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Abstract
Hybrid data combining both tabular and tex-
tual content (e.g., financial reports) are quite
pervasive in the real world. However, Ques-
tion Answering (QA) over such hybrid data is
largely neglected in existing research. In this
work, we extract samples from real financial
reports to build a new large-scale QA dataset
containing both Tabular And Textual data,
named TAT-QA, where numerical reasoning
is usually required to infer the answer, such
as addition, subtraction, multiplication, divi-
sion, counting, comparison/sorting, and their
compositions. We further propose a novel QA
model termed TAGOP, which is capable of rea-
soning over both tables and text. It adopts se-
quence tagging to extract relevant cells from
the table along with relevant spans from the
text to infer their semantics, and then applies
symbolic reasoning over them with a set of
aggregation operators to arrive at the final an-
swer. TAGOP achieves 58.0% in F1, which
is an 11.1% absolute increase over the pre-
vious best baseline model, according to our
experiments on TAT-QA. But this result still
lags far behind the performance of human
expert, i.e. 90.8% in F1. It demonstrates
that our TAT-QA is very challenging and can
serve as a benchmark for training and test-
ing powerful QA models that address hybrid
data. Our dataset is publicly available for non-
commercial use at https://nextplusplus.
github.io/TAT-QA/.

1 Introduction

Existing QA systems largely focus on only unstruc-
tured text (Hermann et al., 2015; Rajpurkar et al.,
2016; Dua et al., 2019; Yang et al., 2018; Li et al.,
2020; Nie et al., 2020), structured knowledge base
(KB) (Berant et al., 2013; Yih et al., 2015; Talmor
and Berant, 2018), or semi-structured tables (Pasu-
pat and Liang, 2015; Zhong et al., 2017; Yu et al.,
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2018; Zhang and Balog, 2019; Zhang et al., 2020).
Though receiving growing interests (Das et al.,
2017; Sun et al., 2019; Chen et al., 2020b, 2021),
works on hybrid data comprising of unstructured
text and structured or semi-structured KB/tables
are rare. Recently, Chen et al. (2020b) attempt to
simulate a type of hybrid data through manually
linking table cells to Wiki pages via hyperlinks.
However, such connection between table and text
is relatively loose.

In the real world, a more common hybrid data
form is, the table (that usually contains numbers)
is more comprehensively linked to text, e.g., se-
mantically related or complementary. Such hybrid
data are very pervasive in various scenarios like
scientific research papers, medical reports, finan-
cial reports, etc. The left box of Figure 1 shows
a real example from some financial report, where
there is a table containing row/column header and
numbers inside, and also some paragraphs describ-
ing it. We call the hybrid data like this example
hybrid context in QA problems, as it contains both
tabular and textual content, and call the paragraphs
associated paragraphs to the table. To comprehend
and answer a question from such hybrid context
relies on the close relation between table and para-
graphs, and usually requires numerical reasoning.
For example, one needs to identify “revenue from
the external customers” in the describing text so as
to understand the content of the table. As for “How
much does the commercial cloud revenue account
for the total revenue in 2019?”, one needs to get
the total revenue in 2019, i.e. “125, 843 million”
from the table and commercial cloud revenue, i.e.
“38.1 billion”, from the text to infer the answer.

To stimulate progress of QA research over such
hybrid data, we propose a new dataset, named TAT-
QA (Tabular And Textual dataset for Question
Answering). The hybrid contexts in TAT-QA are
extracted from real-world financial reports, each

https://nextplusplus.github.io/TAT-QA/
https://nextplusplus.github.io/TAT-QA/
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# Reasoning Question Answer Scale Derivation

1 Word Matching 
(38.06%)

How much revenue came from Linkedin in
2018? 5,259 million -

2 Set of spans
(11.94%)

Which were the bottom 2 revenue items for
2017? LinkedIn, Other - -

3 Comparison
(5.65%) Which year has the lowest revenue? 2017 - -

4 Counting
(2.28%)

How many revenue items are between 6,000
million and 6,500 million in 2019? 2 - Devices ##

Enterprise Services

5 Addition 
(2.37%)

What is the total revenue of commercial cloud
from 2017 to 2018? 42.8 billion 26.6  + 16.2 

6 Subtraction
(16.17%)

How much of the total revenue in 2018 did not
come from devices? 105,226 million 110,360 - 5,134

7 Division 
(3.84%)

How much does the commercial cloud
revenue account for the total revenue in 2019? 30.28 % 38.1 billion / 125,843

million

8 Composition
(19.69%)

What was the percentage change in gaming
between 2018 and 2019? 9.98 % (11,386 - 10,353) /

10,353

(in millions)

Year Ended June 30, 2019 2018 2017
Server products and cloud services 32,622 26,129  21,649
Office products and cloud services 31,769 28,316 25,573
Windows 20,395 19,518 18,593
Gaming 11,386 10,353 9,051
Search advertising 7,628 7,012 6,219
LinkedIn 6,754 5,259 2,271
Enterprise Services 6,124 5,846 5,542
Devices 6,095 5,134 5,062
Other 3,070 2,793 2,611
Total $125,843 $110,360 $96,571

Revenue from external customers, classified by significant product
and service offerings, was as follows:

Our commercial cloud revenue, which includes Office 365
Commercial, Azure, the commercial portion of LinkedIn, Dynamics
365, and other commercial cloud properties, was $38.1 billion, $26.6
billion and $16.2 billion in fiscal years 2019, 2018, and 2017,
respectively. These amounts are primarily included in Office products
and cloud services, Server products and cloud services, and
LinkedIn in the table above.

Figure 1: An example of TAT-QA. The left dashed line box shows a hybrid context. The rows with blue back-
ground are row header while the column with grey is column header. The right solid line box shows corresponding
question, answer with its scale, and derivation to arrive at the answer.

composed of a table with row/col header and num-
bers, as well as at least two paragraphs that de-
scribe, analyse or complement the content of this
table. Given hybrid contexts, we invite annotators
with financial knowledge to generate questions that
are useful in real-world financial analyses and pro-
vide answers accordingly. It is worth mentioning
that a large portion of questions in TAT-QA de-
mand numerical reasoning, for which derivation
of the answer is also labeled to facilitate develop-
ing explainable models. In total, TAT-QA con-
tains 16, 552 questions associated with 2, 757 hy-
brid contexts from 182 reports.

We further propose a novel TAGOP model based
on TAT-QA. Taking as input the given question,
table and associated paragraphs, TAGOP applies
sequence tagging to extract relevant cells from the
table and relevant spans from text as the evidences.
Then it applies symbolic reasoning over them with
a set of aggregation operators to arrive at the final
answer. Predicting the magnitude of a number is
an important aspect when tackling hybrid data in
TAT-QA, including thousand, million, billion, etc.
that are often omitted or shown only in headers or
associated paragraphs of the table for brevity. We
term such magnitude of a number as its scale. Take
Question 6 in Figure 1 as an example: “How much
of the total revenue in 2018 did not come from
devices?” The numerical value in the answer is
obtained by subtraction: “110, 360 - 5, 134”, while
the scale “million” is identified from the first-row
header of the table. In TAGOP, we incorporate a
multi-class classifier for scale prediction.

We test three types of QA models on TAT-QA,

specially addressing tabular, textual, and hybrid
data. Our TAGOP achieves 58.0% in terms of F1,
which is a 11.1% absolute increase over the best
baseline model, according to our experiments on
TAT-QA. It is worth noting that the results still
lag far behind performance of human experts, i.e.
90.8% in F1. We can see that to tackle the QA task
over the hybrid data as in TAT-QA is challeng-
ing and more effort is demanded. We expect our
TAT-QA dataset and TAGOP model to serve as a
benchmark and baseline respectively to contribute
to the development of QA models for hybrid data,
especially those requiring numerical reasoning.

2 Dataset Construction and Analysis

We here explain how we construct TAT-QA and
analyze its statistics to better reveal its proprieties.

2.1 Data Collection and Preprocessing
In TAT-QA there are two forms of data: tables
and their relevant text, which are extracted from
real-world financial reports.

In particular, we first download about 500 finan-
cial reports released in the past two years from
an online website1. We adopt the table detection
model in (Li et al., 2019) to detect tables in these
reports, and apply Apache PDFBox2 library to ex-
tract the table contents to be processed with our
annotation tool. We only keep those tables with
3 ∼ 30 rows and 3 ∼ 6 columns. Finally, about
20, 000 candidate tables are retained, which have
no standard schema and lots of numbers inside.

1https://www.annualreports.com/
2https://pdfbox.apache.org/
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The corresponding reports with selected tables are
also kept. Note that these candidate tables may
still contain errors, such as containing too few or
many rows/cols, mis-detected numbers, which will
be manually picked out and deleted or fixed during
the annotation process.

2.2 Dataset Annotation

The annotation is done with our self-developed tool.
All the annotators are with financial background
knowledge.
Adding Relevant Paragraphs to Tables We build
valid hybrid contexts based on the original reports
kept in the previous step. A valid hybrid context in
TAT-QA consists of a table and at least two asso-
ciated paragraphs surrounding it, as shown in the
left box in Figure 1. To associate enough relevant
paragraphs to a candidate table, the annotators first
check whether there are ≥ 2 paragraphs around
this table, and then check whether they are rele-
vant, meaning the paragraphs should be describing,
analysing or complementing the content in the ta-
ble. If yes, then all the surrounding paragraphs will
be associated to this table. Otherwise, the table will
be skipped (discarded).3

Question-Answer Pair Creation Based on the
valid hybrid contexts, the annotators are then asked
to create question-answer pairs, where the ques-
tions need to be useful in real-world financial anal-
yses. In addition, we encourage them to create
questions that can be answered by people without
much finance knowledge and use common words
instead of the same words appeared in the hybrid
context (Rajpurkar et al., 2016). Given one hy-
brid context, at least 6 questions are generated,
including extracted and calculated questions. For
extracted questions, the answers can be a single
span or multiple spans from either the table or the
associated paragraphs. For calculated questions,
numerical reasoning is required to produce the an-
swers, including addition, subtraction, multiplica-
tion, division, counting, comparison/sorting and
their compositions. Furthermore, we particularly
ask the annotators to annotate the right scale for
the numerical answer when necessary.
Answer Type and Derivation Annotation The
answers in TAT-QA have three types: a single span
or multiple spans extracted from the table or text,
as well as a generated answer (usually obtained
through numerical reasoning). The annotators will

3About two thirds of candidate tables were discarded.

also need to label its type after they generate an
answer. For generated answers, the corresponding
derivations are provided to facilitate the develop-
ment of explainable QA models, including two
types: 1) an arithmetic expression, like (11, 386 -
10, 353)/10, 353) for Question 8 in Figure 1, which
can be executed to arrive at the final answer; and
2) a set of items separated with “##”, like “device
## enterprise services” for Question 4 in Figure 1
where the count of items equals the answer. We fur-
ther divide questions in TAT-QA into four kinds:
Span, Spans, Arithmetic and Counting, where the
latter two kinds correspond to the above two types
of deviations, to help us better investigate the nu-
merical reasoning capability of a QA model.
Answer Source Annotation For each answer, an-
notators are required to specify the source(s) it is
derived from, including Table, Text, and Table-text
(both). This is to force the model to learn to ag-
gregate information from hybrid sources to infer
the answer, thus lift its generalizability. For exam-
ple, to answer Question 7 in Figure 1: “How much
does the commercial cloud revenue account for the
total revenue in 2019?”, we can observe from the
derivation that “125, 843 million” comes from the
table while “38.1 billion” from text.

2.3 Quality Control

To ensure the quality of annotation in TAT-QA, we
apply strict quality control procedures.
Competent Annotators To build TAT-QA, finan-
cial domain knowledge is necessary. Hence, we
employ about 30 university students majored in fi-
nance or similar disciplines as annotators. We give
all candidate annotators a minor test and only those
with 95% correct rate are hired. Before starting
the annotation work, we give a training session to
the annotators to help them fully understand our
annotation requirements and also learn the usage
of our annotation system.
Two-round Validation For each annotation, we
ask two different verifiers to perform a two-round
validation after it is submitted, including check-
ing and approval, to ensure its quality. We have
five verifiers in total, including two annotators who
have good performance on this project and three
graduate students with financial background. In
the checking phase, a verifier checks the submitted
annotation and asks the annotator to fix it if any
mistake or problem is found. In the approval phase,
a different verifier inspects the annotation again
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that has been confirmed by the first verifier, and
then approves it if no problem is found.

2.4 Dataset Analysis
Averagely, an annotator can label two hybrid con-
texts per hour; the whole annotation work lasts
about three months. Finally, we attain a total of
2, 757 hybrid contexts and 16, 552 corresponding
question-answer pairs from 182 financial reports.
The hybrid contexts are randomly split into train-
ing set (80%), development set (10%) and test set
(10%); hence all questions about a particular hybrid
context belong to only one of the splits. We show
the basic statistics of each split in Table 1, and the
question distribution regarding answer source and
answer type in Table 2. In Figure 1, we give an
example from TAT-QA, demonstrating the various
reasoning types and percentage of each reasoning
type over the whole dataset.

Statistic Train Dev Test

# of hybrid contexts 2,201 278 278
# of questions 13,215 1,668 1,669
Avg. rows / table 9.4 9.7 9.3
Avg. cols / table 4.0 3.9 4.0
Avg. paragraphs / table 4.8 4.9 4.6
Avg. paragraph len [words] 43.6 44.8 42.6
Avg. question len [words] 12.5 12.4 12.4
Avg. answer len [words] 4.1 4.1 4.3

Table 1: Basic statistics of each split in TAT-QA

3 TAGOP Model

We introduce a novel QA model, named TAGOP,
which first applies sequence TAGging to extract rel-
evant cells from the table and text spans from the
paragraphs inspired by (Li et al., 2016; Sun et al.,
2016; Segal et al., 2020). This step is analogy to
slot filling or schema linking, whose effectiveness
has been demonstrated in dialogue systems (Lei
et al., 2018; Jin et al., 2018) and semantic pars-
ing (Lei et al., 2020). And then TAGOP performs
symbolic reasoning over them with a set of aggre-
gation OPerators to arrive at the final answer. The
overall architecture is illustrated in Figure 2.

3.1 Sequence Tagging
Given a question, TAGOP first extracts support-
ing evidences from its hybrid context (i.e. the ta-
ble and associated paragraphs) via sequence tag-
ging with the Inside–Outside tagging (IO) ap-
proach (Ramshaw and Marcus, 1995). In particular,
it assigns each token either I or O label and takes

Table Text Table-text Total

Span 1,801 3,496 1,842 7,139
Spans 777 258 1,037 2,072
Counting 106 5 266 377
Arithmetic 4,747 143 2,074 6,964
Total 7,431 3,902 5,219 16,552

Table 2: Question distribution regarding different an-
swer types and sources in TAT-QA

those tagged with I as the supporting evidences for
producing the answer. The given question, flattened
table by row (Herzig et al., 2020) and associated
paragraphs are input sequentially to a transformer-
based encoder like RoBERTa (Liu et al., 2019), as
shown in the bottom part of Figure 2, to obtain
corresponding representations. Each sub-token is
tagged independently, and the corresponding cell
in the table or word in the paragraph would be re-
garded as positive if any of its sub-tokens is tagged
with I. For the paragraphs, the continuous words
that are predicted as positive are combined as a
span. During testing, all positive cells and spans
are taken as the supporting evidences. Formally, for
each sub-token t in the paragraph, the probability
of the tag is computed as

p
tag
t = softmax(FFN(ht)) (1)

where FFN is a two-layer feed-forward network
with GELU (Hendrycks and Gimpel, 2016) activa-
tion and ht is the representation of sub-token t.

3.2 Aggregation Operator
Next, we perform symbolic reasoning over ob-
tained evidences to infer the final answer, for which
we apply an aggregation operator. In our TAGOP,
there are ten types of aggregation operators. For
each input question, an operator classifier is ap-
plied to decide which operator the evidences would
go through; for some operators sensitive to the or-
der of input numbers, an auxiliary number order
classifier is used. The aggregation operators are
explained as below, covering most reasoning types
as listed in Figure 1.

• Span-in-text: To select the span with the highest
probability from predicted candidate spans. The
probability of a span is the highest probability of
all its sub-tokens tagged I.
• Cell-in-table: To select the cell with the highest

probability from predicted candidate cells. The
probability of a cell is the highest probability of
all its sub-tokens tagged I.
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Figure 2: Illustration of the architecture of proposed TAGOP model. Given Question 6 in Figure 1 where the
hybrid context is also shown, TAGOP supports 10 operators, which are described in Section 3.2.

• Spans: To select all the predicted cell and span
candidates;
• Sum: To sum all predicted cells and spans purely

consisting of numbers;
• Count: To count all predicted cells and spans;
• Average: To average over all the predicted cells

and spans purely consisting of numbers;
• Multiplication: To multiply all predicted cells

and spans purely consisting of numbers;
• Division: To first rank all the predicted cells

and spans purely consisting of numbers based
on their probabilities, and then apply division
calculation to top-two;
• Difference: To first rank all predicted numerical

cells and spans based on their probabilities, and
then apply subtraction calculation to top-two.
• Change ratio: For the top-two values after rank-

ing all predicted numerical cells and spans based
on their probabilities, compute the change ratio
of the first value compared to the second one.

Operator Classifier To predict the right aggrega-
tion operator, a multi-class classifier is developed.
In particular, we take the vector of [CLS] as input
to compute the probability:

pop = softmax(FFN([CLS]) (2)

where FFN denotes a two-layer feed-forward net-
work with the GELU activation.
Number Order Classifier For operators of Differ-
ence, Division and Change ratio, the order of the
input two numbers matters in the final result. Hence
we additionally append a number order classifier

after them, formulated as

porder = softmax(FFN(avg(ht1, ht2)) (3)

where FFN denotes a two-layer feed-forward net-
work with the GELU activation, ht1, ht2 are rep-
resentations of the top two tokens according to
probability, and “avg” means average. For a token,
its probability is the highest probability of all its
sub-tokens tagged I, and its representation is the
average over those of its sub-tokens.

3.3 Scale Prediction
Till now we have attained the string or numerical
value to be contained in the final answer. However,
a right prediction of a numerical answer should
not only include the right number but also the cor-
rect scale. This is a unique challenge over TAT-
QA and very pervasive in the context of finance.
We develop a multi-class classifier to predict the
scale. Generally, the scale in TAT-QA may be
None, Thousand, Million, Billion, and Percent. Tak-
ing as input the concatenated representation of
[CLS], the table and paragraphs sequentially, the
multi-class classifier computes the probability of
the scale as

pscale = softmax(FFN([[CLS];htab;hp]) (4)

where htab and hp are the representations of the
table and the paragraphs respectively, which are ob-
tained by applying an average pooling over the rep-
resentations of their corresponding tokens,“;” de-
notes concatenation, and FFN denotes a two-layer
feed-forward network with the GELU activation.

After obtaining the scale, the numerical or string
prediction is multiplied or concatenated with the
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corresponding scale as the final prediction to com-
pare with the ground-truth answer respectively.

3.4 Training

To optimize TAGOP, the overall loss is the sum of
the loss of the above four classification tasks:

L = NLL(log(Ptag),Gtag) +

NLL(log(Pop),Gop) +

NLL(log(Pscale),Gscale) +

NLL(log(Porder),Gorder)

(5)

where NLL(·) is the negative log-likelihood loss,
Gtag and Gop come from the supporting evidences
which are extracted from the annotated answer and
derivation. We locate the evidence in the table first
if it is among the answer sources, and otherwise in
its associated paragraphs. Note we only keep the
first found if an evidence appears multiple times in
the hybrid context. Gscale uses the annotated scale
of the answer; Gorder is needed when the ground-
truth operator is one of Difference, Division and
Change ratio, which is obtained by mapping the
two operands extracted from their corresponding
ground-truth deviation in the input sequence. If
their order is the same as that in the input sequence,
Gorder = 0; otherwise it is 1.

4 Experiments and Results

4.1 Baselines

Textual QA Models We adopt two reading com-
prehension (RC) models as baselines over textual
data: BERT-RC (Devlin et al., 2018), which is a
SQuAD-style RC model; and NumNet+ V2 4 (Ran
et al., 2019), which achieves promising perfor-
mance on DROP that requires numerical reasoning
over textual data. We adapt them to our TAT-QA as
follows. We convert the table to a sequence by row,
also as input to the models, followed by tokens
from the paragraphs. Besides, we add a multi-class
classifier, exactly as in our TAGOP, to enable the
two models to predict the scale based on Eq. (4).
Tabular QA Model We employ TaPas for Wik-
iTableQuestion (WTQ) (Herzig et al., 2020) as
a baseline over tabular data. TaPas is pretrained
over large-scale tables and associated text from
Wikipedia jointly for table parsing. To train it, we
heuristically locate the evidence in the table with
the annotated answer or derivation, which is the

4https://github.com/llamazing/numnet plus

first matched one if a same value appears multiple
times. In addition, we remove the “numerical rank
id” feature in its embedding layer, which ranks all
values per numerical column in the table but does
not make sense in TAT-QA. Similar to above tex-
tual QA setting, we add an additional multi-class
classifier to predict the scale as in Eq. (4).
Hybrid QA Model We adopt HyBrider (Chen
et al., 2020b) as our baseline over hybrid data,
which tackles tabular and textual data from
Wikipedia. We use the code released in the original
paper5, but adapt it to TAT-QA. Concretely, each
cell in the table of TAT-QA is regarded as “linked”
with associated paragraphs of this table, like hyper-
links in the original paper, and we only use its cell
matching mechanism to link the question with the
table cells in its linking stage. The selected cells
and paragraphs are fed into the RC model in the last
stage to infer the answer. For ease of training on
TAT-QA, we also omit the prediction of the scale,
i.e. we regard the predicted scale by this model as
always correct.

4.2 Evaluation Metrics

We adopt the popular Exact Match (EM) and
numeracy-focused F1 score (Dua et al., 2019) to
measure model performance on TAT-QA. How-
ever, the original implementation of both metrics is
insensitive to whether a value is positive or negative
in the answer as the minus is omitted in evaluation.
Since this issue is crucial for correctly interpreting
numerical values, especially in the finance domain,
we keep the plus-minus of a value when calculating
them. In addition, the numeracy-focused F1 score
is set to 0 unless the predicted number multiplied
by predicted scale equals exactly the ground truth.

4.3 Results and Analysis

In the following, we report our experimental results
on dev and test sets of TAT-QA.
Comparison with Baselines We first compare our
TAGOP with three types of previous QA models
as described in Section 4.1. The results are sum-
marized in Table 3. It can be seen that our model
is always superior to other baselines in terms of
both metrics, with very large margins over the sec-
ond best, namely 50.1/58.0 vs. 37.0/46.9 in EM/F1
on test set of TAT-QA respectively. This well re-
veals the effectiveness of our method that reasons
over both tabular and textual data involving lots

5https://github.com/wenhuchen/HybridQA
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of numerical contents. For two textual QA base-
lines, NumNet+ V2 performs better than BERT-RC,
which is possibly attributed to the stronger capa-
bility of numerical reasoning of the latter, but it is
still worse than our method. The tabular QA base-
line Tapas for WTQ is trained with only tabular
data in TAT-QA, showing very limited capabil-
ity to process hybrid data, as can be seen from its
performance. The HyBrider is the worst among
all baseline models, because it is designed for Hy-
bridQA (Chen et al., 2020b) which does not focus
on the comprehensive interdependence of table and
paragraphs, nor numerical reasoning.

However, all the models perform significantly
worse than human performance6, indicating TAT-
QA is challenging to current QA models and more
efforts on hybrid QA are demanded.
Answer Type and Source Analysis Furthermore,
we analyze detailed performance of TAGOP w.r.t
answer type and source in Table 4. It can be
seen that TAGOP performs better on the questions
whose answers rely on the tables compared to
those from the text. This is probably because table
cells have clearer boundaries than text spans to the
model, thus it is relatively easy for the model to
extract supporting evidences from the tables lever-
aging sequence tagging techniques. In addition,
TAGOP performs relatively worse on arithmetic
questions compared with other types. This may be
because the calculations for arithmetic questions
are diverse and harder than other types, indicat-
ing the challenge of TAT-QA, especially for the
requirement of numerical reasoning.
Results of TAGOP with Different Operators We
here investigate the contributions of the ten aggre-
gation operators to the final performance of TAGOP.
As shown in Table 5, we devise nine variants of
the full model of TAGOP; based on the variant of
TAGOP with only one operator (e.g. Span-in-text),
for each of other variants, we add one more op-
erator back. As can be seen from the table, all
added operators can benefit the model performance.
Furthermore, we find that some operators like Span-
in-text, Cell-in-table, Difference and Average make

6The human performance is evaluated by asking annotators
to answer 50 randomly sampled hybrid contexts (containing
301 questions) from our test set. Note the human performance
is still not 100% correct because our questions require rela-
tively heavy cognitive load like tedious numerical calculations.
Comparing human performance of F1 in SQUAD (Rajpurkar
et al., 2016) (86.8%) and DROP (Dua et al., 2019)) (96.4%),
the score (90.8%) in our dataset already indicates a good
quality and annotation consistency in our dataset.

Method Dev Test

EM F1 EM F1

Human - - 84.1 90.8

Textual QA
BERT-RC 9.5 17.9 9.1 18.7
NumNet+ V2 38.1 48.3 37.0 46.9

Tabular QA
TaPas for WTQ 18.9 26.5 16.6 22.8

Hybrid QA
HyBrider 6.6 8.3 6.3 7.5

TAGOP 55.2 62.7 50.1 58.0

Table 3: Performance of different models on dev and
test set of TAT-QA. Best results are marked in bold.

Table Text Table-text Total

EM/F1 EM/F1 EM/F1 EM/F1

Span 56.5/57.8 45.2/70.6 68.2/71.7 54.1/67.9
Spans 66.3/77.0 19.0/59.1 63.2/76.9 60.0/75.1
Counting 63.6/63.6 -/- 62.1/62.1 62.5/62.5
Arithmetic 41.1/41.1 27.3/27.3 46.5/46.5 42.5/42.5
Total 47.8/49.3 43.3/68.7 58.3/62.2 50.1/58.0

Table 4: Detailed experimental results of TAGOP w.r.t.
answer types and sources on test set.

more contributions than others. In comparison,
Sum and Multiplication bring little gain or even
decline. After analysis, we find this is because the
instances of Sum or Multiplication are minor in our
test set, which are easily influenced by randomness.
Error Analysis We further investigate our
TAGOP by analysing error cases. We randomly
sample 100 error instances from the test set, and
classify them into five categories as shown in Ta-
ble 6, each with an example: (1) Wrong Evidence
(55%), meaning the model obtained wrong support-
ing evidence from the hybrid context; (2) Missing

Model Dev Test

EM F1 EM F1

+ Span-in-text 13.4 20.5 14.1 21.8
+ Cell-in-table 25.4 36.0 24.1 35.3
+ Spans 33.6 41.3 31.3 39.4
+ Sum 33.8 41.3 31.2 39.1
+ Count 35.9 43.5 32.7 40.6
+ Average 43.3 50.6 38.2 45.9
+ Multiplication 44.2 51.4 37.9 46.0
+ Division 45.0 52.5 39.2 47.5
+ Difference 51.4 58.7 45.1 53.3
+ Change ratio (Full) 55.2 62.7 50.1 58.0

Table 5: Performance with different aggregation opera-
tors of TAGOP model.
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Evidence (29%), meaning the model failed to ex-
tract the supporting evidence for the answer; (3)
Wrong Calculation (9%), meaning the model failed
to compute the answer with the correct support-
ing evidence; (4) Unsupported Calculation (4%),
meaning the ten operators defined cannot support
this calculation; (5) Scale Error (3%), meaning the
model failed to predict the scale of the numerical
value in an answer.

We can then observe about 84% error is caused
by the failure to extract the supporting evidence
from the table and paragraphs given a question.
This demonstrates more efforts are needed to
strengthen the model’s capability of precisely ag-
gregating information from hybrid contexts.

After instance-level analysis, we find another
interesting error resource is the dependence on do-
main knowledge. While we encourage annotators
to create questions answerable by humans with-
out much finance knowledge, we still find domain
knowledge is required for some questions. For ex-
ample, given the question “What is the gross profit
margin of the company in 2015?”, the model needs
to extract the gross profit and revenue from the hy-
brid context and compute the answer according to
the finance formula (“gross profit margin = gross
profit / revenue”). How to integrate such finance
knowledge into QA models to answer questions in
TAT-QA still needs further exploration.

Wrong
Evidence
(55%)

Q: How much did the level 2 OFA change
by from 2018 year end to 2019 year end?
G: 375 - 2,032
P: 1,941 - 2,032

Missing
Evidence
(29%)

Q: How many years did adjusted
EBITDA exceed $4,000 million?
G: count(2017, 2018, 2019)
P: count(2017, 2018)

Wrong
Calculation
(9%)

Q: What is the change in the % of pre-tax
loss from 2018 to 2019?
G: 39% - 20%
P: 20% - 39%

Unsupported
Calculation
(4%)

Q: What is the proportion of investor
relations and consultants over the total
operating expense in 2019?
G: (105,639 + 245,386) /19,133,139
P: 245,386 / 19,133,139

Scale
Error
(3%)

Q: What is the closing price in March,
2020?
G: 0.22
P: 0.22 million

Table 6: Examples of error and corresponding percent-
age. Q, G, P denote question, ground truth, prediction.

5 Related Work

QA Datasets Currently, there are many datasets
for QA tasks, focusing on text, or KB/table. Tex-
tual ones include CNN/Daily Mail (Hermann et al.,
2015), SQuAD (Rajpurkar et al., 2016), etc. Re-
cently deep reasoning over textual data has gained
increasing attention (Zhu et al., 2021), e.g. multi-
hop reasoning (Yang et al., 2018; Welbl et al.,
2018). DROP (Dua et al., 2019) is built to de-
velop numerical reasoning capability of QA mod-
els, which in this sense is similar to TAT-QA,
but only focuses on textual data. KB/Tabular QA
aims to automatically answer questions via well-
structured KB (Berant et al., 2013; Talmor and
Berant, 2018; Yih et al., 2015) or semi-structured
tables (Pasupat and Liang, 2015; Zhong et al., 2017;
Yu et al., 2018). Comparably, QA over hybrid data
receives limited efforts, focusing on mixture of
KB/tables and text. HybridQA (Chen et al., 2020b)
is one existing hybrid dataset for QA tasks, where
the context is a table connected with Wiki pages
via hyperlinks.
Numerical Reasoning Numerical reasoning is key
to many NLP tasks like question answering (Dua
et al., 2019; Ran et al., 2019; Andor et al., 2019;
Chen et al., 2020a; Pasupat and Liang, 2015;
Herzig et al., 2020; Yin et al., 2020; Zhang and
Balog, 2020) and arithmetic word problems (Kush-
man et al., 2014; Mitra and Baral, 2016; Huang
et al., 2017; Ling et al., 2017). To our best knowl-
edge, no prior work attempts to develop models
able to perform numerical reasoning over hybrid
contexts.

6 Conclusion

We propose a new challenging QA dataset TAT-
QA, comprising real-word hybrid contexts where
the table contains numbers and has comprehen-
sive dependencies on text in finance domain. To
answer questions in TAT-QA, the close relation be-
tween table and paragraphs and numerical reason-
ing are required. We also propose a baseline model
TAGOP based on TAT-QA, aggregating informa-
tion from hybrid context and performing numeri-
cal reasoning over it with pre-defined operators to
compute the final answer. Experiments show TAT-
QA dataset is very challenging and more effort is
demanded for tackling QA tasks over hybrid data.
We expect our TAT-QA dataset and TAGOP model
would serve as a benchmark and baseline respec-
tively to help build more advanced QA models,
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facilitating the development of QA technologies
to address more complex and realistic hybrid data,
especially those requiring numerical reasoning.
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A Appendix

A.1 Table Analysis

To maintain the semi-structured nature of financial
tables, we almost keep the same table structure in
TAT-QA as that in the original financial reports.
We sample 100 hybrid contexts from the training
set to conduct a manual evaluation to assess the
complexity of the table structures. Specifically, we
analyze the distribution w.r.t. the number of row
headers, as shown in Table 7. It can be seen that
around 79% of the tables have two or more row-
headers, indicating large difficulty in interpreting
financial tables. In addition, we have also found
that all sampled tables all have one column header.

# of Row Header Proportion (%)

1 21
2 68
3 9

more than 3 2

Table 7: Distribution of no. of row-headers in TAT-
QA.

A.2 Operator Classifier

We present the proportion of questions that should
go through each aggregation operator (ground
truth), as well as the performance of our operator
classifier on dev and test set in Table 8.

Operator Dev Test

% Acc % Acc

Span-in-text 20.9 92.3 21.3 91.6
Cell-in-table 21.1 91.2 21.6 86.7
Spans 13.0 96.8 12.6 93.8
Sum 3.4 86.0 2.5 76.2
Count 1.9 93.8 2.4 100.0
Average 8.5 100.0 5.9 100.0
Multiplication 0.2 33.3 0.1 0.0
Division 1.0 76.5 1.0 87.5
Difference 14.1 96.6 15.9 96.6
Change ratio 9.3 96.1 10.2 95.3
Other 6.6 0.0 6.6 0.0

Table 8: Ground truth proportion of questions that
should be fed to different operators and prediction ac-
curacy by operator classifier of TAGOP on dev and test
set of TAT-QA.

A.3 Scale Prediction
We report the proportion of the ground truth scale
in an answer and also the performance of our scale
predictor on dev and test set in Table 9.

Scale Dev Test

% Acc % Acc

None 47.6 92.4 50.3 90.1
Thousand 20.7 96.8 19.2 95.3
Million 15.2 92.1 12.9 90.2
Billion 0.4 28.6 - -
Percent 16.1 95.9 17.7 95.9

Table 9: The proportion of ground truth scale on dev
and test set of TAT-QA with prediction accuracy by
scale predictor of TAGOP.


