±0.6 5.6 ±1.6 6.7 ±1.4

GECA + LSTM 51.5 ±4.4 30.4 ±4.8 12.0 ±6.8

w. Lev-MAML 58.9 ±6.4 34.5 ±2.5 12.3 ±4.9

Table 2: Main results on SCAN MCD splits. We show
the mean and variance (95% confidence interval) of 10
runs. Cells with a grey background are results obtained
in this paper, whereas cells with a white background
are from Furrer et al. (2020).

is the number of training examples. To allow effi-
cient storage and sampling, we use the following
approximation. First, we found that usually each
example only has a small set of neighbours that
are relevant to it. 6 Motivated by this observation,
we only store the top 1000 relevant neighbours for
each example sorted by similarity, and use it to con-
struct the sampling distribution denoted as p̃top1000.
To allow examples out of top 1000 being sampled,
we use a linear interpolation between p̃top1000 and a
uniform distribution. Specifically, we end up using
the following sampling distribution:

p̃(x′, y′|x, y) = λ p̃top1000(x
′, y′|x, y)+(1−λ) 1

N

where p̃top1000 assigns 0 probability to out-of top
1000 examples, N is the number of training exam-
ples, and λ is a hyperparameter for interpolation. In
practice, we set λ to 0.5 in all experiments. To sam-
ple from this distribution, we first decide whether
the sample is in the top 1000 by sampling from a
Bernoulli distribution parameterized by λ. If it is,
we use p̃top1000 to do the sampling; otherwise, we
uniformly sample an example from the training set.

3.4 Development Set
Many tasks that assess out-of-distribution (O.O.D.)
generalization (e.g. COGS) do not have an O.O.D.

6For example, in COGS, each example only retrieves 3.6%
of the whole training set as its neighbours (i.e., have non-zero
tree-kernel similarity) on average.

Model Gen Dev Test Gen
LSTM - 99 16 ±8

Transformer - 96 35 ±6

LSTM 30.3 ±7.3 99.7 34.5 ±4.5

w. Uni-MAML 36.1 ±6.7 99.7 36.4 ±3.6

w. Lev-MAML 35.6 ±5.3 99.7 36.4 ±5.2

w. Str-MAML 36.3 ±4.2 99.7 36.8 ±3.5

w. Tree-MAML 41.2 ±2.8 99.7 41.0 ±4.9

Transformer 54.7 ±4.0 99.5 58.6 ±3.7

w. Uni-MAML 60.9 ±2.8 99.6 64.4 ±4.0

w. Lev-MAML 62.7 ±3.8 99.7 64.9 ±6.3

w. Str-MAML 62.3 ±3.0 99.6 64.8 ±5.5

w. Tree-MAML 64.1 ±3.2 99.6 66.7 ±4.4

Table 3: Main results on the COGS dataset. We show
the mean and variance (standard deviation) of 10 runs.
Cells with a grey background are results obtained in
this paper, whereas cells with a white background are
from Kim and Linzen (2020).

Dev set that is representative of the generalization
distribution. This is desirable as a parser in prin-
ciple should never have knowledge of the Gen set
during training. In practice though the lack of an
O.O.D. Dev set makes model selection extremely
difficult and not reproducible. 7 In this work, we
propose the following strategy to alleviate this is-
sue: 1) we sample a small subset from the Gen set,
denoted as ‘Gen Dev’ for tuning meta-learning hy-
perparmeters, 2) we use two disjoint sets of random
seeds for development and testing respectively, i.e.,
retraining the selected models from scratch before
applying them to the final test set. In this way, we
make sure that our tuning is not exploiting the mod-
els resulting from specific random seeds: we do
not perform random seed tuning. At no point are
any of our models trained on the Gen Dev set.

3.5 Main Results

On SCAN, as shown in Table 2, Lev-MAML sub-
stantially helps both base parsers achieve better per-
formance across three different splits constructed
according to the MCD principle. 8 Though our
models do not utilize pre-training such as T5 (Raf-
fel et al., 2019), our best model (Lev-MAML +
LSTM) still outperforms T5 based models sig-
nificantly in MCD1 and MCD2. We show that
GECA is also effective for MCD splits (especially

7We elaborate on this issue in the Appendix.
8Our base parsers also perform much better than previous

methods, likely due to the choice of hyperparameters.

3329

in MCD1). More importantly, augmenting GECA
with Lev-MAML further boosts the performance
substantially in MCD1 and MCD2, signifying that
our MAML training is complementary to GECA to
some degree.

Table 3 shows our results on COGS. Tree-
MAML boosts the performance of both LSTM and
Transformer base parsers by a large margin: 6.5%
and 8.1% respectively in average accuracy. More-
over, Tree-MAML is consistently better than other
MAML variants, showing the effectiveness of ex-
ploiting tree structures of formal representation to
construct virtual tasks. 9

4 Discussion

4.1 SCAN Discussion

The application of our string-similarity driven meta-
learning approaches to the SCAN dataset improved
the performance of the LSTM baseline parser. Our
results are reported on three splits of the dataset
generated according to the maximum compound
divergence (MCD) principle. We report results
on the only MCD tasks for SCAN as these tasks
explicitly focus on the systematicity of language.
As such they assess a model’s ability to extract
sufficiently atomic concepts from its input, such
that it can still recognize those concepts in a new
context (i.e. as part of a different compound). To
succeed here a model must learn atoms from the
training data and apply them compositionally at
test time. The improvement in performance our
approach achieves on this task suggests that it does
disincentivise the model from memorizing large
sections - or entire compounds - from its input.

GECA applied to the SCAN MCD splits does
improve performance of the baseline, however not
to the same extent as when applied to other SCAN
tasks in Andreas (2020). GECA’s improvement
is comparable to our meta-learning method, de-
spite the fact that our method does not leverage any
data augmentation. This means that our method
achieves high performance by generalizing robustly
outside of its training distribution, rather than by
making its training data more representative of
the test distribution. The application of our Lev-
MAML approach to GECA-augmented data results
in further improvements in performance, suggest-

9The improvement of all of our MAML variants applied
to the Transformer are significant (p < 0.03) compared to the
baseline, of our methods applied to LSTMs, Tree-MAML is
significant (p < 0.01) compared to the baseline.

ing that these approaches aid the model in distinct
yet complementary ways.

4.2 COGS Discussion

All variants of our meta-learning approach im-
proved both the LSTM and Transformer baseline
parsers’ performance on the COGS dataset. The
Tree-MAML method outperforms the Lev-MAML,
Str-MAML, and Uni-MAML versions. The only
difference between these methods is the similar-
ity metric used, and so differences in performance
must be driven by what each metric selects for. For
further analysis of the metrics refer to the appendix.

The strong performance of the Uni-MAML vari-
ant highlights the usefulness of our approach gen-
erally in improving models’ generalization perfor-
mance. Even without a specially designed meta-
test task this approach substantially improves on
the baseline Transformer model. We see this as evi-
dence that this kind of meta-augmented supervised
learning acts as a robust regularizer particularly for
tasks requiring out of distribution generalization.

Although the Uni-MAML, Lev-MAML, and Str-
MAML versions perform similarly overall on the
COGS dataset they may select for different gener-
alization strategies. The COGS generalization set
is comprised of 21 sub-tasks which can be used to
better understand the ways in which a model is gen-
eralizing (refer to Table 4 for examples of subtask
performance). Despite having very similar overall
performance Uni-MAML and Str-MAML perform
distinctly on individual COGS tasks - with their
performance appearing to diverge on a number of
of them. This would suggest that the design of the
meta-test task may have a substantive impact on
the kind of generalization strategy that emerges in
the model. For further analysis of COGS sub-task
performance see the appendix.

Our approaches’ strong results on both of these
datasets suggest that it aids compositional gener-
alization generally. However it is worth nothing
that both datasets shown here are synthetic, and
although COGS endeavours to be similar to natu-
ral data, the application of our methods outside of
synthetic datasets is important future work.

5 Related Work

Compositional Generalization A large body of
work on compositional generalization provide mod-
els with strong compositional bias, such as special-
ized neural architectures (Li et al., 2019; Russin

3330

Case Training Generalization Accuracy Distribution

Primitive noun→ Subject
(common noun)

shark A shark examined the child.

0.5 1
Baseline

Tree-MAML

Primitive noun→ Subject
(proper noun)

Paula Paula sketched William.

0.4 0.6 0.8 1
Baseline

Tree-MAML

Primitive noun → Object
(common noun)

shark A chief heard the shark.

0 0.2 0.4
Baseline

Tree-MAML

Primitive noun→ Object
(proper noun)

Paula The child helped Paula.

0 0.5 1
Baseline

Tree-MAML

Table 4: Accuracy on COGS by generalization case. Each dot represents a single run of the model.

et al., 2019; Gordon et al., 2019), or grammar-based
models that accommodate alignments between
natural language utterances and programs (Shaw
et al., 2020; Herzig and Berant, 2020). An-
other line of work utilizes data augmentation
via fixed rules (Andreas, 2020) or a learned net-
work (Akyürek et al., 2020) in an effort to trans-
form the out-of-distribution compositional general-
ization task into an in-distribution one. Our work
follows an orthogonal direction, injecting composi-
tional bias using a specialized training algorithm.
A related area of research looks at the emergence
of compositional languages, often showing that
languages which seem to lack natural-language
like compositional structure may still be able to
generalize to novel concepts (Kottur et al., 2017;
Chaabouni et al., 2020). This may help to explain
the ways in which models can generalize robustly
on in-distribution data unseen during training while
still struggling on tasks specifically targeting com-
positionality.

Meta-Learning for NLP Meta-learning meth-
ods (Vinyals et al., 2016; Ravi and Larochelle,
2016; Finn et al., 2017b) that are widely used for
few-shot learning, have been adapted for NLP ap-
plications like machine translation (Gu et al., 2018)
and relation classification (Obamuyide and Vla-
chos, 2019). In this work, we extend the conven-
tional MAML (Finn et al., 2017b) algorithm, which
was initially proposed for few-shot learning, as a
tool to inject inductive bias, inspired by Li et al.
(2018); Wang et al. (2020a). For compositional gen-
eralization, Lake (2019) proposes a meta-learning
procedure to train a memory-augmented neural
model. However, its meta-learning algorithm is
specialized for the SCAN dataset (Lake and Baroni,
2018) and not suitable to more realistic datasets.

6 Conclusion

Our work highlights the importance of training ob-
jectives that select for robust generalization strate-
gies. The meta-learning augmented approach to
supervised learning used here allows for the speci-
fication of different constraints on learning through
the design of the meta-tasks. Our similarity-driven
task design improved on baseline performance on
two different compositional generalization datasets,
by inhibiting the model’s ability to memorize large
sections of its input. Importantly though the overall
approach used here is model agnostic, with portions
of it (Str-MAML, Lev-MAML, and Uni-MAML)
proving dataset agnostic as well requiring only that
the input be a natural language sentence. Our meth-
ods are simple to implement compared with other
approaches to improving compositional general-
ization, and we look forward to their use in com-
bination with other techniques to further improve
models’ compositional ability.

Acknowledgements

This work was supported in part by the UKRI Cen-
tre for Doctoral Training in Natural Language Pro-
cessing, funded by the UKRI (grant EP/S022481/1)
and the University of Edinburgh, School of Infor-
matics and School of Philosophy, Psychology &
Language Sciences. We also acknowledge the fi-
nancial support of the European Research Council
(Titov, ERC StG BroadSem 678254) and the Dutch
National Science Foundation (Titov, NWO VIDI
639.022.518).

References

Ekin Akyürek, Afra Feyza Akyürek, and Jacob An-
dreas. 2020. Learning to recombine and resam-

3331

ple data for compositional generalization. arXiv
preprint arXiv:2010.03706.

Jacob Andreas. 2020. Good-enough compositional
data augmentation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7556–7566, Online. Association
for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass. 2018.
Evaluating Layers of Representation in Neural Ma-
chine Translation on Part-of-Speech and Semantic
Tagging Tasks. arXiv:1801.07772 [cs]. ArXiv:
1801.07772.

Terra Blevins, Omer Levy, and Luke Zettlemoyer.
2018. Deep RNNs Encode Soft Hierarchical Syntax.
arXiv:1805.04218 [cs]. ArXiv: 1805.04218.

Ronnie Cann. 1993. Formal semantics an introduc-
tion. Cambridge University Press, Cambridge [etc.
OCLC: 1120437841.

Rahma Chaabouni, Eugene Kharitonov, Diane Boucha-
court, Emmanuel Dupoux, and Marco Baroni. 2020.
Compositionality and generalization in emergent
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4427–4442, Online. Association for Computa-
tional Linguistics.

Noam Chomsky. 1965. Aspects of the theory of syn-
tax, 50th anniversary edition edition. Number no. 11
in Massachusetts Institute of Technology. Research
Laboratory of Electronics. Special technical report.
The MIT Press, Cambridge, Massachusetts.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Advances in neural
information processing systems, pages 625–632.

Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, Matthew D. Hoffman, Farhad Hormozdiari,
Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan
Karthikesalingam, Mario Lucic, Yian Ma, Cory
McLean, Diana Mincu, Akinori Mitani, Andrea
Montanari, Zachary Nado, Vivek Natarajan, Christo-
pher Nielson, Thomas F. Osborne, Rajiv Raman,
Kim Ramasamy, Rory Sayres, Jessica Schrouff, Mar-
tin Seneviratne, Shannon Sequeira, Harini Suresh,
Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kel-
lie Webster, Steve Yadlowsky, Taedong Yun, Xi-
aohua Zhai, and D. Sculley. 2020. Underspecifi-
cation Presents Challenges for Credibility in Mod-
ern Machine Learning. arXiv:2011.03395 [cs, stat].
ArXiv: 2011.03395.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017a.
Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. arXiv:1703.03400 [cs]. ArXiv:
1703.03400.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017b.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org.

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Jonathan Gordon, David Lopez-Paz, Marco Baroni,
and Diane Bouchacourt. 2019. Permutation equiv-
ariant models for compositional generalization in
language. In International Conference on Learning
Representations.

Thomas L Griffiths. 2020. Understanding human intel-
ligence through human limitations. Trends in Cogni-
tive Sciences.

Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li,
and Kyunghyun Cho. 2018. Meta-learning for low-
resource neural machine translation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3622–3631,
Brussels, Belgium. Association for Computational
Linguistics.

David Haussler. 1999. Convolution kernels on discrete
structures. Technical report, Technical report, De-
partment of Computer Science, University of Cali-
fornia

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization. arXiv preprint arXiv:2009.06040.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2019. The compositionality of neu-
ral networks: integrating symbolism and connec-
tionism. arXiv:1908.08351 [cs, stat]. ArXiv:
1908.08351.

https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
http://arxiv.org/abs/1801.07772
http://arxiv.org/abs/1801.07772
http://arxiv.org/abs/1801.07772
http://arxiv.org/abs/1805.04218
http://0-www.ebooks.cambridge.org.cataleg.uoc.edu/ebook.jsf?bid=CBO9781139166317
http://0-www.ebooks.cambridge.org.cataleg.uoc.edu/ebook.jsf?bid=CBO9781139166317
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/2011.03395
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.18653/v1/D18-1398
https://doi.org/10.18653/v1/D18-1398
http://arxiv.org/abs/1908.08351
http://arxiv.org/abs/1908.08351
http://arxiv.org/abs/1908.08351

3332

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and’diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907–926.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and
Michael C. Mozer. 2020. Characterizing Struc-
tural Regularities of Labeled Data in Overparameter-
ized Models. arXiv:2002.03206 [cs, stat]. ArXiv:
2002.03206.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Confer-
ence on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A Compo-
sitional Generalization Challenge Based on Seman-
tic Interpretation. arXiv:2010.05465 [cs]. ArXiv:
2010.05465.

Satwik Kottur, José MF Moura, Stefan Lee, and
Dhruv Batra. 2017. Natural language does not
emerge’naturally’in multi-agent dialog. arXiv
preprint arXiv:1706.08502.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. arXiv
preprint arXiv:1906.05381.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. 2018. Learning to generalize: Meta-
learning for domain generalization. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest-
ness. 2019. Compositional generalization for primi-
tive substitutions. arXiv preprint arXiv:1910.02612.

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Chris Watkins. 2002. Text
classification using string kernels. Journal of Ma-
chine Learning Research, 2(Feb):419–444.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the

2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Alessandro Moschitti. 2006. Efficient convolution
kernels for dependency and constituent syntactic
trees. In European Conference on Machine Learn-
ing, pages 318–329. Springer.

Abiola Obamuyide and Andreas Vlachos. 2019.
Model-agnostic meta-learning for relation classifica-
tion with limited supervision. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5873–5879, Florence,
Italy. Association for Computational Linguistics.

Emanuel Parzen. 1962. On estimation of a probability
density function and mode. The annals of mathemat-
ical statistics, 33(3):1065–1076.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Sachin Ravi and Hugo Larochelle. 2016. Optimization
as a model for few-shot learning.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua
Bengio. 2019. Compositional generalization in a
deep seq2seq model by separating syntax and seman-
tics. arXiv preprint arXiv:1904.09708.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2020. Compositional general-
ization and natural language variation: Can a seman-
tic parsing approach handle both? arXiv preprint
arXiv:2010.12725.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for
one shot learning. In Advances in neural informa-
tion processing systems, pages 3630–3638.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2020a.
Meta-learning for domain generalization in seman-
tic parsing. arXiv preprint arXiv:2010.11988.

https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
http://arxiv.org/abs/2002.03206
http://arxiv.org/abs/2002.03206
http://arxiv.org/abs/2002.03206
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
http://arxiv.org/abs/2010.05465
http://arxiv.org/abs/2010.05465
http://arxiv.org/abs/2010.05465
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/P19-1589
https://doi.org/10.18653/v1/P19-1589

3333

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020b. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 7567–7578, Online. Asso-
ciation for Computational Linguistics.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing,
18(6):1245–1262.

A Experiments

A.1 Details of Base Parsers

We implemented all models with Pytorch (Paszke
et al., 2019). For the LSTM parsers, we use a two-
layer encoder and one-layer decoder with atten-
tion (Bahdanau et al., 2014) and input-feeding (Lu-
ong et al., 2015). We only test bidirectional LSTM
encoders, as unidirectional LSTM models do not
perform very well in our preliminary experiments.
For Transformer parsers, we use 2 encoder and de-
coder layers, 4 attention heads, and a feed-forward
dimension of 1024. The hidden size for both LSTM
and Transformer models are 256. The hyparame-
ters of base parsers are mostly borrowed from re-
lated work and not tuned, as the primary goal of
this work is the MAML training algorithm. To ex-
periment with a wide variety of possible Seq2Seq
models, we also try a Transformer encoder + LSTM
decoder and find that this variant actually performs
slightly better than both vanilla Transformer and
LSTM models. Further exploration of this combi-
nation in pursuit of a better neural architecture for
compositional generalization might be interesting
for future work.

A.2 Model Selection Protocol

In our preliminary experiments on COGS, we find
almost all the Seq2Seq models achieve > 99% in
accuracy on the original Dev set. However, their
performance on the Gen set diverge dramatically,
ranging from 10% to 70%. The lack of an infor-
mative Dev set makes model selection extremely
difficult and difficult to reproduce. This issue might
also be one of the factors that results in the large
variance of performance reported in previous work.
Meanwhile, we found that some random seeds 10

yield consistently better performance than others
across different conditions. For example, among

10Random seeds control the initialization of parameters and
the order of training batches.

the ten random seeds used for Lev-MAML + Trans-
former on COGS, the best performing seed obtains
73% whereas the lowest performing seed obtains
54%. Thus, it is important to compare different
models using the same set of random seeds, and
not to tune the random seeds in any model. To alle-
viate these two concerns, we choose the protocol
that is mentioned in the main paper. This proto-
col helps to make the results reported in our paper
reproducible.

A.3 Details of Training and Evaluation
Following Kim and Linzen (2020), we train all
models from scratch using randomly initialized
embeddings. For SCAN, models are trained for
1,000 steps with batch size 128. We choose model
checkpoints based on their performance on the Dev
set. For COGS, models are trained for 6,000 steps
with batch size of 128. We choose the meta-train
learning rate α in Equation 2, temperature η in
Equation 4 based on the performance on the Gen
Dev set. Finally we use the chosen α, η to train
models with new random seeds, and only the last
checkpoints (at step 6,000) are used for evaluation
on the Test and Gen set.

A.4 Other Splits of SCAN
The SCAN dataset contains many splits, such as
Add-Jump, Around Right, and Length split, each
assessing a particular case of compositional gener-
alization. We think that MCD splits are more rep-
resentative of compositional generalization due to
the nature of the principle of maximum compound
divergence. Moreover, it is more challenging than
other splits (except the Length split) according to
Furrer et al. (2020). That GECA, which obtains
82% in accuracy on JUMP and Around Right splits,
only obtains < 52% in accuracy on MCD splits in
our experiments confirms that MCD splits are more
challenging.

A.5 Kernel Analysis
The primary difference between the tree-kernel and
string-kernel methods is in the diversity of the ex-
amples they select for the meta-test task. The tree
kernel selects a broader range of lengths, often in-
cluding atomic examples, a single word in length,
matching a word in the original example from meta-
train (see table 5). By design the partial tree kernel
will always assign a non-zero value to an example
that is an atom contained in the original sentence.
We believe the diversity of the sentences selected

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677

3334

Partial Tree Kernel top 10 100 1000
Mean Example Length (chars) 26.71 26.59 29.87
Std dev ± 6.80 ± 7.61 ± 8.85
Mean No. of Atoms 0.46 0.81 1.13
Std dev ± 0.67 ± 1.05 ± 0.81

LevDistance top 10 100 1000
Mean Example Length (chars) 31.04 30.45 29.28
Std dev ± 2.80 ± 3.77 ± 4.78
Mean No. of Atoms 0.00 0.00 0.02
Std dev ± 0.00 ± 0.02 ± 0.17

Table 5: Analyses of kernel diversity. Reporting mean example length and number of atoms for the top k highest
scoring examples for each kernel. Note that atoms are only counted that also occur in the original example.

Source Example: Emma lended the donut to the dog .

Neighbours using Tree Kernel Similarity
Emma was lended the donut . 0.74
The donut was lended to Emma . 0.62
Emma lended the donut to a dog . 0.55
Emma lended Liam the donut . 0.55
Emma lended a girl the donut . 0.55

Neighbours using String Kernel
Emma lended the donut to a dog . 0.61
Emma lended the box to a dog . 0.36
Emma gave the cake to the dog . 0.33
Emma lended the cake to the girl . 0.33
Emma lended the liver to the girl . 0.33

Neighbours using LevDistance
Emma lended the donut to a dog . -1.00
Emma loaned the donut to the teacher . -2.00
Emma forwarded the donut to the monster . -2.00
Emma gave the cake to the dog . -2.00
Charlotte lended the donut to the fish . -2.00

Source Example: The crocodile valued that a girl snapped .

Neighbours using Tree Kernel Similarity
A girl snapped . 0.55
A rose was snapped by a girl . 0.39
The cookie was snapped by a girl . 0.39
girl 0.32
value 0.32

Neighbours using String Kernel
The crocodile liked a girl . 0.28
The girl snapped . 0.27
The crocodile hoped that a boy observed a girl . 0.26
The boy hoped that a girl juggled . 0.15
The cat hoped that a girl sketched . 0.15

Neighbours using LevDistance
The crocodile liked a girl . -3.00
The boy hoped that a girl juggled . -3.00
The cat hoped that a girl sketched . -3.00
The cat hoped that a girl smiled . -3.00
Emma liked that a girl saw . -4.00

Table 6: Top scoring examples according to the tree kernel, string kernel and Levenshtein distance for two sentences
and accompanying scores.

by the tree kernel accounts for the superior perfor-
mance of Tree-MAML compared with the other
MAML conditions. The selection of a variety of
lengths for meta-test constrains model updates on
the meta-train task such that they must also accom-
modate the diverse and often atomic examples se-
lected for meta-test. This constraint would seem to
better inhibit memorizing large spans of the input
unlikely to be present in meta-test.

A.6 Meta-Test Examples

In Table 6, we show top scoring examples retrieved
by the similarity metrics for two sentences. We
found that in some cases (e.g., the right part of Ta-
ble 6), the tree-kernel can retrieve examples that
diverge in length but are still semantically relevant.
In contrast, string-based similarity metrics, espe-
cially LevDistance, tends to choose examples with
similar lengths.

A.7 COGS Subtask Analysis

We notice distinct performance for different con-
ditions on the different subtasks from the COGS
dataset. In Figure 2 we show the performance
of the Uni-MAML and Str-MAML conditions
compared with the mean of those conditions.
Where the bars are equal to zero the models’
performance on that task is roughly equal.

Full task names for figure 2:
(1) prim→subj proper,
(2) active→passive,
(3) only seen as unacc subj→ unerg subj,
(4) subj→obj proper,
(5) only seen as unacc subj→ obj omitted transitive
subj,
(6) pp recursion,
(7) cp recursion,
(8) obj pp→subj pp,
(9) obj→subj common,
(10) do dative→pp dative,
(11) passive→active,

3335

Figure 2: Performance for the Uni-MAML and Lev-
MAML conditions compared to the mean of those two
conditions.

(12) only seen as transitive subj→ unacc subj,
(13) obj omitted transitive→transitive,
(14) subj→obj common,
(15) prim→obj proper,
(16) obj→subj proper,
(17) pp dative→do dative,
(18) unacc→transitive,
(19) prim→subj common,
(20) prim→obj common,
(21) prim→inf arg.

