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Abstract

Unsupervised commonsense question answer-
ing is appealing since it does not rely on any
labeled task data. Among existing work, a
popular solution is to use pre-trained language
models to score candidate choices directly con-
ditioned on the question or context. However,
such scores from language models can be eas-
ily affected by irrelevant factors, such as word
frequencies, sentence structures, etc. These
distracting factors may not only mislead the
model to choose a wrong answer but also make
it oversensitive to lexical perturbations in can-
didate answers.

In this paper, we present a novel SEmantic-
based Question Answering method (SEQA)
for unsupervised commonsense question an-
swering. Instead of directly scoring each an-
swer choice, our method first generates a set
of plausible answers with generative models
(e.g., GPT-2), and then uses these plausible an-
swers to select the correct choice by consider-
ing the semantic similarity between each plau-
sible answer and each choice. We devise a sim-
ple, yet sound formalism for this idea and ver-
ify its effectiveness and robustness with exten-
sive experiments. We evaluate the proposed
method on four benchmark datasets, and our
method achieves the best results in unsuper-
vised settings. Moreover, when attacked by
TextFooler (Jin et al., 2020) with synonym re-
placement, SEQA demonstrates much less per-
formance drops than baselines, thereby indicat-
ing stronger robustness.

1 Introduction

Pre-trained language models have been widely used
for commonsense question answering. Finetuning
pre-trained models on task-specific data produces
many state-of-the-art results (Wang et al., 2020;
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Figure 1: Two examples of commonsense question an-
swering, where the baseline (Pro-A) is oversensitive to
lexical perturbations (SR for synonym replacement and
ST for sentence structure transformation). The scores
from Pro-A and our method for each answer choice are
shown in the right columns. The underlined score indi-
cates the answer choice selected by a method.

Khashabi et al., 2020; Lin et al., 2019). However,
this requires amounts of labeled task data. There-
fore, it is vital to study unsupervised commonsense
question answering without relying on any labeled
downstream task data. In this paper, we investigate
multiple-choice commonsense question answering
tasks in an unsupervised setting: given a question
and a set of answer choices, a model is required
to predict the most reasonable answer choice for
the question, but without access to any labeled task
data.

Many existing unsupervised methods tackle
these tasks by scoring each answer choice using
a language model, e.g., estimating the generative
probability of the answer choice conditioned on
the question (Trinh and Le, 2018; Shwartz et al.,
2020; Bosselut and Choi, 2019; Tamborrino et al.,
2020). Table 1 lists several typical score functions.
However, these scores can be easily influenced by
word frequencies, sentence structures, and other
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factors, which can mislead the models and make
existing methods oversensitive to lexical perturba-
tions (Abdou et al., 2020; Tamborrino et al., 2020).
Figure 1 shows two examples. The correct choices
are paraphrased via synonym replacement or struc-
ture transformation. In these examples, the baseline
(Pro-A) produces much lower scores for the para-
phrased choices and chooses the wrong choices.

Since existing methods can be easily distracted
by irrelevant factors such as lexical perturbations,
we argue that a commonsense question answer-
ing method should focus on the answers’ se-
mantics and assign similar scores to synony-
mous choices. To this end, we introduce a
novel SEmantic-based Question Answering model,
SEQA, which aims to robustly select correct an-
swers in multi-choice commonsense question an-
swering in an unsupervised setting. Instead of di-
rectly scoring an answer choice, we calculate the
probability of observing the choice’s semantics. A
choice’s semantic score can be obtained by sum-
ming the generative probabilities of sentences that
have the same semantic meanings with the choice,
where the sentences are called the choice’s support-
ers. However, it is hard to obtain the supporters
which have exactly the same semantic meanings
with the choice, so we reformulate the semantic
score into a soft version as explained in Section
3.2. Each supporter is weighed by the semantic
similarity to the answer choice, which can be com-
puted with some off-the-shelf models, such as Sen-
tenceBERT (Reimers and Gurevych, 2019). Since
the supporters and their weights depend on the se-
mantics rather than the surface form of the answer
choice, by this means, the effects of the distract-
ing factors can be largely suppressed. Moreover,
synonymous choices are likely to share the same
set of supporters, so their scores are expected to
be stably close. Our contributions in this paper are
summarized as follows:

• We propose a semantic-based question answer-
ing model (SEQA) for robust commonsense
question answering in an unsupervised setting.
Instead of directly scoring the answer choices,
our method first generates some plausible an-
swers and then uses them to select the correct
choice by considering the semantic similarity
between each plausible answer and each choice.

• We conduct experiments on four common-
sense question answering datasets, where
SEQA achieves the best performance com-

Method Score Function

Pro-A [PLM (A|Q)]
1

|A|

Pro-Q [PLM (Q|A)]
1

|Q|

MI-QA
[
PLM (A|Q)
PLM (A)

] 1
|A|

SEQA (Ours)
∑

S∈A ω(S|A)PLM (S|Q)

Table 1: Three existing score functions and our method
for unsupervised commonsense question answering. Q
is the question and A is the choice. A is the set of all
possible answers and ω(S|A) is a weighting function
defined in Eq.(5). LM refers to a pre-trained language
model, such as GPT-2 or BERT1 (Devlin et al., 2019).

pared with strong baselines. When attacked
by TextFooler (Jin et al., 2020) with synonym
replacement, our method performs remarkably
more robustly.

2 Related Work

Previous work has explored pre-trained language
models (LMs) for unsupervised commonsense
question answering. In general, these approaches
treat LMs as question answering modules.

Table 1 shows three representative methods,
which do not use external knowledge and rely fully
on the implicit knowledge encoded in LMs for rea-
soning. Probability-A (Pro-A) considers the gener-
ative probability of the choice conditioned on the
question. However, it suffers from the statistical
bias of choices, such as word frequency and sen-
tence length (Abdou et al., 2020). To alleviate this,
MutualInfo-QA (MI-QA) calculates the mutual in-
formation between the question and the choice. An-
other way to reduce the impact of statistical bias is
to score each choice using the conditional proba-
bility of the question rather than the choice (Trinh
and Le, 2018; Tamborrino et al., 2020) , which is
denoted as Probability-Q (Pro-Q) in Table 1.

Some recent work claims that external knowl-
edge can benefit commonsense reasoning. Besides
static knowledge bases (KBs), such as Concept-
Net (Speer et al., 2017) and Atomic (Sap et al.,
2019a), there are also numerous studies treating
LMs as dynamic KBs. Petroni et al. (2019) shows
that LMs can be used for KB completion. And
Davison et al. (2019) shows that BERT can dis-
tinguish true and fake ConceptNet triplets. Fur-
ther, the extracted knowledge can work as com-
plementary information for answering a question.
Rajani et al. (2019) proposes a model for Com-

1PBERT (Q|A) ,
∏|Q|

i PBERT (Qi|Q/i, A).
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monSenseQA (Talmor et al., 2019) that generates
explanations for questions, which are then used
as additional inputs. The shortcoming of this ap-
proach is that it requires collecting human expla-
nations for each new dataset to fine-tune LMs.
Some following researches explore unsupervised
explanation/knowledge generator. CGA (Bosse-
lut and Choi, 2019) employs COMET (Bosselut
et al., 2019) to generate intermediate inferences
which are then used to score the choice. However,
COMET is limited by a small set of question types
so that CGA is difficult to generalize to different do-
mains. Self-Talk (Shwartz et al., 2020) breaks the
limit by extracting knowledge from GPT-2 (Rad-
ford et al., 2019), which has no restriction on the
query types. Thus, Self-Talk can be applied to a
wide range of domains. Despite the introduction
of auxiliary information, these methods are essen-
tially dependent on language model scores, so they
are still sensitive to lexical perturbations.

Besides directly using pre-trained LMs, some
recent efforts have been dedicated to automatically
constructing task-specific data to train common-
sense reasoners in zero-shot settings. Wang et al.
(2019) and Kocijan et al. (2019) provide some rules
to construct labeled training data from large cor-
pus for pronoun disambiguation. Banerjee and
Baral (2020), Moghimifar et al. (2020) and Ma
et al. (2020) collect training data based on knowl-
edge bases, such as Atomic (Sap et al., 2019a).
Though effective, they are limited by the specific
task settings or highly dependent on the task-related
knowledge bases, which makes them difficult to
transfer to other commonsense reasoning tasks.

3 Method

In this paper, we focus on unsupervised multiple-
choice commonsense question answering, which is
formalized as follows: given a question and a set of
choices, models should select the correct choice:

Â = argmax
A

s(A|Q),

where s refers to a score function. Note that we
have no access to any labeled task data.

3.1 Motivation

In existing unsupervised methods, the score func-
tions are usually defined based on the language
model scores. Taking Pro-A (Table 1) as an exam-
ple, it first converts the question into a statement:

• Q: I saw my breath when I exhaled. What was
the cause of this? −→ Rewrite: I saw my breath
when I exhaled because

And it then takes the statement as a prompt to calcu-
late the generative probability of each choice. Note
that the templates for rewriting is not the focus of
this paper, and hence we directly use the templates
of previous work (Shwartz et al., 2020; Tamborrino
et al., 2020) for our method and all the baselines in
this paper (see Appendix for details).

Though successful, language model scores can
be affected by many distracting factors, such as
word frequency and sentence structure, etc. These
factors can disturb the score functions to a large ex-
tent, as shown in Figure 1. Our goal is to alleviate
the influence of these distracting factors. Hence we
propose a new method for unsupervised common-
sense question answering, which achieves better
results and performs more robustly.

3.2 SEQA
SEQA is designed to predict the semantic score of
an answer choice A. Instead of directly estimat-
ing the probability P (A|Q) of the single choice
A, the semantic score focuses on the probability
P (MA|Q) where MA represents A’s semantics.
Ideally, we decompose P (MA|Q) into the sum-
mation of the conditional probabilities of A’s sup-
porters, where the supporters indicates all possible
answers that have exactly the same semantics MA.
Formally, the semantic score is defined as

s(A|Q) , P (MA|Q) =
∑
S∈SA

PLM (S|Q) (1)

=
∑
S∈A

I(S ∈ SA)PLM (S|Q). (2)

SA is the set of supporters of choiceA, and A is the
set of all possible answers. I(S ∈ SA) is an indi-
cator function indicating whether S is a supporter
of A. To obtain the supporter set SA, we adopt a
model to extract the sentence-level semantic fea-
tures. Ideally, the indicator function is defined as

I(S ∈ SA) =

{
1 if cos(hS , hA) = 1,

0 if cos(hS , hA) < 1,
(3)

where hA is the semantic features of sentence A,
and we assume that S andA are exactly the same in
semantics if hS and hA point in the same direction.

However, Eq.(3) uses a hard constraint that
cos(hS , hA) exactly equals to 1, which can be too
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strict to find acceptable supporters. Therefore, we
reformulate Eq.(2) into a soft version:

s(A|Q) ,
∑
S∈A

ω(S|A)PLM (S|Q), (4)

where the indicator function in Eq.(2) is replaced
by a soft function ω(S|A). To emulate I(S ∈ SA),
ω(S|A) is expected to meet three requirements: (1)
ω(S|A) ∈ [0, 1] for any S and A; (2) ω(S|A) = 1
if cos(hS , hA) = 1; (3) ω(S|A) increases mono-
tonically with cos(hS , hA). There are several dif-
ferent definitions of ω(S|A) meeting these require-
ments, which are explored in Section 4.7.3. In this
paper, ω(S|A) is defined as:

ω(S|A) = 1

Z(T )
exp

[
cos(hS , hA)

T

]
. (5)

T is the temperature, and Z(T ) = exp( 1
T ) is a nor-

malization term that makes ω(A|A) = 1. If T → 0,
ω(S|A) degenerates to the indicator function. If
T > 0, ω(S|A) relates to the von Mises-Fishers
distribution over the unit sphere in the feature space,
where the acceptable feature vectors are distributed
around the mean direction hA

||hA|| .
Since it is intractable to enumerate all possible

answers in A, we convert Eq.(4) to an expectation
over PLM (S|Q):

s(A|Q) = ES∼PLM (S|Q) [ω(S|A)]

≈ 1

K

K∑
i=1

ω(Si|A) (6)

=
1

K · Z(T )

K∑
i=1

exp

[
cos(hSi , hA)

T

]
, (7)

where S1, · · · , SK are sentences sampled from
PLM (·|Q), and K is the sample size. hA and hSi

can be extracted from a pre-trained model, e.g.,
SentenceBERT (Reimers and Gurevych, 2019).

From Eq.(7), we can see the semantic score
s(A|Q) is only dependent on the semantic feature
hA and regardless of A’s surface form. Therefore,
our method will produce similar semantic scores
for synonymous choices, assuming that the synony-
mous choices have similar semantic features.

3.3 The Voting View of SEQA
At the beginning of Section 3.2, we define the se-
mantic score as the summation of the conditional
probabilities over the supporters. However, in
Eq.(7), the sampled sentences S1, · · · , SK are not
A’s supporters because they may not be semanti-
cally similar to A. To address the differences, we

Figure 2: Process of SEQA in the view of voting. We
use the same templates with previous work (Shwartz
et al., 2020; Tamborrino et al., 2020) to rewrite inter-
rogative sentences into declarative ones. And then use
GPT-2 to generate some plausible answers as voters Si,
conditioned on the rewritten question. The choices and
voters are encoded via SentenceRoBERTa to obtain se-
mantic features, hAj

and hSi
, which are then used to

calculate the voting weights ω(Si|Aj). The choice with
the largest score s(Aj |Q) is selected as the answer.

name the sampled sentences S1, · · · , SK as vot-
ers, which are plausible answers to the question
Q. In this section, we will show another view of
our method, which works like a procedure that the
voters vote out the correct choice.

Suppose there are two candidate choices A1

and A2, our method is to find the correct choice
according to the semantic scores, s(A1|Q) and
s(A2|Q). Following Eq.(6), our method can be
decomposed into two steps: First, sample some
voters S1, · · · , SK from PLM (·|Q). This step only
considers the question Q but no candidate choices.
Second, each voter votes for the choices with the
semantic similarity weights. For example, Si votes
for Aj with the weight of ω(Si|Aj). The candidate
choice that receives more votes will have a higher
semantic score and be selected as the final answer.

Figure 2 shows the process of SEQA in the view
of voting. Although the voting view is intuitive, the
formalism in Section 3.2 provides more insights:
(1) Our method approximates the probability of
semantics, which works as the theoretical basis of
SEQA. (2) Our method can be seen as an extension
of Pro-A (see Table 1), since Pro-A only calculates
the language model score for a single sentence,
whereas our method calculates the semantic score
for a set of supporters. (3) Eq.(4) provides guid-
ance, the three requirements mention before, for
the design of the voting weight function ω(S|A).
Specifically, the guidance explains the rationality
of the formulation of Eq.(5).
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Dataset Method Pre-trained
Models

Original
Accuracy (↑)

After-Attack
Accuracy (↑)

Attack
Success Rate (↓)

Percentage of
Perturbed Words

Semantic
Similarity

COPA

Pro-A GPT-2 73.6 4.6 93.8 17.3 0.883
Pro-Q RoBERTa 79.4 23.0 71.0 22.9 0.828
MI-QA GPT-2 74.6 16.2 78.3 19.9 0.865
Self-talk COMET+GPT-2 68.6 8.4 87.8 19.8 0.855
CGA GPT-2 72.2 4.8 93.4 17.1 0.886
SEQA GPT-2+SRoBERTa 79.4 59.0 25.7 21.7 0.827

SCT

Pro-A GPT-2 72.3 4.8 93.3 14.3 0.917
Pro-Q RoBERTa 56.3 22.3 60.3 18.1 0.872
MI-QA GPT-2 66.1 29.2 55.8 16.2 0.885
Self-talk COMET+GPT-2 70.4 4.7 93.3 14.2 0.915
CGA GPT-2 71.5 4.8 93.2 14.3 0.916
SEQA GPT-2+SRoBERTa 83.2 69.4 16.5 18.3 0.856

SocialIQA

Pro-A GPT-2 46.0 16.2 64.7 21.0 0.876
Pro-Q RoBERTa 42.2 27.8 34.2 23.2 0.843
MI-QA GPT-2 41.2 24.6 40.4 25.3 0.866
Self-talk COMET+GPT-2 47.5 12.3 74.0 22.2 0.872
CGA COMET 45.4 18.4 59.4 22.3 0.867
SEQA GPT-2+SRoBERTa 47.5 38.2 19.5 23.5 0.839

CosmosQA

Pro-A GPT-2 36.8 1.3 96.4 9.2 0.927
Pro-Q RoBERTa 21.5 5.0 76.6 13.7 0.859
MI-QA GPT-2 29.3 7.4 74.8 12.1 0.886
Self-talk COMET+GPT-2 36.1 1.2 96.7 8.9 0.928
CGA GPT-2 42.4 1.7 96.0 9.6 0.924
SEQA GPT-2+SRoBERTa 56.1 32.6 41.8 13.9 0.859

Table 2: Evaluation results, including the original selection accuracy before attack, the accuracy after attack, the
attack success rate, the percentage of perturbed words with respect to the original sentence length in successful at-
tacks, and the semantic similarity between the original and paraphrased choices. GPT-2, RoBERTa and SRoBERTa
refer to GPT-2-xlarge, RoBERTa-large (Liu et al., 2019) and SentenceRoBERTa-large, respectively.

4 Experiments

4.1 Datasets

We conducted experiments on four multiple-
choice commonsense question answering tasks,
COPA (Roemmele et al., 2011), StoryClozeTest
(SCT) (Mostafazadeh et al., 2016), SocialIQA (Sap
et al., 2019b) and CosmosQA (Huang et al., 2019).
For each instance, only one choice is correct. See
Appendix for more description about datasets.

For COPA, we reported the results on its test
set. As the test sets of another three datasets are
hidden, for convenience of analysis, we reported
the experiment results on their development sets.

4.2 Baselines

We employed five strong baselines. Table 1 shows
three of them, Pro-A, Pro-Q and MI-QA. There is
no explicit auxiliary information used in these three
methods, while another two baselines rely on ex-
plicit information supplementation. CGA (Bosse-
lut and Choi, 2019) and Self-Talk (Shwartz et al.,
2020) query pre-trained language models (e.g.,
GPT-2, COMET (Bosselut et al., 2019)) for rele-
vant knowledge, which forms part of contexts. And
then, similar to Pro-A, they take the generative
probabilities of choices as scores.

4.3 Experiment Settings

For each method, we tried different pre-trained lan-
guage models (see Appendix for details), and then
selected the pre-trained LMs that maximized the ac-
curacy on each dataset. The details of the selection
of pre-trained LMs can be found in Table 2.

For SEQA, we used GPT-2 to generate voters
via Nucleus Sampling (Holtzman et al., 2020) with
p = 0.9. The sample size K of voters is set to 500.
In Section 4.7.2, we show that a small sample size
can also lead to superior performance. Self-Talk
and CGA also rely on the generated answers from
GPT-2 or COMET. Different from SEQA, for these
two baselines, more generated answers will not al-
ways lead to better performance (see Section 4.7.2).
Thus, we selected the optimal sample size for them
rather than the same sample size with SEQA.

When evaluating SEQA on COPA, we tuned the
temperature T on its development set, and then
reported the results on the test set with the tuned
temperature T = 0.1. Due to the absence of test
sets of other datasets, we evaluated SEQA on their
development sets without tuning the temperature
and directly set T = 0.1.

4.4 Main Results

Table 2 shows the evaluation results about accuracy
and robustness.
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4.4.1 Accuracy
Among all the methods, SEQA achieved the best
performance on all the datasets. Especially on SCT
and CosmosQA, SEQA outperformed the best base-
lines by more than 10 points. It can be inferred that
the semantic scores are beneficial for commonsense
question answering due to the reduction of dis-
tracting factors. Pro-Q performed better than other
baselines on COPA, perhaps because it suffered
less from the statistic bias of choices (Tamborrino
et al., 2020). However, Pro-Q lost its superiority
on another three datasets, because it is unsuitable
for processing long or complex contexts.

4.4.2 Robustness
To test the robustness under the synonym replace-
ment attack, we used TextFooler (Jin et al., 2020)
to attack the methods by perturbing the correct
choices of the correctly predicted examples. The
percentage of perturbed words refers to what per-
centage of words in choices are replaced in success-
ful attacks. The semantic similarity is measured
between the paraphrased choice and the original
choice. Considering the attack success rate and the
after-attack accuracy, SEQA is much more robust
than all baselines. To be specific, the attack success
rates on SEQA are at least 39 points lower than
those of Pro-A, CGA, and Self-Talk on all datasets.
MI-QA and Pro-Q are designed to reduce the im-
pact of statistic bias in choices, so that they can
resist lexical perturbation to some extent. Even so,
SEQA is remarkably lower than MI-QA and Pro-Q
in terms of attack success rates on all datasets.

An observation is that the attack success rate
on SEQA on CosmosQA is higher than those on
the other datasets. The reason is that, the contexts
in CosmosQA are so complex that GPT-2 is more
difficult to generate high-quality answers. If there
is a more powerful generator, the robustness of
SEQA is expected to have a further improvement.

4.5 Consistency Testing
We have claimed that a commonsense question
answering method should assign close scores to
synonymous choices. To verify that SEQA better
meets this requirement, we conducted consistency
testing for all the methods on four datasets. For
each example, the consistency testing of a method
is conducted in three steps: (1) Originally, the ex-
ample has one correct and several wrong answer
choices. We randomly sample some choices from
other examples as additional wrong choices. After

Method / Dataset COPA SCT SocialIQA CosmosQA
Pro-A 9.1 11.0 11.7 9.4
Pro-Q 6.9 8.5 11.6 12.3
MI-QA 7.5 5.8 11.1 7.9
Self-Talk 13.3 9.5 10.7 10.1
CGA 9.7 11.0 10.9 9.5
SEQA 4.1 3.2 5.8 4.7

Table 3: Consistency testing where the methods rank
80 choices to find 4 correct ones for each example. The
metric is the standard deviation of the ranks of 4 correct
synonymous choices averaged over 500 examples.

that, the example will have one correct choice and
19 wrong choices. (2) Leverage a commonly used
automatic translation service, Baidu Translation, to
translate each choice from English into an interme-
diate language, and then back-translate it into En-
glish. During this process, we employ three inter-
mediate languages, Chinese, Spanish, and Russian,
because the translation quality of these languages
is better than others. As a result, each choice is
accompanied with three synonymous choices. (3)
Use the commonsense question answering method
to calculate the scores for each choice as well as its
synonymous choices, and then sort all the choices
according to their scores. Because the scoring
scales of these methods are different, we calculate
the standard deviation of the ranks of the correct
choice and its synonymous choices.

Table 3 shows the average standard deviation
of the ranks. As expected, the average standard
deviation of SEQA is much lower than any other
method on all the datasets, confirming that SEQA
assigns more similar ranks and closer scores to
synonymous choices. We also observed that MI-
QA provided relatively stable predictions compared
with other baseline methods. A possible explana-
tion is that, the normalization term PLM (A) helps
alleviate the influence of lexical perturbations.

4.6 Trends of Accuracy with Answer Length

Answer length is also a type of distracting factor
which may mislead baseline methods. To explore
to which extent answer lengths affect the perfor-
mance of methods, we divided the development set
of CosmosQA into four subsets according to the
length of correct choice. Table 4 shows the results
of SEQA and a robust baseline, MI-QA. Compared
with MI-QA, SEQA has much more stable perfor-
mance as answer lengths vary. The reason is that,
SEQA focuses on semantic information so that it
has stronger resistance to such distracting factors.
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Method
Answer Length

All [1,5] [6,10] [11,15] [16,20]
MI-QA 29.3 51.6 27.9 24.4 23.8
SEQA 56.1 58.6 58.0 54.1 51.2

Table 4: The trends of accuracy with answer length for
SEQA and MI-QA on CosmosQA.

T
COPA SCT SocialIQA CosmosQA

Bef Aft Bef Aft Bef Aft Bef Aft
10 75.6 48.8 82.0 64.7 46.3 35.9 52.7 22.3
1 76.4 48.8 82.4 64.5 46.6 36.1 53.3 22.4
0.2 77.0 52.8 83.6 66.3 46.9 36.8 54.8 26.1
0.1 79.4 59.0 83.2 69.4 47.5 38.2 56.1 32.6
0.05 80.2 54.6 80.8 61.4 46.0 36.5 55.1 28.8

Table 5: The before-attack (Bef) and after-attack (Aft)
accuracy of SEQA with different temperatures.

4.7 Ablation Study

4.7.1 Analysis on Temperature
In the previous experiments, the temperature T of
SEQA was set to 0.1 by default. To investigate
the influence of T , we varied T in a wide range
from 0.05 to 10 and report the results in Table 5.
Considering that the temperature varied greatly,
the performance of SEQA is relatively stable, in-
dicating that SEQA is not so sensitive to the selec-
tion of T . Another observation is that, although
the four datasets are different in domains and text
length, the trends of performance with temperature
on them are relatively similar, illustrating that the
temperature selected on one task can be generalized
to other tasks.

4.7.2 Analysis on Sample Size
Figure 3 shows the effect of the sample size K on
SEQA. For comparison, Figure 3 also includes the
results of baselines in the settings of before- and
after-attack, respectively. Due to the limitation of
space, the results on the other datasets are shown in
Appendix. As expected, the before-attack and after-
attack accuracy on SCT increased with the sample
size. In detail, the rapid increase in performance
occurred when K < 100, and then the improve-
ment slowed down when K > 100. Finally, SEQA
achieved a stable and relatively high performance.

CGA and Self-Talk also leverage LMs to gen-
erate some plausible answers. Different from our
method, they use the generated answers to form
part of the question, and then calculate the gener-
ative probability of the choice based on the aug-
mented question. We also tried different sample
sizes for the two methods, and Figure 3 (a) shows

Figure 3: The before-attack (a) and after-attack accu-
racy (b) of methods with different sample sizes on SCT.
The after-attack accuracy of Pro-A, CGA and Self-Talk
is below 5.0%, and thus omitted in (b).

ω(S|A) = 1
f(1)

f (cos(hS , hA)) Bef Aft
f(x) = I(x > α) 77.2 47.2
f(x) = ReLU(x− β) 77.6 45.2
f(x) = sigmoid( x

T
) 75.6 48.6

f(x) = exp
(

x
T

)
79.4 59.0

Table 6: The before-attack (Bef) and after-attack (Aft)
accuracy of SEQA on the test set of COPA with differ-
ent definitions of ω(S|A). α, β, T1, T2 are hyperparam-
eters tuned on the development set of COPA.

that their accuracy will not stably increase with a
larger sample size.

4.7.3 Analysis on ω(S|A)

ω(S|A) in SEQA can be defined in different forms,
as long as the three requirements mentioned in Sec-
tion 3.2 are met. Besides the default definition, we
explored another three forms of ω(S|A), and the
experiment results on COPA are shown in Table 6.
Although the performance varies with ω(S|A), the
before-attack accuracy of SEQA still outperformed
most of the baselines with any definition of ω(S|A).
Moreover, SEQA maintains its obvious advantage
in after-attack accuracy, which reflects the inherent
robustness of SEQA.

GPT-2
medium large xlarge

Avg. GloVe 56.6 59.6 61.2
SBERT-base 71.2 72.6 74.8
SRoBERTa-base 72.4 72.0 75.4
SRoBERTa-large 74.2 75.2 79.4

Table 7: SEQA’s accuracy with different feature ex-
tractors and language models on COPA. Avg. GloVe
means the average pooling of the pre-trained word em-
beddings (Pennington et al., 2014) over the sentence.
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Score 3 2 1
Grammar 84.8% 12.8% 2.4%
Logic 40.8% 25.6% 33.6%

Table 8: Manual evaluation of the quality of voters
(generated by GPT-2-xlarge conditioned on questions).
Score 3/2/1 correspond to high, middle and low quality,
respectively, in terms of grammar and logicality.

4.7.4 Analysis on Pre-trained Language
Model and Feature Extractor

SEQA has no limit on the selection of the pre-
trained language model and the feature extractor.
Table 7 shows how the accuracy of SEQA on COPA
varied with the language model and the feature ex-
tractor. As expected, more powerful extractor usu-
ally led to higher accuracy under the same settings
of language models. Similar conclusion can be ob-
tained for the language model. It can be inferred
that, if there are more powerful language models
or feature extractors in the future, the performance
of SEQA may be further improved.

4.8 Analysis on the Quality of Voters

While the performance of SEQA served as an ex-
trinsic evaluation for the quality of the voters (plau-
sible answers sampled from PLM (·|Q), described
in Section 3.3), we were also interested in eval-
uating it intrinsically. We sampled 125 voters
from COPA. For each voter, we provided crowd-
sourcing workers with the original question, and
asked them: 1) whether the voter is grammati-
cal, not entirely grammatical but understandable,
or completely not understandable, 2) whether the
voter is a reasonable answer to the question, not
reasonable but relevant, or completely irrelevant.
These evaluation tasks comprehensively examined
the voters in grammar and logicality. The annota-
tion tasks were carried out in Amazon Mechanical
Turk, and we aggregated annotations from 3 work-
ers using majority vote.

Table 8 shows the results of the human evalua-
tion of the voters. Score 3/2/1 correspond to the
high, middle and low quality, respectively. Accord-
ing to the grammar scores, 97.6% of the voters are
grammatical or at least understandable, for which
most of the voters belong to the natural language
space. In terms of logicality, 40.8% of the voters
are reasonable answers to the questions, which may
not be very satisfying. However, in Section 4.9, we
will show that SEQA makes prediction based on
a small part of voters, and hence SEQA is robust

Figure 4: The cumulative proportion of voters favor-
ing the correct answer AC or the wrong answer AW

on COPA. Each point (δ, p) means that p% of voters
satisfy |ω(S|AC) − ω(S|AW )| ≥ δ, where S refers to
a voter. The area between the two curves equals to the
difference of the semantic scores s(AC |Q)−s(AW |Q).

even though there are some irrelevant voters.

4.9 Voting Weight Distribution

We visualize the cumulative proportion of voters
favoring the correct or the wrong choices (see Fig-
ure 4). The curve is averaged over all instances in
the test set of COPA, where we sampled 500 voters
for each instance and set T = 0.1.

From the curves, we can find several prop-
erties of voters: (1) The voters favor the cor-
rect choices over the wrong choices, where the
curve for correct choices is consistently above the
curve for wrong ones. The area between two
curves shows the difference of semantic scores
s(AC |Q) − s(AW |Q), which is a large gap com-
pared with the area under the bottom curve. (2)
93.5% of voters do not strongly favor any choices
(|ω(S|AC) − ω(S|AW )| < 0.05), indicating that
they are semantically irrelevant to both candidate
choices. However, Table 8 shows that 40.8% of
voters are logically reasonable, so many voters are
reasonable but irrelevant to both answers. It sug-
gests that there can be several reasonable answers
for a single question, and the sampled voters are
diverse in the semantics. (3) Although there are
only 5.3% of voters strongly favoring the correct
choices, there are much less voters (1.2%) favoring
the wrong ones. It explains why our method is able
to predict the correct answer.

To help understand the relationship between vot-
ers and choices, Table 9 provides an instance with
voters and their voting weights to the choices. We
show four types of voters: favoring the correct
choice, favoring the wrong choice, logically rea-
sonable but not favoring either choices, and unrea-
sonable and irrelevant to both choices. We can see
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Q: The car ran out of gas. What happened as a result?
AC : The driver was stranded on the road. (3)
AW : The driver picked up a hitchhiker. (8)

ω(Si|AC) voter ω(Si|AW )

0.161 I had to park on a dead end road. 0.008
0.008 We picked up a hitchhiker and

she drove us to the diner.
0.137

0.013 We stopped at a gas station. 0.011
0.018 It was time to hit the road again. 0.010

Table 9: An example of voters as well as their voting
weights. AC is the correct choice, while AW is wrong.
Si refers to a voter.

that the last two types of voters can hardly affect the
method’s prediction, because their voting weights
are much smaller than the first two types of voters.

5 Conclusion

We present a semantic-based question answering
method, SEQA, which can answer commonsense
questions more accurately and robustly in an unsu-
pervised setting. Instead of directly scoring each
answer choice, our method focuses on the prob-
ability of observing a choice’s semantics. In the
view of voting, SEQA first generates some plausi-
ble answers (voters) and then utilizes them to vote
for the correct choice by considering the seman-
tic similarity between each choice and each voter.
Experiment results show that SEQA achieves the
best performance on four datasets, and it is remark-
ably more robust than all the baselines when being
attacked by TextFooler.
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Dataset COPA-dev COPA-test SCT-dev SocialIQA-dev CosmosQA-dev
Number of Examples 500 500 1571 1954 2726
Number of Choices 2 2 2 3 3/4
Question Length (mean, std) (7.3, 1.8) (7.1, 1.7) (35.3, 6.5) (15.3, 4.4) (83.0, 24.5)
Choice Length (mean, std) (5.1, 1.6) (5.0, 1.5) (7.4, 2.5) (3.7, 2.3) (10.0, 4.3)

Table 10: Statistic information of each dataset. Due to the removal of the choice “None of the above”, each instance
of CosmosQA may have 3 or 4 answer choices.

A Datasets

The four datasets used in this work are multiple-
choice commonsense question answering tasks.

COPA2 (Roemmele et al., 2011) evaluates the
ability of causal reasoning about a certain event,
which is expressed in a simple sentence. Each ques-
tion is accompanied with two candidate choices.

StoryClozeTest (SCT)3 (Mostafazadeh et al.,
2016) requires models to select the reasonable story
ending, from two alternatives, conditioned on a de-
scription about the story context.

SocialIQA4 (Sap et al., 2019b) evaluates the rea-
soning ability on social events. In each example,
the question describes a social event and asks mod-
els to make some inferences based on the event,
such as its cause or effect.

CosmosQA5 (Huang et al., 2019) is a read-
ing comprehension task. Different from the three
datasets above, the examples of CosmosQA have
long and complex contexts. The original dataset
contains a type of choices “None of the above”
to test whether models can identify unanswerable
questions. This is not the focus of our work, so we
removed such choices.

For COPA, we reported the results on its test
set. As the test sets of SCT, SocialIQA and Cos-
mosQA are hidden, for convenience of analysis,
we reported the experiment results on their devel-
opment sets. See Table 10 for statistic information
of each dataset.

B Templates for Rewriting Questions

We use the same templates for our method and all
the baselines. Note that the templates for rewriting
questions is not the focus of this paper, and we in-
herit the templates from previous work if available.

2https://people.ict.usc.edu/ gordon/copa.html
3https://www.cs.rochester.edu/nlp/rocstories/
4https://leaderboard.allenai.org/socialiqa/submissions/get-

started
5https://leaderboard.allenai.org/cosmosqa/submissions/get-

started

Tamborrino et al. (2020) provides templates for
COPA (Table 11) and Shwartz et al. (2020) pro-
vides templates for SocialIQA (Table 12). Since
the instances in SCT have no questions, SCT does
not need templates. There is no related work dis-
cussing templates for CosmosQA, so we design
some templates by ourselves (Table 13). Source
code for rewriting questions and SEQA will be
made publicly available.

C Selection of Pre-trained Models

For each method, we tried to adopt different pre-
trained models and find the pre-trained models that
maximized the accuracy on the development set of
each dataset. Table 14 shows the set of candidate
pre-trained models for each method, with the se-
lected models in bold. Because of the nature of Pro-
Q, it can only use bidirectional language models,
so we only evaluated Pro-Q with RoBERTa-large
and SentenceRoBERTa-large.

As shown in Table 14, for each method except
CGA, the best selection of pre-trained models is
consistent on all the datasets. CGA achieved its
best performance with COMET on SocialIQA and
with GPT2-xlarge on the other datasets.

D Hyperparameter Search

For SEQA, we only tuned the temperature T . To be
more specific, we selected T from five candidate
values according to the accuracy on the develop-
ment set of COPA. Table 15 shows that SEQA with
T = 0.1 achieved the best performance on the de-
velopment set of COPA. And then we evaluated
SEQA with T = 0.1 on the test set of COPA as
well as the development sets of SCT, SocialIQA
and CosmosQA.

E Analysis on Sample Size

Figure 5,6,7 shows the effect of the sample size
K on SEQA. For comparison, these figures also
include the results of baselines in the settings of
before- and after-attack, respectively. On the over-
all trend, the performance of SEQA improved as

https://people.ict.usc.edu/~gordon/copa.html
https://www.cs.rochester.edu/nlp/rocstories/
https://leaderboard.allenai.org/socialiqa/submissions/get-started
https://leaderboard.allenai.org/cosmosqa/submissions/get-started
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Original Question Rewrite
What was the cause of this? because
What happened as a result? so
Original Example Rewrite
I saw my breath when I exhaled. What was
the cause of this? The weather was chilly.

I saw my breath when I exhaled because the
weather was chilly.

Table 11: Templates and a rewritten example of COPA. The templates are inherited from Tamborrino et al. (2020).

Original Question Rewrite 1 Rewrite 2
What will [SUBJ] want to do next? As a result, [SUBJ] wanted to <xwant>
How would [SUBJ] feel as a result? As a result, [SUBJ] felt <xeffect>
What will [SUBJ] do next? [SUBJ] then <xreact>
How would you describe [SUBJ]? [SUBJ] is seen as <xattr>
Why did [SUBJ] do that? Before, [SUBJ] wanted <xintent>
What does [SUBJ] need to do before? Before, [SUBJ] needed to <xneed>
Original Example Rewrite 1 Rewrite 2
Sydney went trick or treating and the
others joined him happily. What will
Others want to do next? get candy

Sydney went trick or treating and the
others joined him happily. As a result,
Others wanted to get candy.

Sydney went trick or treating and the
others joined him happily. <xwant>
get candy.

Table 12: Some templates and a rewritten example of SocialIQA. [SUBJ] refers to a subject. There are two groups
of templates, Rewrite1 for GPT-2 and Rewrite2 for COMET (Bosselut et al., 2019). The relations in Rewrite2
are defined in Sap et al. (2019a) and used for training COMET. These templates are inherited from Shwartz et al.
(2020). More details can be found in Shwartz et al. (2020) and https://github.com/vered1986/self talk.

the sample size increased. Another observation is
that a smaller sample size can already make SEQA
outperform most baseline methods.

Figure 5: The before-attack (a) and after-attack ac-
curacy (b) of methods with different sample sizes on
COPA. The after-attack accuracy of Pro-A, CGA and
Self-Talk is below 10.0%, and thus omitted in (b).

Figure 6: The before-attack (a) and after-attack accu-
racy (b) of methods with different sample sizes on So-
cialIQA. The after-attack accuracy of Pro-A, CGA and
Self-Talk is below 20.0%, and thus omitted in (b).

Figure 7: The before-attack (a) and after-attack accu-
racy (b) of methods with different sample sizes on Cos-
mosQA. The after-attack accuracy of Pro-A, CGA and
Self-Talk is below 2.0%, and thus omitted in (b).

https://github.com/vered1986/self_talk
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Original Question Rewrite
Why [SENTENCE] [CLAUSE] ? [CLAUSE] [SENTENCE] because
What [NOUN] [SENTENCE] [CLAUSE] ? [CLAUSE] the [NOUN] [SENTENCE] is that
What [SENTENCE] [CLAUSE] ? [CLAUSE] it [SENTENCE] that
Original Example Rewrite
... He was conscious but seemed dazed and prob-
ably intoxicated . Nearby there was a young
man dialing his cell phone . What may hap-
pen after the young man makes his call ? An
ambulance would likely come to the scene .

... He was conscious but seemed dazed and prob-
ably intoxicated . Nearby there was a young
man dialing his cell phone . After the young
man makes his call , it may happen that an am-
bulance would likely come to the scene .

Table 13: Templates and a rewritten example of CosmosQA. [NOUN], [SENTENCE] and [CLAUSE] refer to a
noun, a sentence fragment and an adverbial clause, respectively.

Method Set of Candidate Pre-trained Models
Pro-A LM as QA model: (GPT2-xlarge, COMET, RoBERTa-large, SentenceRoBERTa-large)
Pro-Q LM as QA model: (RoBERTa-large, SentenceRoBERTa-large)
MI-QA LM as QA model: (GPT2-xlarge, COMET, RoBERTa-large, SentenceRoBERTa-large)

Self-talk
LM as generator: (GPT2-xlarge, COMET)
LM as QA model: (GPT2-xlarge, COMET, RoBERTa-large, SentenceRoBERTa-large)

CGA LM as QA model and generator: (GPT2-xlarge, COMET)

SEQA
LM as generator: (GPT2-xlarge, COMET)
Feature Extractor: SentenceRoBERTa-large

Table 14: The set of candidate pre-trained models. The selected pre-trained models for each method are marked
in bold. Note that CGA achieved its best performance with COMET on SocialIQA and with GPT2-xlarge on the
other datasets.

T Dev Test
10 70.0 75.6
1 70.4 76.4
0.2 71.8 77.0
0.1 75.4 79.4
0.05 74.4 80.2

Table 15: Hyperparameter Search of SEQA. The tem-
perature is selected according to the accuracy on the
development set of COPA.


