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Abstract

Generating code-switched text is a problem
of growing interest, especially given the
scarcity of corpora containing large volumes
of real code-switched text. In this work, we
adapt a state-of-the-art neural machine trans-
lation model to generate Hindi-English code-
switched sentences starting from monolingual
Hindi sentences. We outline a carefully de-
signed curriculum of pretraining steps, includ-
ing the use of synthetic code-switched text, that
enable themodel to generate high-quality code-
switched text. Using text generated from our
model as data augmentation, we show signif-
icant reductions in perplexity on a language
modeling task, compared to using text from
other generative models of CS text. We also
show improvements using our text for a down-
stream code-switched natural language infer-
ence task. Our generated text is further sub-
jected to a rigorous evaluation using a human
evaluation study and a range of objective met-
rics, where we show performance compara-
ble (and sometimes even superior) to code-
switched text obtained via crowd workers who
are native Hindi speakers.

1 Introduction

Code-switching (CS) refers to the linguistic phe-
nomenon of using more than one language within
a single sentence or conversation. CS appears natu-
rally in conversational speech among multilingual
speakers. The main challenge with building mod-
els for conversational CS text is that we do not
have access to large amounts of CS text that is con-
versational in style. One might consider using so-
cial media text that contains CS and is more read-
ily available. However, the latter is quite different
from conversational CS text in its vocabulary (e.g.,
due to the frequent use of abbreviated slang terms,

∗Work done while first two authors were students at IIT
Bombay.

hashtags and mentions), in its sentence structure
(e.g., due to character limits in tweets) and in its
word forms (e.g., due to transliteration being com-
monly employed in social media posts). This mo-
tivates the need for a generative model of realistic
CS text that can be sampled to subsequently train
models for CS text.

In this work, we tackle the problem of gen-
erating high-quality CS text using only limited
amounts of real CS text during training. We also
assume access to large amounts of monolingual
text in the component languages and parallel text
in both languages, which is a reasonable assump-
tion to make for many of the world’s languages.
We focus on Hindi-English CS text where the ma-
trix (dominant) language is Hindi and the embed-
ded language is English.1 Rather than train a gen-
erative model, we treat this problem as a transla-
tion task where the source and target languages
are monolingual Hindi text and Hindi-English CS
text, respectively. We also use the monolingual
Hindi text to construct synthetic CS sentences us-
ing simple techniques. We show that synthetic CS
text, albeit being naive in its construction, plays an
important role in improving our model’s ability to
capture CS patterns.

We draw inspiration from the large body of
recent work on unsupervised machine transla-
tion (Lample et al., 2018a,b) to design our model,
which will henceforth be referred to as Translation
for Code-Switching, or TCS. TCS, once trained,
will convert a monolingual Hindi sentence into
a Hindi-English CS sentence. TCS makes ef-
fective use of parallel text when it is available
and uses backtranslation-based objective functions
with monolingual text.

1Given the non-trivial effort involved in collecting anno-
tations from professional annotators and crowd workers, we
focused on a single language pair (Hindi-English) and leave
explorations on more language pairs for future work.
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Below, we summarize our main contributions:

1. We propose a state-of-the-art translation
model that generates Hindi-English CS text
starting from monolingual Hindi text. This
model requires very small amounts of real CS
text, uses both supervised and unsupervised
training objectives and considerably benefits
from a carefully designed training curriculum,
that includes pretraining with synthetically
constructed CS sentences.

2. We introduce a new Hindi-English CS text
corpus in this work.2 Each CS sentence is ac-
companied by its monolingual Hindi transla-
tion. We also designed a crowdsourcing task
to collect CS variants of monolingual Hindi
sentences. The crowdsourced CS sentences
were manually verified and form a part of our
new dataset.

3. We use sentences generated from our model
to train language models for Hindi-English
CS text and show significant improvements
in perplexity compared to other approaches.

4. We present a rigorous evaluation of the qual-
ity of our generated text using multiple ob-
jective metrics and a human evaluation study,
and they clearly show that the sentences gen-
erated by our model are superior in quality
and successfully capture naturally occurring
CS patterns.

2 Related Work

Early approaches of language modeling for code-
switched text included class-based n-gram mod-
els (Yeh et al.), factored language models that ex-
ploited a large number of syntactic and semantic
features (Adel et al., 2015), and recurrent neural
language models (Adel et al., 2013) for CS text.
All these approaches relied on access to real CS
text to train the language models. Towards alle-
viating this dependence on real CS text, there has
been prior work on learning code-switched lan-
guage models from bilingual data (Li and Fung,
2014b,a; Garg et al., 2018b) and a more recent
direction that explores the possibility of generat-
ing synthetic CS sentences. (Pratapa et al., 2018)
presents a technique to generate synthetic CS text
that grammatically adheres to a linguistic theory

2The new dataset and relevant code is available at:
https://www.cse.iitb.ac.in/~pjyothi/TCS.

of code-switching known as the equivalence con-
straint (EC) theory (Poplack, 1979; Sankoff, 1998).
Lee and Li (2020) proposed a bilingual attention
language model for CS text trained solely using a
parallel corpus.

Another recent line of work has explored neu-
ral generative models for CS text. Garg et al.
(2018a) use a sequence generative adversarial net-
work (SeqGAN (Yu et al., 2017)) trained on real
CS text to generate sentences that are used to aid
language model training. Another GAN-based
method proposed by Chang et al. (2019) aims to
predict the probability of switching at each to-
ken. Winata et al. (2018) and Winata et al. (2019)
use a sequence-to-sequence model enabled with a
copy mechanism (Pointer Network (Vinyals et al.,
2015)) to generate CS data by leveraging parallel
monolingual translations from a limited source of
CS data. Samanta et al. (2019) proposed a hier-
archical variational autoencoder-based model tai-
lored for code-switching that takes into account
both syntactic information and language switching
signals via the use of language tags. (We present
a comparison of TCS with both Samanta et al.
(2019) and Garg et al. (2018a) in Section 5.2.1.)

In a departure from using generative models
for CS text, we view this problem as one of se-
quence transduction where we train a model to con-
vert a monolingual sentence into its CS counter-
part. Chang et al. (2019); Gao et al. (2019) use
GAN-based models to modify monolingual sen-
tences into CS sentences, while we treat this prob-
lem of CS generation as a translation task and draw
inspiration from the growing body of recent work
on neural unsupervised machine translation mod-
els (Lample et al., 2018a,b) to build an effective
model of CS text.

The idea of using translation models for code-
switching has been explored in early work (Vu
et al., 2012; Li and Fung, 2013; Dhar et al., 2018).
Concurrent with our work, there have been efforts
towards building translation models from English
to CS text (Solorio et al., 2021) and CS text to En-
glish (Gupta et al., 2021). While these works focus
on translating from the embedded language (En-
glish) to the CS text or vice-versa, our approach
starts with sentences in thematrix language (Hindi)
which is the more dominant language in the CS
text. Also, ours is the first work, to our knowledge,
to repurpose an unsupervised neural machine trans-
lation model to translate monolingual sentences

https://www.cse.iitb.ac.in/~pjyothi/TCS
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into CS text. Powerful pretrained models like
mBART (Liu et al., 2020) have been used for code-
mixed translation tasks in concurrent work (Gau-
tam et al., 2021). We will further explore the use
of synthetic text with such models as part of future
work.

3 Our Approach

Figure 1 shows the overall architecture of our
model. This is largely motivated by prior work on
unsupervised neural machine translation (Lample
et al., 2018a,b). The model comprises of three lay-
ers of stacked Transformer (Vaswani et al., 2017)
encoder and decoder layers, two of which are
shared and the remaining layer is private to each
language. Monolingual Hindi (i.e. the source lan-
guage) has its own private encoder and decoder
layers (denoted by Encp0 and Decp0 , respectively)
while English and Hindi-English CS text jointly
make use of the remaining private encoder and de-
coder layers (denoted by Encp1 and Decp1 , respec-
tively). In our model, the target language is either
English or CS text. Ideally, we would like Encp1
and Decp1 to be trained only using CS text. How-
ever, due to the paucity of CS text, we also use text
in the embedded language (i.e. English) to train
these layers. Next, we outline the three main train-
ing steps of TCS.

(I) Denoising autoencoding (DAE). We use
monolingual text in each language to estimate lan-
guage models. In Lample et al. (2018b), this is
achieved via denoising autoencoding where an au-
toencoder is used to reconstruct a sentence given a
noisy version as its input whose structure is altered
by dropping and swapping words arbitrarily (Lam-
ple et al., 2018a). The loss incurred in this step is
denoted by LDAE and is composed of two terms
based on the reconstruction of the source and tar-
get language sentences, respectively.

(II) Backtranslation (BT): Once the layers are
initialized, one can use non-parallel text in both
languages to generate a pseudo-parallel corpus of
backtranslated pairs (Sennrich et al., 2015). That
is, a corpus of parallel text is constructed by trans-
lating sentences in the source language via the
pipeline, Encp0 , Encsh, Decsh and Decp1 , and
translating target sentences back to the source lan-
guage via Encp1 , Encsh, Decsh and Decp0 . The
backtranslation loss LBT is composed of cross-
entropy losses from using these pseudo-parallel

Encp0
<latexit sha1_base64="Qe5FC3z9zYmVnrv25ZeSnbK6vwM=">AAAB+3icbVDLSsNAFL3xWeur1qWbwSK4KkkVdFkUwWUF+4A2hMl00g6dScLMRCwhv+LGhSJu/RF3/o2TmIW2Hhg4nHMvc+7xY86Utu0va2V1bX1js7JV3d7Z3duvHdR7KkokoV0S8UgOfKwoZyHtaqY5HcSSYuFz2vdn17nff6BSsSi81/OYugJPQhYwgrWRvFp9JLCeSpHehCTz0tizM6/WsJt2AbRMnJI0oETHq32OxhFJBA014VipoWPH2k2x1IxwmlVHiaIxJjM8oUNDQyyoctMie4ZOjDJGQSTNCzUq1N8bKRZKzYVvJvOkatHLxf+8YaKDSzdlYZxoam4rPgoSjnSE8iLQmElKNJ8bgolkJisiUywx0aauqinBWTx5mfRaTees2bo7b7SvyjoqcATHcAoOXEAbbqEDXSDwCE/wAq9WZj1bb9b7z+iKVe4cwh9YH99n+JSs</latexit>

Encsh
<latexit sha1_base64="2ClzRthuuS4GM27vrwBa0TGgjjA=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiRV0GVRBJcV7APaECbTSTt0ZhJmJkqJ+RQ3LhRx65e482+cxCy09cDA4Zx7mXNPEDOqtON8WZWV1bX1jepmbWt7Z3fPru/3VJRITLo4YpEcBEgRRgXpaqoZGcSSIB4w0g9mV7nfvydS0Ujc6XlMPI4mgoYUI20k366PONJTydNrgTM/VdPMtxtO0ykAl4lbkgYo0fHtz9E4wgknQmOGlBq6Tqy9FElNMSNZbZQoEiM8QxMyNFQgTpSXFtEzeGyUMQwjaZ7QsFB/b6SIKzXngZnMg6pFLxf/84aJDi+8lIo40cScVnwUJgzqCOY9wDGVBGs2NwRhSU1WiKdIIqxNWzVTgrt48jLptZruabN1e9ZoX5Z1VMEhOAInwAXnoA1uQAd0AQYP4Am8gFfr0Xq23qz3n9GKVe4cgD+wPr4BBYiUfg==</latexit>

Decsh
<latexit sha1_base64="5yqcHaZeQ2t4ytT0kWqxFfWwFBA=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KkkVdFnUhcsK9gFtCJPppB06k4SZiVJiP8WNC0Xc+iXu/BsnbRbaemDgcM693DMnSDhT2nG+rZXVtfWNzdJWeXtnd2/frhy0VZxKQlsk5rHsBlhRziLa0kxz2k0kxSLgtBOMr3O/80ClYnF0rycJ9QQeRixkBGsj+XalL7AeSZHdUDL1MzWa+nbVqTkzoGXiFqQKBZq+/dUfxCQVNNKEY6V6rpNoL8NSM8LptNxPFU0wGeMh7RkaYUGVl82iT9GJUQYojKV5kUYz9fdGhoVSExGYyTyoWvRy8T+vl+rw0stYlKSaRmR+KEw50jHKe0ADJinRfGIIJpKZrIiMsMREm7bKpgR38cvLpF2vuWe1+t15tXFV1FGCIziGU3DhAhpwC01oAYFHeIZXeLOerBfr3fqYj65Yxc4h/IH1+QP2CpR0</latexit>

LCE : Encp0EncshDecshDecp1 ; Encp1EncshDecshDecp0
<latexit sha1_base64="JHovl8MvHOXmQNNtcZyC3i/oN/U=">AAACpHicnVHLSgMxFM2M7/qqunQTLYqrMqOCohtRiy66aNFqoa1DJr21wcyD5I5Yhvky/8Kdf2M6FtS2Ky8EDufce3IffiyFRsf5tOyZ2bn5hcWlwvLK6tp6cWPzQUeJ4tDgkYxU02capAihgQIlNGMFLPAlPPovV0P98RWUFlF4j4MYOgF7DkVPcIaG8orv7YBhnzOZVjMvvapkbYQ3TM9oRnNFBWkl5EaKPWec0v0f5hqmM7HnGir3pPScGtvCuK/7P18n84olp+zkQSeBOwIlMoqaV/xodyOeBBAil0zrluvE2EmZQsElZIV2oiFm/IU9Q8vAkAWgO2m+5IzuGaZLe5EyL0Sas78rUhZoPQh8kznsVI9rQ3Ka1kqwd9pJRRgnCGb+/KNeIilGdHgx2hUKOMqBAYwrYXqlvM8U42juWjBLcMdHngQPh2X3qHxYPy5dXI7WsUi2yS45IC45IRfkltRIg3Brx7qxalbd3rer9p3d+E61rVHNFvkT9tMXzpPTYg==</latexit>

LBT : Encp1EncshDecshDecp0 ; Encp0EncshDecshDecp1
<latexit sha1_base64="oGvgJyH7EuFegnvsW5XKARpKPtA="></latexit>

Encp1
<latexit sha1_base64="GA5koI/FKjTrLss2eAQ6EpqabjY=">AAAB+3icbVDLSsNAFL3xWeur1qWbwSK4KkkVdFkUwWUF+4A2hMl00g6dScLMRCwhv+LGhSJu/RF3/o2TmIW2Hhg4nHMvc+7xY86Utu0va2V1bX1js7JV3d7Z3duvHdR7KkokoV0S8UgOfKwoZyHtaqY5HcSSYuFz2vdn17nff6BSsSi81/OYugJPQhYwgrWRvFp9JLCeSpHehCTz0thzMq/WsJt2AbRMnJI0oETHq32OxhFJBA014VipoWPH2k2x1IxwmlVHiaIxJjM8oUNDQyyoctMie4ZOjDJGQSTNCzUq1N8bKRZKzYVvJvOkatHLxf+8YaKDSzdlYZxoam4rPgoSjnSE8iLQmElKNJ8bgolkJisiUywx0aauqinBWTx5mfRaTees2bo7b7SvyjoqcATHcAoOXEAbbqEDXSDwCE/wAq9WZj1bb9b7z+iKVe4cwh9YH99pfZSt</latexit>

Decp0
<latexit sha1_base64="UbcaR71z26AraQJR/yuM5MkW+cw=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmqoMuiLlxWsA9oQ5hMp+3QmSTMTMQS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45QcyZ0o7zbZXW1jc2t8rblZ3dvf0D+7DaUVEiCW2TiEeyF2BFOQtpWzPNaS+WFIuA024wvcn97iOVikXhg57F1BN4HLIRI1gbyberA4H1RIr0lpLMT2PfyXy75tSdOdAqcQtSgwIt3/4aDCOSCBpqwrFSfdeJtZdiqRnhNKsMEkVjTKZ4TPuGhlhQ5aXz7Bk6NcoQjSJpXqjRXP29kWKh1EwEZjJPqpa9XPzP6yd6dOWlLIwTTUOyODRKONIRyotAQyYp0XxmCCaSmayITLDERJu6KqYEd/nLq6TTqLvn9cb9Ra15XdRRhmM4gTNw4RKacActaAOBJ3iGV3izMuvFerc+FqMlq9g5gj+wPn8AWH+Uog==</latexit>

Decp1
<latexit sha1_base64="39OkXS3psyaEzLAtbnzdaTMAHLM=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBVUmqoMuiLlxWsA9oQ5hMp+3QmSTMTMQS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45QcyZ0o7zbZXW1jc2t8rblZ3dvf0D+7DaUVEiCW2TiEeyF2BFOQtpWzPNaS+WFIuA024wvcn97iOVikXhg57F1BN4HLIRI1gbyberA4H1RIr0lpLMT2PfzXy75tSdOdAqcQtSgwIt3/4aDCOSCBpqwrFSfdeJtZdiqRnhNKsMEkVjTKZ4TPuGhlhQ5aXz7Bk6NcoQjSJpXqjRXP29kWKh1EwEZjJPqpa9XPzP6yd6dOWlLIwTTUOyODRKONIRyotAQyYp0XxmCCaSmayITLDERJu6KqYEd/nLq6TTqLvn9cb9Ra15XdRRhmM4gTNw4RKacActaAOBJ3iGV3izMuvFerc+FqMlq9g5gj+wPn8AWgSUow==</latexit>

Hi Hi

En/CSEn/CS

LDAE : Encp0EncshDecshDecp0 ; Encp1EncshDecshDecp1
<latexit sha1_base64="7BRF3mozryImVTTS4MDCqnCuZpI="></latexit>

Figure 1: Model architecture. Each loss term along with
all the network components it modifies are shown. During
unsupervised training with non-parallel text, LDAE andLBT

are optimized while for supervised training with parallel text,
LDAE and LCE are optimized.

sentences in both directions.

(III) Cross-entropy loss (CE): Both the previ-
ous steps used unsupervised training objectives
and make use of non-parallel text. With access to
parallel text, one can use the standard supervised
cross-entropy loss (denoted by LCE) to train the
translation models (i.e. going from Encp0 to Decp1
and Encp1 to Decp0 via the common shared layers).

3.1 Synthetic CS text

Apart from the use of parallel text and monolin-
gual text employed in training TCS, we also con-
struct large volumes of synthetic CS text using two
simple techniques. This synthetic CS text is non-
parallel and is used to optimize both LDAE and
LBT . The role of the synthetic CS text is to expose
TCS to various CS patterns (even if noisy), thereby
encouraging the model to code-switch. The final
step of finetuning using All-CS enables model to
mimic switching patterns of real CS texts

The first technique (named LEX) is a simple
heuristic-based technique that constructs a CS sen-
tence by traversing a Hindi sentence and randomly
replacing a word by its English translation using
a bilingual lexicon (Conneau et al., 2017). The
probability of replacing a word is chosen to match
the switching distribution in real CS text. The
second technique (named EMT) is more linguisti-
cally aware. Following the methodology proposed
by Bhat et al. (2016) that is based on the embedded
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matrix theory (EMT) for code-switching, we apply
clause substitution methods to monolingual text to
construct synthetic CS text. From inspecting En-
glish parse trees, we found that replacing embed-
ded sentence clauses or subordinate clauses with
their Hindi translations would likely produce CS
text that appears somewhat natural.

4 Description of Datasets

4.1 A New Hindi-English CS Dataset

We introduce a new Hindi-English CS dataset,
that we will refer to as All-CS. It is partitioned
into two subsets, Movie-CS and Treebank-CS,
based on their respective sources. Movie-CS con-
sists of conversational Hindi-English CS text ex-
tracted from 30 contemporary Bollywood scripts
that were publicly available.3 The Hindi words
in these sentences were all Romanized with po-
tentially multiple non-canonical forms existing
for the same Hindi token. We employed a pro-
fessional annotation company to convert the Ro-
manized Hindi words into their respective back-
transliterated forms rendered in Devanagari script.
We also asked the annotators to provide mono-
lingual Hindi translations for all these sentences.
Using these monolingual Hindi sentences as a
starting point, we additionally crowdsourced for
CS sentences via Amazon’s Mechanical Turk
(MTurk) (Amazon, 2005). Table 1 shows two
Hindi sentences fromMovie-CS and Treebank-CS,
along with the different variants of CS sentences.

Turkers were asked to convert a monolingual
Hindi sentence into a natural-sounding CS variant
that was semantically identical. Each Turker had
to work on five Hindi sentences. We developed
a web interface using which Turkers could easily
copy parts of the Hindi sentence they wanted to
retain and splice in English segments. More de-
tails about this interface, the crowdsourcing task
and worker statistics are available in Appendix A.

All-CS comprises a second subset of CS sen-
tences, Treebank-CS, that was crowdsourcing us-
ingMTurk. We extracted 5292monolingual Hindi
sentences (with sentence lengths less than or equal
to 15 words) from the publicly available Hindi
Dependency Treebank that contains dependency
parses.4 These annotations parse each Hindi sen-
tence into chunks, where a chunk is defined as

3https://www.filmcompanion.in/category/fc-pro/scripts/
https://moifightclub.com/category/scripts/

4http://ltrc.iiit.ac.in/treebank_H2014/

Movie-CS पर हँसी िचǑकत्सा ने मेरा जीवन बदल Ǒदया वास्तव में
(Eng) (But laughter medicine really changed my life)
(Gold) but laughter therapy ने मेरȣ life बदल दȣ actually
MTurk पर laughter therapy ने मेरा जीवन बदल Ǒदया वास्तव में
MTurk but laughter therapy ने really में मेरȣ life change कर दȣ
MTurk पर हँसी therapy ने मेरा life बदल Ǒदया वास्तव में

Treebank-CS मेले से आमदनी 7.20 करोड़ रुपये आंकȧ गई
(Eng) (Income from the fair was estimated at Rs 7.20 crore)
MTurk fair से income 7.20 करोड़ रुपये evaluate कȧ गई
MTurk मेले से income 7.20 करोड़ रुपये आंकȧ गई

Table 1: Two All-CS examples. English translations in blue.

Figure 2: Distribution across overall sentence lengths and
distribution across lengths of continuous English spans in
Movie-CS and Treebank-CS.

a minimal, non recursive phrase. Turkers were
asked to convert at least one Hindi chunk into
English. This was done in an attempt to elicit
longer spans of English segments within each sen-
tence. Figure 2 shows the sentence length distribu-
tions for Movie-CS and Treebank-CS, along with
histograms accumulating English segments of dif-
ferent lengths in both subsets. We clearly see a
larger fraction of English segments with lengths
within the range [2-6] in Treebank-CS compared
to Movie-CS.

Table 2 provides detailed statistics of the new
CS dataset. We also report two metrics proposed
by Guzmán et al. (2017) to measure the amount of
code-switching present in this new corpus. Mono-
lingual Index (M-Index) is a value between 0 and 1

Quantity/Metric Movie-CS Treebank-CS All-CS

|Train| 15509 5914 21423
|Test| 1500 1000 2500
|Valid| 500 500 1000

# Tokens 196300 87979 284279
# Hindi Sentences 9290 5292 14582

# NEs 4342 4810 9152
Fraction of NEs 0.0221 0.0547 0.0322

M-Index 0.5542 0.6311 0.5774
I-Index 0.2852 0.3434 0.3023

Table 2: Key statistics of CS datasets.

https://www.filmcompanion.in/category/fc-pro/scripts/
https://moifightclub.com/category/scripts/
http://ltrc.iiit.ac.in/treebank_H2014/
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that quantifies the amount of mixing between lan-
guages (0 denotes a purelymonolingual corpus and
1 denotes equal mixing from both languages) and
I-Index measures the fraction of switching points
in the corpus. We observe Treebank-CS exhibits
higher M-index and I-index values compared to
Movie-CS indicating more code-switching over-
all. All-CS also contains a non-trivial number of
named entities (NEs) which are replaced by an NE
tag in all our language modeling experiments.

4.2 Other Datasets

Parallel Hindi-English Text. As described in
Section 5, TCS uses parallel text for supervised
training. For this purpose, we use the IIT Bombay
English-Hindi Corpus (Kunchukuttan et al., 2017)
containing parallel Hindi-English text. We also
construct a larger parallel corpus using text from
the OpenSubtitles (OpSub) corpus (Lison and
Tiedemann, 2016) that is more conversational
and hence more similar in style to Movie-CS. We
chose ~1 million English sentences (OpSub-EN),
where each sentence contained an embedded
clause or a subordinate clause to support the
construction of EMT lines. We used the Google
Translate API to obtain Hindi translations for
all these sentences (OpSub-HI). Henceforth, we
use OpSub to refer to this parallel corpus of
OpSub-EN paired with OpSub-HI. We extracted
318K sentences from the IITB corpus after thresh-
olding on length (5-15) and considering overlap
in vocabulary with OpSub. (One could avoid the
use of an external service like Google Translate
and use existing parallel text (Zhang et al., 2020))
in conjunction with a word aligner to construct
EMT lines. OpSub, being more conversational in
style, turns out to be a better pretraining corpus. A
detailed comparison of these choices is described
in Appendix H.)

Synthetic CS Datasets. As mentioned in Sec-
tion 3.1, we use two simple techniques LEX and
EMT to generate synthetic CS text, which in turn
is used to train TCS in an unsupervised training
phase. For each Hindi monolingual sentence
in OpSub, we generate two LEX and two EMT
synthetic CS sentences giving us OpSub-LEX and
OpSub-EMT, respectively. We also generate five
LEX and five EMT lines for each monolingual
sentence in All-CS. In order to generate EMT
lines, we first translate the monolingual Hindi

sentences in All-CS to English using Google
Translate and then follow the EMT generation
scheme. This results in two datasets, All-CS-LEX
and All-CS-EMT, which appear in later evalua-
tions. (Appendix B contains more details about
EMT applied to OPUS and All-CS.)

Datasets from existing approaches. (I)
VACS (Samanta et al., 2019) is a hierarchi-
cal variational autoencoder-based model designed
to generate CS text. We train two VACS mod-
els, one on All-CS (VACSv1) and the other on
OpSub-EMT followed by All-CS (VACSv2). (II)
Garg et al. (2018a) use SeqGAN (Yu et al., 2017)
– a GAN-based sequence generation model – to
generate CS sentences by providing an RNNLM
as the generator. As with VACS, we train two
SeqGAN5 models, one on All-CS (SeqGANv1)
and one on OpSub-EMT followed by All-CS
(SeqGANv2). Samples are drawn from both
SeqGAN and VACS by first drawing a random
sample from the standard normal distribution
in the learned latent space and then decoding
via an RNN-based generator for SeqGAN and a
VAE-based decoder for VACS. We sample ~2M
lines for each dataset to match the size of the other
synthetic datasets.

5 Experiments and Results

First, we investigate various training curricula to
train TCS and identify the best training strategy by
evaluating BLEU scores on the test set of All-CS
(§5.1). Next, we compare the output from TCS
with synthetic CS text generated by other meth-
ods (§5.2). We approach this via language model-
ing (§5.2.1), human evaluations (§5.2.2) and two
downstream tasks—Natural Language Inference
and Sentiment Analysis—involving real CS text
(§5.2.3). Apart from these tasks, we also present
four different objective evaluation metrics to eval-
uate synthetic CS text: BERTScore, Accuracy of
a BERT-based classifier and two diversity scores
(§5.3).

5.1 Improving Quality of TCS Outputs

Table 3 shows the importance of various training
curricula in training TCS; these models are eval-
uated using BLEU (Papineni et al., 2002) scores
computed with the ground-truth CS sentences for

5https://github.com/suragnair/seqGAN

https://github.com/suragnair/seqGAN
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Curriculum Training BLEU
(HI � CS)

O All-CS S 19.18

A IITB + OpSub S 1.51
B A | All-CS S 27.84

C A | OpSub-HI + OpSub-LEX U 15.23
D A | OpSub-HI + OpSub-EMT U 17.73

C1 C | All-CS U 32.71
C2 C | All-CS S 39.53

D1 D | All-CS U 35.52
D2 D | All-CS S 43.15

Table 3: BLEU score on (HI � CS) for different curricula
measured on All-CS (test). The first column gives names to
each training curriculum. A | X represents starting with model
denoted by A and further training using dataset(s) X. “S” and
“U” refer to supervised and unsupervised training phases, re-
spectively.

the test set of All-CS.We start with supervised pre-
training of TCS using the two parallel datasets we
have in hand – IITB and OpSub (System A). A
is then further finetuned with real CS text in All-
CS. The improvements in BLEU scores moving
from SystemO (trained only on All-CS) to System
B illustrate the benefits of pretraining TCS using
Hindi-English parallel text.

Systems C and D in Table 3 use our synthetic
CS datasets OpSub-LEX and OpSub-EMT, respec-
tively. These systems are further finetuned on All-
CS using both unsupervised and supervised train-
ing objectives to give C1, C2, D1 and D2, respec-
tively. Comparing these four systems with System
B shows the importance of using synthetic CS for
pretraining. Further, comparingC1 againstD1 and

Figure 3: Variation of BLEU score with amount of All-CS
parallel training data.

C2 against D2, we observe that OpSub-EMT is in-
deed a better choice for pretraining compared to
OpSub-LEX. Also, supervised finetuning with All-
CS is clearly superior to unsupervised finetuning.
Henceforth, SystemsD1 andD2 will be referred to
as TCS (U) and TCS (S), respectively.

While having access to parallel CS data is an ad-
vantage, we argue that the benefits of having par-
allel data only marginally increase after a thresh-
old. Figure 3 shows how BLEU scores vary when
changing the amount of parallel CS text used to
trainD2. We observe that BLEU increases substan-
tially when we increase CS data from 1000 lines to
5000 lines, after which there is a trend of diminish-
ing returns. We also find that D1 (that uses the
data in All-CS as non-parallel text) is as good as
the model trained using 4000 lines of parallel text.

5.2 Comparing TCS with Other Synthetic CS

5.2.1 Language Modeling

We use text generated by our model to train a
language model (LM) and evaluate perplexities
on the test set of All-CS to show how closely
sentences from TCS mimic real CS text. We use
a state-of-the-art RNNLM model AWD-LSTM-
LM Merity et al. (2018) as a blackbox LM and
only experiment with different training datasets.
The model uses three LSTM layers of 1200 hid-
den units with weight tying and 300-dimensional
word embeddings. In initial runs, we trained our
language model on the large parallel/synthetic
CS datasets and finetuned on the All-CS data.
However, this training strategy was prone to over-
fitting on All-CS data. To counter this problem
of forgetting during the pretrain-finetuning steps,
we adopted the Mix-review strategy proposed
by He et al. (2021). The training sentences from
All-CS remain constant through the epochs and
the amount of pretraining data is exponentially
decayed with each epoch. This greatly alleviates
the forgetting problem in our model, and leads
to better overall perplexities. Additional details
about these LMs are provided in Appendix E.

Table 4 shows test perplexities using different
training curricula and data generated using two
prior approaches, VACS and SeqGAN. Sentences
generated using TCS yield the largest reductions in
test perplexities, compared to all other approaches.
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Pretraining Corpus | Train | Test PPL Test PPL
OpSub All-CS

OpSub + OpSub-LEX 4.00M 56.83 332.66
OpSub + OpSub-EMT 4.03M 55.56 276.56

OpSub + VACSv1 4.05M 64.77 335.79
OpSub + VACSv2 4.05M 62.41 321.12

OpSub + SeqGANv1 4.03M 57.32 336.62
OpSub + SeqGANv2 4.03M 56.50 317.81

OpSub + TCS (U) 3.99M 57.45 271.19
OpSub + TCS (S) 3.96M 56.28 254.37

Table 4: Test perplexities on All-CS using different pretrain-
ing datasets.

5.2.2 Human Evaluation

We evaluated the quality of sentences generated by
TCS using a human evaluation study. We sampled
150 sentences each, using both TCS (U) and TCS
(S), starting from monolingual Hindi sentences in
the evaluation sets of All-CS. The sentences were
chosen such that they were consistent with the
length distribution of All-CS. For the sake of com-
parison, corresponding to the above-mentioned
150 monolingual Hindi samples, we also chose
150 CS sentences each from All-CS-LEX and All-
CS-EMT. Along with the ground-truth CS sen-
tences from All-CS, this resulted in a total of 750
sentences.6 These sentences were given to three
linguistic experts in Hindi and they were asked
to provide scores ranging between 1 and 5 (1 for
worst, 5 for best) under three heads: “Syntactic
correctness”, “Semantic correctness” and “Natu-
ralness”. Table 5 shows that the sentences gener-
ated using TCS (S) and TCS (U) are far superior
to the EMT and LEX sentences on all three crite-
ria. TCS (S) is quite close in overall quality to the
real sentences and TCS (U) fares worse, but only
by a small margin.

Table 6 shows some illustrative examples of
code-switching using TCS (U) on test samples.
We also show some examples of code-switching

6We only chose CS sentences from TCS that did not ex-
actly match the ground-truth CS text.

Method Syntactic Semantic Naturalness

Real 4.47±0.73 4.47±0.76 4.27±1.06
TCS (S) 4.21±0.92 4.14±0.99 3.77±1.33
TCS (U) 4.06±1.06 4.01±1.12 3.58±1.46
EMT 3.57±1.09 3.48±1.14 2.80±1.44
LEX 2.91±1.11 2.87±1.19 1.89±1.14

Table 5: Mean and standard deviation of scores (between 1
and 5) from 3 annotators for 150 samples from 5 datasets.

Generated using MovieCS

मैं खुश हँू तुमने नोǑटस Ǒकया
(I am glad you noticed)
i am happy तुमने notice Ǒकया
नहȣं मैं तुमसे बहुत प्यार करता हँू सच में लेǑकन िसफर् एक दोस्त कȧ तरह
(No i really love you but just like a friend)
नहȣं i love you very much सच में but िसफर् एक friend कȧ तरह

Generated using TreebankCS

बैठक अगले हफ़्ते होने कȧ संभावना है
(Meeting will likely be next week)
meeting next week होने कȧ possibility है
उन्होंने कहा Ǒक इनका नाम लेना उिचत नहȣं होगा लेǑकन यह स्पƴ है
(He said that it would not be appropriate to name them
but it is clear)
उन्होंने कहा Ǒक इनका नाम लेना fair नहȣं होगा but it is clear

Generated using OpSub

आपको अपने भीतर उन भावनाओं को संसािधत करने के िलए खुद को
समय देना होगा
(You have to give yourself time to process those feelings
within you)
आपको अपने भीतर उन emotions को process करने के िलए खुद को
time देना होगा
क्योंǑक मुझे पता है Ǒक मुख्य पकवान क्या होगा
(Because i know what the main dish will be)
because i know main dish क्या होगा

Table 6: Examples generated by TCS (U) on validation and
test data. For each example the first line is the monolingual
sentence, followed by its English translation and finally the
translation from TCS (U). More examples are in Appendix F.

within monolingual sentences from OpSub. We
observe that the model is able to introduce long
contiguous spans of English words (e.g. “meeting
next week”, “but it is clear”, etc.). The model also
displays the ability to meaningfully switch multi-
ple times within the same sentence (e.g., “i love
you very much”, “but”, “friend”). There are also
interesting cases of English segments that appear
to be ungrammatical but make sense in the CS con-
text (e.g., “because i know main dish”, etc.).

5.2.3 GLUECoS Benchmark
GLUECoS (Khanuja et al., 2020) is an evaluation
benchmark spanning six natural language tasks for
code-switched English-Hindi and English-Spanish
data. The authors observe that M-BERT (Pires
et al., 2019) consistently outperforms cross-lingual
embedding techniques. Furthermore, pretraining
M-BERT on small amounts of code-switched text
improves its performance in most cases. For our
evaluation, we select two tasks that require seman-
tic understanding: Natural Language Inference
(NLI) and Sentiment Analysis (SA).

We sample 100K monolingual sentences from
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Pretraining Data NLI (Accuracy) Sentiment
Analysis (F1)

Baseline 57.88±1.22 57.97±0.06
OpSub-HI 58.47±0.36 58.13±0.25

OpSub-LEX 58.67±0.94 58.40±0.33
OpSub-EMT 58.96±0.70 58.79±0.37

TCS (S) 59.57±0.57 59.39±0.81
All-CS 59.74±0.96 58.77±0.44

Table 7: GLUECoS Evaluation: Mean and standard devia-
tion of scores after evaluating on 5 seeds. Baseline denotes
the M-BERT model without any MLM pretraining.

OpSub-HI and select corresponding LEX, EMT
and TCS (S) sentences. M-BERT is then trained
using the masked language modelling (MLM)
objective on text from all 4 systems (including
OpSub-HI) for 2 epochs. We also train M-BERT
on 21K sentences from All-CS (real CS). Finally,
these pretrained models are fine-tuned on the se-
lected GLUECoS tasks. (More details are in Ap-
pendix G.)

Table 7 lists the accuracies and F1 scores us-
ing different pretraining schemes for both NLI and
sentiment analysis, respectively. Plain monolin-
gual pretraining by itself leads to performance im-
provements on both tasks, presumably due to do-
main similarity betweenGLUECoS (movie scripts,
social media etc.) and OpSub. As mentioned
in Khanuja et al. (2020), pretraining on CS text fur-
ther improves performance for both NLI and SA.
Among the synthetic methods, TCS (S) has consis-
tently better scores than LEX and EMT. For SA,
TCS (S) even outperforms pretraining on real CS
text from All-CS.

5.3 Other Objective Evaluation Metrics

BERTScore. BERTScore (Zhang* et al., 2020)
is a recently-proposed evaluation metric for text
generation. Similarity scores are computed be-
tween each token in the candidate sentence and

each token in the reference sentence, using con-
textual BERT embeddings (Devlin et al., 2018) of
the tokens. We use this as an additional objec-
tive metric to evaluate the quality of the sentences
generated using TCS. We use the real monolin-
gual sentence as the reference and the generated
CS sentence as the candidate, excluding sentences
from TCS (S) and TCS (U) that exactly match the
real sentence. Since our data is Hindi-English CS
text, we use Multilingual BERT (M-BERT) (Pires
et al., 2019) for high-quality multilingual represen-
tations.

Table 8 outlines our main results on the test
set of All-CS. TCS sometimes generates purely
monolingual sentences. This might unfairly tilt
the scores in favour of TCS since the reference
sentences are also monolingual. To discount for
such biases, we remove sentences generated by
TCS (U) and TCS (S) that are purely monolingual
(Row label “Mono” in BERTScore). Sentences
having <UNK> tokens (labeled “UNK”) are also
filtered out since these tokens are only generated
by TCS for out-of-vocabulary words. “UNK &
Mono” refers to applying both these filters.

EMT lines consistently show the worst perfor-
mance, which is primarily due to the somewhat
poor quality of translations involved in generat-
ing these lines (refer to Appendix B). With remov-
ing both monolingual and <UNK> tokens, we ob-
serve that TCS (U) and TCS (S) yield the highest
BERTScores, even outperforming the BERTScore
on real data obtained from the Turkers.

BERT-based Classifier. In this evaluation, we
use M-BERT (Pires et al., 2019) to build a classi-
fier that distinguishes real CS sentences from syn-
thetically generated ones (fake). When subject to
examples from high-quality generators, the classi-
fier should find it hard to tell apart real from fake

Evaluation Metric Real LEX EMT TCS (S) TCS (U)

BERTScore

All (3500) 0.812 0.796 0.627 0.764 0.788
Mono (3434) 0.812 0.782 0.623 0.755 0.772
UNK (1983) 0.809 0.804 0.636 0.827 0.846

UNK & Mono (1857) 0.808 0.785 0.633 0.813 0.821

BERT-based Classifier
|Sentences| 4767 12393 12484 12475 12475

Accuracy(fake) 42.76 96.52 97.83 80.31 88.62

Diversity
Gzip (D) 22.13 24.12 33.17 21.37 17.59

Self-BLEU 61.3 29.7 24.6 63.6 64.2

Table 8: (a) BERTScores on test split of All-CS. Each row corresponds to a different data filter. The numbers in parenthesis
denote the number of sentences in the data after filtering. (b) Accuracies from the classifier for samples generated by various
methods as being fake. The |Sentences| refer to size of dataset for each system. TCS models have the lowest accuracy among
synthetic methods. (c) Diversity Scores for different techniques using Gzip and Self-BLEU based diversity measures.
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samples. We add a fully connected layer over the
M-BERT base architecture that takes the [CLS] to-
ken as its input to predict the probability of the sen-
tence being real or fake. Fake sentences are drawn
from the union of TCS (U), TCS (S), All-CS-LEX
and All-CS-EMT. In order to alleviate the class im-
balance problem, we oversample the real sentences
by a factor of 5 and shuffle the data. The model
converges after training for 5 epochs. We see in Ta-
ble 8 that the classification accuracy of whether a
sample is fake or not is lowest for the outputs from
TCS among the different generation techniques.

Measuring Diversity. We are interested in find-
ing out how diverse the predictions from TCS are.
We propose a simplemeasure of diversity in the CS
variants that is based on how effectively sentences
can be compressed using the gzip utility.7 We con-
sidered using Byte Pair Encoding (BPE) (Gage,
1994) as a measure of data compression. How-
ever, BPE operates at the level of individual words.
Two word sequences “w1 w2 w3” and “w3 w2
w1” would be identically compressed by a BPE to-
kenizer. We would ideally like to account for such
diversity and not discard this information. gzip
uses Lempel-Ziv coding (Ziv and Lempel, 1977)
that considers substrings of characters during com-
pression, thus allowing for diversity in word order-
ing to be captured.

Our diversity measure D is simply the follow-
ing: For a given set of CS sentences, run gzip on
each sentence individually and sum the resulting
file sizes (S1). Next, paste all the CS sentences into
a single file and run gzip on it to get a file of size
S2. Then, D = S1−S2. SmallerD scores indicate
larger diversity. If the variants of a sentence are
dissimilar to one another and hence very diverse,
then S2 would be large thus leading to smaller val-
ues of D. Table 8 shows the diversity scores for
different techniques. Both TCS (S) and TCS (U)
have a higher diversity score compared to LEX
and EMT. TCS (U) exceeds even the responses re-
ceived viaMTurk (Real) in diversity. We note here
that diversity, by itself, is not necessarily a desir-
able trait. Our goal is to generate sentences that are
diverse while being natural and semanticallymean-
ingful. The latter properties for text from TCS (S)
and TCS (U) have already been verified in our hu-
man evaluation study.

Zhu et al. (2018) propose self-BLEU score as a
metric to evaluate the diversity of generated data.

7http://www.gzip.org/

However, using self-BLEU is slightly problematic
in our setting as systems like LEX that switch
words at random positions would result in low
self-BLEU (indicating high diversity). This is in-
deed the case, as shown in Table 8 - LEX, EMT
give lower self-BLEU scores as compared to TCS.
However, note that the scores of the TCS models
are comparable to that of real CS data.

6 Conclusions

In this work, we present a neural translation model
for CS text that transduces monolingual Hindi sen-
tences into realistic Hindi-English CS text. Text
generated by our model is evaluated using a num-
ber of different objective metrics, along with LM,
NLI and sentiment analysis tasks, and a detailed
human evaluation study. The role of synthetic data
in training such models merits a more detailed in-
vestigation which we leave for future work.
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A MTurk Task Details

Figure 4: A snapshot of the web interface used to collect
Movie-CS and Treebank-CS data via Amazon Mechanical
Turk.

Figure 4 depicts the portal used to collect data us-
ing Amazon’s Mechanical Turk platform. The col-
lection was done in two rounds, first for Movie-
CS and then for Treebank-CS. With Treebank-CS,
the sentences were first divided into chunks and
the Turkers were providedwith a sentence grouped
into chunks as shown in Figure 4. They were re-
quired to switch at least one chunk in the sentence
entirely to English so as to ensure a longer span of
English words in the resulting CS sentence. A sug-
gestion box converted transliterated Hindi words
into Devanagari and also provided English sugges-
tions to aid the workers in completing their task.
With Movie-CS, since there were no chunk labels
associated with the sentences, they were tokenized
into words.

On MTurk, we selected workers with HIT ap-
proval rate of 90% and location restricted to coun-
tries with significant Hindi speakers - Australia,
Bahrain, Canada, India, Kuwait, Malaysia, Mauri-
tius, Myanmar, Nepal, Netherlands, New Zealand,
Oman, Pakistan, Qatar, Saudi Arabia, Singapore,
South Africa, Sri Lanka, Thailand, United Arab
Emirates, UnitedKingdom, United States of Amer-
ica. It was clearly specified in the guidelines that
the task must be attempted by native Hindi speak-
ers. Each response was manually checked before
approving. Turkers were paid $0.15 for working
on 5 sentences (roughly takes 3-4 minutes). This
amounts to $2.25-$3/hr which is in the ballpark of

a median hourly wage on MTurk of ~$2/hr (Hara
et al., 2018).

B EMT lines generation

Following the methodology described in (Bhat
et al., 2016), we apply clause substitution method-
ology to produce EMT sentences. To create
OpSub-EMT, we start with the gold English
sentence that contains either embedded sentence
clauses (S) or subordinate clauses (SBAR) and
swap one or more of them with their Hindi trans-
lations to produce an EMT synthetic CS sentence.
Due to the lack of gold English translations avail-
able for All-CS sentences, we used the Google
Translate API to first acquire their English transla-
tion. Many of the sentences in All-CS are shorter
in length and do not contain the abovementioned
clauses. So, we also considered inverted declar-
ative sentence clauses (SINV), inverted question
clauses (SQ) and direct question clauses (SBARQ)
in addition to S and SBAR. In case none of the
clause level tags were present, we considered the
following phrase level tags as switching candi-
dates: Noun Phrase (NP), Verb Phrase (VP), Ad-
jective Phrase (ADJP) and Adverb Phase (ADVP).
Owing to the shorter length and lack of clause-
level tags, we switch only one tag per sentence for
All-CS-EMT. The choice of which clause to switch
was made empirically by observing what switches
caused the resulting sentence to resemble a natu-
rally occurring CS sentence. One can also use the
toolkit provided by Rizvi et al. (2021) for generat-
ing EMT lines.

C Implementation Details: TCS

As an initialisation step, we learn the token embed-
dings (Mikolov et al., 2013) on the same corpus
using skipgram. The embedding dimension was
set to be 256 and the encoder-decoder layers share
these lookup tables. Adam optimiser with a learn-
ing rate of 0.0001was used to train the model. Val-
idation BLEU scores on (HI → ENG/CS) transla-
tions and (EN → HI → EN) reconstructions were
used as metrics to save the best model for TCS (S)
and TCS (U), respectively.

D Human Evaluation

The 150 samples evaluated in Table 5 were taken
entirely from test/validation splits. We undertook
an alternate human evaluation experiment involv-
ing 100 real CS sentences and its corresponding



3167

CS sentences using LEX, EMT, TCS (U) and TCS
(S). Out of these 100 sentences, 40 of them came
entirely from the test and validation splits and the
remaining 60 are training sentences which we fil-
tered tomake sure that sentences generated by TCS
(S) and TCS (U) never exactly matched the real CS
sentence. The table below (Table 9) reports the
evaluations on the complete set of 100 sentences
from 5 datasets. We observe that the trend remains
exactly the same as in Table 5, with TCS (S) being
very close to real CS sentences in its evaluation and
TCS (U) trailing behind TCS (S).

Method Syntactic Semantic Naturalness

Real 4.36±0.76 4.39±0.80 4.20±1.00
TCS (S) 4.29±0.84 4.30±0.89 4.02±1.16
TCS (U) 3.96±1.06 3.93±1.13 3.52±1.45
EMT 3.47±1.25 3.53±1.23 2.66±1.49
LEX 3.10±2.16 3.05±1.35 2.01±1.32

Table 9: Mean and standard deviation of scores (between 1
and 5) from 3 annotators for 100 samples from 5 datasets.

E Language Model Training

The AWD-LSTM language model was trained for
100 epochs with a batch size of 80 and a sequence
length of 70 in each batch. The learning rate was
set at 30. The model uses NT-ASGD, a variant of
the averaged stochastic gradient method, to update
the weights. The mix-review decay parameter was
set to 0.9. This implies that the fraction of pretrain-
ing batches being considered at the end ofn epochs
is 0.9n, starting from all batches initially. Two de-
cay coefficients {0.8, 0.9} were tested and 0.9 was
chosen based on validation perplexities.

F Code-switching examples

The sentences in Table 10 have been generated on
the test and validation splits of All-CS as well as
the OpSub dataset. Overall, they depict how the
model is able to retain context over long sentences
(e.g. “and social sectors”) and performmeaningful
switching over large spans of words (e.g. “old con-
versation writer media”, “regularly security prac-
tices”). We also note that at times, the model uses
words which are different from the natural English
translations of the sentence, which are appropriate
within the context of a CS sentence (e.g. the use of
“manage” instead of “manageable”).

G Details of GLUECoS Experiments

For masked language modeling (MLM), we select
the default parameters for the learning rate (5e-5),

batch masking probability (0.15), sequence length
(512). The models are trained for 2 epochs with a
batch size of 4 and gradient accumulation step of
10. For task specific fine tuning we rely on the offi-
cial training scripts provided by GLUECoS repos-
itory. 8 We train the models for 5 seed (0,1,2,3
and 4) and report mean and standard deviations of
Accuracy and F1 for NLI and Sentiment Analysis
respectively

H Additional Dataset and Experiments

Dataset The additional corpus on which exper-
iments were performed is OPUS-100 (Zhang
et al., 2020) which was sampled from the original
OPUS corpus (Tiedemann, 2012). The primary
difference between OpSub and OPUS-100 is that
OpSub does not have manual Hindi translations

8https://github.com/microsoft/GLUECoS

Generated using Movie-CS

सारे पुराने बातचीत लेखक मीǑडया और राजनीित में जमा हो गए हैं
(All the old conversation writers have gathered in media
and politics)
सारे old conversation writer media और politics में जमा हो गए हैं
क्या बात है तुमने आखरȣ बार कब पाटȹ कȧ थी
(What is the last time you had a party)
क्या बात है तुमने last time party कब कȧ थी
तू अपने कमरे में जा यार आप दोनों कृपया शांत हो जाओ
(You go to your room man please relax both of you)
तू अपने room में जा यार आप दोनों please calm down

Generated using TreebankCS

यह पॉिलसी पित पƤी के संयुƠ नाम से थी
(This policy was in the joint name of husband and wife)
यह policy husband wife के joint नाम से थी
स्कूलों में तो िनयिमत रूप से सुरक्षा अभ्यास कराए जाने लगे हैं
(Regular safety exercises are being conducted in schools)
schools में तो regularly security practice Ǒकये जाने लगे हैं
इसमें बुिनयादȣ कृǒष और सामाǔजक के्षऽों में सावर्जिनक िनवेशभी शािमल है
(It also includes public investment in basic agricultural
and social sectors)
इसमें बुिनयादȣ farming and social areas में public investment
भी शािमल है

Generated using OpSub

इस सम्मेलन का चौथा ǒवषय मानव पूंजी ǒवकास उपायों पर बल देना है
(The fourth theme of this conference is to emphasize
human capital development measures.)
इस सम्मेलन का fourth subject human पूंजी development
उपायों पर बल देना है
देश का आंतǐरक कजर् ूबन्ध Ǒकए जाने योग्य सीमा में है
(The country’s internal debt is within manageable limits)
देश का internal loan manage Ǒकए जाने योग्य सीमा में है

Table 10: More examples of code-switching generated by
TCS (U).
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of its sentences and requires the use of an external
API such as Google Translate for translation.
However, OPUS-100 has manually annotated
sentences as part of the corpus. The source
of OPUS-100 ranges from movie subtitles to
GNOME documentation to the Bible. We extract
340K sentences from OPUS-100 corpus after
thresholding on length (5-15). We offer this
comparison of systems trained on OpSub and
OPUS-100 to show how our models fare when
using two datasets that are very different in their
composition.

LEX lines generation. Generation of LEX lines
is straightforward and requires only a bilingual
lexicon. For each monolingual Hindi sentence
we generate ~5 sentences on OPUS-100 resulting
in OPUS-100-LEX (to roughly match the size of
OpSub-LEX).

EMT lines generation. For generation of EMT
lines we have two strategies depending on the
availability of tools (parsers, translation service,
aligners, etc). The first strategy requires a
translation service (either in-house or publicly
available). We substitute the embedded clause
from parse trees of English sentences with their
Hindi translations. This strategy does not require a
parallel Hindi corpus and has been previously used
for generating OpSub-EMT and All-CS-EMT
(Described in detail in Appendix B).

The second strategy, that is used to generate
OPUS-100-EMT, requires a parallel corpus, a
constituent parser in English and a word aligner
between parallel sentences. OPUS-100 sentences
are aligned using SimAlign (Jalili Sabet et al.,
2020) and embedded clauses from parse trees of
English sentences are replaced by Hindi clauses
using word aligners. Here again, for each mono-
lingual Hindi sentenece we generate ~5 EMT
sentences (strategy-2) on OPUS-100 resulting in
OPUS-100-EMT.

Curriculum Training Experiments. Table 11
provides a walkthrough of systems using various
training curricula that are evaluated for two differ-
ent choices of datasets - OpSub vs OPUS-100 dif-
fering in the generation of EMT lines. The models
are evaluated using BLEU (Papineni et al., 2002)
scores computed on the test set of All-CS. The vo-

Curriculum X=OpSub X=OPUS-100

O All-CS (S) 19.18 19.14

A IITB + X (S) 1.51 0.29
B A | All-CS (S) 27.84 25.63

C A | X-HI + X-LEX (U) 15.23 14.17
C1 C | All-CS (U) 32.71 31.48
C2 C | All-CS (S) 39.53 37.51

D A | X-HI + X-EMT (U) 17.73 15.03
D1 D | All-CS (U) 35.52 33.91
D2 D | All-CS (S) 43.15 40.32

Table 11: BLEU score on (HI � CS) for different curricula
measured on All-CS (test). X | Y represents starting with
model X and further training using dataset Y. Values from
Table 3 are replicated here for ease of comparison.

cabulary is generated by combining train sets of all
datasets to be used in the curricula. It is 126,576
when X = OpSub and 164,350 when X = OPUS-
100 (OpSub shows a higher overlap in vocabu-
lary with All-CS compared to OPUS-100). The
marginal difference in System O for OpSub and
OPUS-100 is attributed to differences in the size
of the vocabulary. OpSub being conversational in
nature, is a better pretraining corpus compared to
OPUS-100 as seen from System A, the sources of
the latter being GNOME documentations and The
Bible, apart from movie subtitles.

The results for C1, C2, D1, D2 are consistently
better when X = OpSub versus when X = OPUS-
100. We choose to highlight four models from
Table 11 which together demonstrate multiple
use-cases of TCS in Table 12. TCS (LEX)
refers to (C2, X=OpSub), TCS (U) refers to (D1,
X=OpSub), TCS (S) refers to (D2, X=OpSub) and
TCS (simalign) refers to (D2, X=OPUS-100).

Language Modelling Experiments. Table 13
shows results from LM experiments (using the
same setup as in Section 5.2.1). The values for
TCS (S) and TCS (U) have been reproduced here

TCS Model Use-Case

TCS (LEX)
Easy generation of sentences,
only requires a bilingual lexicon

TCS (U) and TCS (S)
Requires parser and translation service
Does not require parallel data

TCS (simalign)
Requires parser along with parallel data
Alignment can be generated
using SimAlign

Table 12: Use cases for different TCS models.
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Pretraining Corpus | Train | Test PPL Test PPL
OpSub All-CS

OpSub + TCS (LEX) 4.03M 57.24 268.54
OpSub + TCS (U) 3.99M 57.45 271.19

OpSub + TCS (simalign) 4.03M 60.01 314.28
OpSub + TCS (S) 3.96M 56.28 254.37

Table 13: Test perplexities on OpSub and All-CS using dif-
ferent pretraining datasets.

for ease of comparison. (Note that TCS (simalign)
does not perform as well as the other models since
the sentences for training the language model are
generated on OpSub for all the models here, but
TCS (simalign) has been trained on OPUS-100.)

Evaluation Metrics. Table 14 shows the results
of the three objective evaluation metrics on the ad-
ditional TCS models. In comparison with the re-
sults in Table 8, we observe that TCS (LEX) and
TCS (simalign) perform comparably to TCS (S)
and TCS (U) on all metrics.

Evaluation Metric TCS (LEX)TCS (simalign)

BERTScore

All (3500) 0.773 0.768
Mono (3434) 0.769 0.753
UNK (1983) 0.832 0.829

UNK & Mono (1857) 0.817 0.822

BERT-based |Sentences| 12475 12475
Classifier Accuracy(fake) 84.17 82.98

Diversity
Gzip (D) 19.62 19.83

Self-BLEU 56.3 59.8

Table 14: Evaluation metrics for the additional TCS models.
Please see Table 8 for a comparison with other models.


