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Abstract

Medical report generation task, which targets
to produce long and coherent descriptions
of medical images, has attracted growing re-
search interests recently. Different from the
general image captioning tasks, medical report
generation is more challenging for data-driven
neural models. This is mainly due to 1) the se-
rious data bias and 2) the limited medical data.
To alleviate the data bias and make best use
of available data, we propose a Competence-
based Multimodal Curriculum Learning frame-
work (CMCL). Specifically, CMCL simulates
the learning process of radiologists and op-
timizes the model in a step by step manner.
Firstly, CMCL estimates the difficulty of each
training instance and evaluates the competence
of current model; Secondly, CMCL selects the
most suitable batch of training instances con-
sidering current model competence. By iter-
ating above two steps, CMCL can gradually
improve the model’s performance. The ex-
periments on the public IU-Xray and MIMIC-
CXR datasets show that CMCL can be incor-
porated into existing models to improve their
performance.

1 Introduction

Medical images, e.g., radiology and pathology im-
ages, and their corresponding reports, which de-
scribe the observations in details of both normal
and abnormal regions, are widely-used for diag-
nosis and treatment (Delrue et al., 2011; Goergen
et al., 2013). In clinical practice, writing a medi-
cal report can be time-consuming and tedious for
experienced radiologists, and error-prone for inex-
perienced radiologists. Therefore, automatically
generating medical reports can assist radiologists
in clinical decision-making and emerge as a promi-
nent attractive research direction in both artificial
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_— “ Ground Truth:

- | The heart and mediastinum are normal. The lungs are clear. "There is mild
blunting of the right costophrenic XXXX. There is no infiltrate, mass or
pneumothorax. The right internal jugular catheter has been removed.

Co-Attention:
The heart is . There is no pr orax. No acute bony

abnormality. There is a moderate right pleural effusion with associated
atelectasis. The left lung is clear. No pneumothorax is seen.

Ours:

1Blunting of right costophrenic. Heart size is normal. No acute bony
abnormality. There is no pleural effusion. No visualized pneumothorax.
The lungs are clear.

Ground Truth:
Lungs are clear. No pleural effusions or pneumothoraces. Heart and
mediastinum of normal size and contour. 'scoliosis.

Co-Attention:

No acute bony abnormalities. No pneumothorax or pleural effusion. The
heart is normal in size. The lungs are clear. The hilar and mediastinal
contours are normal. No evidence of pneumothorax.

Ours:

No acute cardiopulmonary abnormality. No focal airspace consolidation.
Clear lungs. There is no pneumothorax or pleural effusion. 'Scoliosis is
present.

Figure 1: Two examples of ground truth reports and
reports generated by a state-of-the-art approach Co-
Attention (Jing et al., 2018) and our approach. The
Red bounding boxes and Red colored text indicate
the abnormalities in images and reports, respectively.
The Blue colored text stands for the similar sentences
used to describe the normalities in ground truth reports.
There are notable visual and textual data biases and
the Co-Attention (Jing et al., 2018) fails to depict the
rare but important abnormalities and generates some er-
ror sentences (Underlined text) and repeated sentences
(Italic text).

intelligence and clinical medicine (Jing et al., 2018,
2019; Li et al., 2018, 2019; Wang et al., 2018; Xue
et al., 2018; Yuan et al., 2019; Zhang et al., 2020a;
Chen et al., 2020; Liu et al., 2021a,b, 2019c¢).

Many existing medical report generation models
adopt the standard image captioning approaches: a
CNN-based image encoder followed by a LSTM-
based report decoder, e.g., CNN-HLSTM (Jing
et al., 2018; Liang et al., 2017). However, directly
applying image captioning approaches to medical
images has the following problems: 1) Visual data
bias: the normal images dominate the dataset over
the abnormal ones (Shin et al., 2016). Further-
more, for each abnormal image, the normal regions
dominate the image over the abnormal ones. As
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shown in Figure 1, abnormal regions (Red bound-
ing boxes) only occupy a small part of the entire
image; 2) Textual data bias: as shown in Figure 1,
in a medical report, radiologists tend to describe
all the items in an image, making the descriptions
of normal regions dominate the entire report. Be-
sides, many similar sentences are used to describe
the same normal regions. 3) Training efficiency:
during training, most existing works treat all the
samples equally without considering their difficul-
ties. As a result, the visual and textual biases could
mislead the model training (Jing et al., 2019; Xue
et al., 2018; Yuan et al., 2019; Liu et al., 2021a,b;
Li et al., 2018). As shown in Figure 1, even a state-
of-the-art model (Jing et al., 2018) still generates
some repeated sentences of normalities and fails to
depict the rare but important abnormalities.

To this end, we propose a novel Competence-
based Multimodal Curriculum Learning framework
(CMCL) which progressively learns medical re-
ports following an easy-to-hard fashion. Such a
step by step process is similar to the learning curve
of radiologists: (1) first start from simple and easy-
written reports; (2) and then attempt to consume
harder reports, which consist of rare and diverse
abnormalities. In order to model the above gradual
working patterns, CMCL first assesses the difficulty
of each training instance from multiple perspec-
tives (i.e., the Visual Complexity and Textual Com-
plexity) and then automatically selects the most
rewarding training samples according to the cur-
rent competence of the model. In this way, once the
easy and simple samples are well-learned, CMCL
increases the chance of learning difficult and com-
plex samples, preventing the models from getting
stuck in bad local optima', which is obviously a
better solution than the common approaches of
uniformly sampling training examples from the
limited medical data. As a result, CMCL could bet-
ter utilize the limited medical data to alleviate the
data bias. We evaluate the effectiveness of the pro-
posed CMCL on two public datasets, i.e., [U-Xray
(Demner-Fushman et al., 2016) and MIMIC-CXR
(Johnson et al., 2019).

Overall, the main contributions of this work are:

* We introduce the curriculum learning in medi-
cal report generation, which enables the mod-
els to gradually proceed from easy samples to

!Current models tend to generate plausible general reports
with no prominent abnormal narratives (Jing et al., 2019; Li
et al., 2018; Yuan et al., 2019; Liu et al., 2021a,b)

more complex ones in training, helping exist-
ing models better utilize the limited medical
data to alleviate the data bias.

* We assess the difficulty of each training in-
stance from multiple perspectives and propose
a competence-based multimodal curriculum
learning framework (CMCL) to consider mul-
tiple difficulties simultaneously.

* We evaluate our proposed approach on two
public datasets. After equipping our proposed
CMCL, which doesn’t introduce additional
parameters and only requires a small modifi-
cation to the training data pipelines, perfor-
mances of the existing baseline models can be
improved on most metrics. Moreover, we con-
duct human evaluations to measure the effec-
tiveness in terms of its usefulness for clinical
practice.

2 Related Work

The related works are introduced from: 1) Image
Captioning and Paragraph Generation; 2) Medical
Report Generation and 3) Curriculum Learning.

Image Captioning and Paragraph Generation
The task of image captioning (Chen et al., 2015;
Vinyals et al., 2015), which aims to generate a sen-
tence to describe the given image, has received
extensive research interests (Anderson et al., 2018;
Rennie et al., 2017; Liu et al., 2019a, 2020a). These
approaches mainly adopt the encoder-decoder
framework which translates the image to a sin-
gle descriptive sentence. Such an encoder-decoder
framework have achieved great success in advanc-
ing the state-of-the-arts (Vinyals et al., 2015; Lu
etal.,2017; Xuetal., 2015; Liu et al., 2018, 2019b).
Specifically, the encoder network (Krizhevsky
et al., 2012; He et al., 2016) computes visual rep-
resentations for the visual contents and the de-
coder network (Hochreiter and Schmidhuber, 1997,
Vaswani et al., 2017) generates a target sentence
based on the visual representations. In contrast
to the image captioning, image paragraph genera-
tion, which aims to produce a long and semantic-
coherent paragraph to describe the input image,
has recently attracted growing research interests
(Krause et al., 2017; Liang et al., 2017; Yu et al.,
2016). To perform the image paragraph genera-
tion, a hierarchical LSTM (HLSTM) (Krause et al.,
2017; Liang et al., 2017) is proposed as the decoder
to well generate long paragraphs.
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Medical Report Generation The medical re-
ports are expected to 1) cover contents of key med-
ical findings such as heart size, lung opacity, and
bone structure; 2) correctly capture any abnormal-
ities and support with details such as the location
and shape of the abnormality; 3) correctly describe
potential diseases such as effusion, pneumothorax
and consolidation (Delrue et al., 2011; Goergen
et al., 2013; Li et al., 2018; Liu et al., 2021a,b).
Therefore, correctly describing the abnormalities
become the most urgent goal and the core value
of this task. Similar to image paragraph genera-
tion, most existing medical report generation works
(Jing et al., 2018, 2019; Li et al., 2018; Wang et al.,
2018; Xue et al., 2018; Yuan et al., 2019; Zhang
et al., 2020a,b; Miura et al., 2021; Lovelace and
Mortazavi, 2020; Liu et al., 2021b, 2019c¢) attempt
to adopt a CNN-HLSTM based model to automat-
ically generate a fluent report. However, due to
the data bias and the limited medical data, these
models are biased towards generating plausible but
general reports without prominent abnormal narra-
tives (Jing et al., 2019; Li et al., 2018; Yuan et al.,
2019; Liu et al., 2021a,b).

Curriculum Learning In recent years, curricu-
lum learning (Bengio et al., 2009), which enables
the models to gradually proceed from easy samples
to more complex ones in training (Elman, 1993),
has received growing research interests in natu-
ral language processing field, e.g., neural machine
translation (Platanios et al., 2019; Kumar et al.,
2019; Zhao et al., 2020; Liu et al., 2020b; Zhang
et al., 2018; Kocmi and Bojar, 2017; Xu et al.,
2020) and computer vision field, e.g., image clas-
sification (Weinshall et al., 2018), human attribute
analysis(Wang et al., 2019) and visual question an-
swering (Li et al., 2020). For example, in neural
machine translation, Platanios et al. (2019) pro-
posed to utilize the training samples in order of
easy-to-hard and to describe the “difficulty” of a
training sample using the sentence length or the
rarity of the words appearing in it (Zhao et al.,
2020). However, these methods (Platanios et al.,
2019; Liu et al., 2020b; Xu et al., 2020) are single
difficulty-based and unimodal curriculum learning
approaches. It is obviously not applicable to med-
ical report generation task, which involves multi-
modal data, i.e., visual medical images and textual
reports, resulting in multi-modal complexities, i.e.,
the visual complexity and the textual complexity.
Therefore, it is hard to design one single metric to

estimate the overall difficulty of medical report gen-
eration. To this end, based on the work of Platanios
et al. (2019), we propose a competence-based mul-
timodal curriculum learning approach with multi-
ple difficulty metrics.

3 Framework

In this section, we briefly describe typical medical
report generation approaches and introduce the pro-
posed Competence-based Multimodal Curriculum
Learning (CMCL).

As shown in the top of Figure 2, many medi-
cal report generation models adopt the encoder-
decoder manner. Firstly, the visual features are
extracted from the input medical image via a CNN
model. Then the visual features are fed into a se-
quence generation model, like LSTM to produce
the medical report. In the training phase, all train-
ing instances are randomly shuffled and grouped
into batches for training. In other words, all train-
ing instances are treated equally. Different from
typical medical report generation models, CMCL
builds the training batch in a selective manner. The
middle part of Figure 2 displays the framework of
CMCL equipped with one single difficulty metric.
CMCL first ranks all training instances according
to this difficulty metric and then gradually enlarges
the range of training instances that the batch is se-
lected. In this manner, CMCL can train the models
from easy to difficult instances.

Since medical report generation involves multi-
modal data, like visual medical images and textual
reports, it is hard to design one single metric to
estimate the overall difficulty. Therefore, we also
propose a CMCL with multiple difficulty metrics.
As shown in the bottom of Figure 2, the training
instances are ranked by multiple metrics indepen-
dently. At each step, CMCL generates one batch
for each difficulty metric and then calculates the
perplexity of each batch based on current model.
The batch with highest perplexity is selected to
train the model. It can be understood that CMCL
sets multiple syllabus in parallel, and the model is
optimized towards the one with lowest competence.

4 Difficulty Metrics

In this section, we define the difficulty metrics used
by CMCL. As stated in Section 2, the key challenge
of medical report generation is to accurately cap-
ture and describe the abnormalities (Delrue et al.,
2011; Goergen et al., 2013; Li et al., 2018). There-
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! Baseline

Dataset }—>[

Single Difficulty-based Curriculum Learning

{ Dataset ]——>[ Ranking by Single Difficulty Metrics

Batch Sampled by Model
Competence

Multiple Difficulty-based Curriculum Learning
| Ranking by Difficulty Metrics 1

Ranking by Difficulty Metrics 2

{ Dataset

Perplexity and Competence

Batch Sampled by Model

Ranking by Difficulty Metrics 3

Perplexity
Update

Model
[ Encoder } [ Decoder }

Figure 2: The top illustrates the typical encoder-decoder approach; The middle illustrates the Single Difficulty-
based Curriculum Learning, where only one difficulty metric is used; The bottom illustrates the Multiple Difficulty-
based Curriculum Learning, where multiple difficulty metrics are introduced.

fore, we assess the difficulty of instances based on
the difficulty of accurately capturing and describing
the abnormalities.

4.1 Visual Difficulty

We define both a heuristic metric and a model-
based metric to estimate the visual difficulty.

Heuristic Metric d; If a medical image contains
complex visual contents, it is more likely to contain
more abnormalities, which increases the difficulty
to accurately capture them. To measure such visual
difficulty, we adopt the widely-used ResNet-50 (He
et al., 2016) pre-trained on ImageNet (Deng et al.,
2009) and fine-tuned on CheXpert dataset (Irvin
et al., 2019), which consists of 224,316 X-ray im-
ages with each image labeled with occurrences of
14 common radiographic observations. Specifically,
we first extract the normal image embeddings of
all normal training images from the last average
pooling layer of ResNet-50. Then, given an in-
put image, we again use the ResNet-50 to obtain
the image embedding. At last, the average cosine
similarity between the input image and normal im-
ages is adopted as the heuristic metric of visual
difficulty.

Model Confidence dy; We also introduce a
model-based metric. We adopt the above ResNet-
50 to conduct the abnormality classification task.
We first adopt the ResNet-50 to acquire the
classification probability distribution P(I) =
{p1(1),p2(I),...,p14(I)} among the 14 common
diseases for each image I in the training dataset,
where p, (I) € [0, 1]. Then, we employ the entropy
value H (I) of the probability distribution, defined

as follows:
H(I) == (pn(I)log (pn(1)) + 0

(1= pa())log (1 = pn(1)))

We employ the entropy value H (I) as the model
confidence measure, indicating whether an image
is easy to be classified or not.

4.2 Textual Difficulty

We also define a heuristic metric and a model-based
metric to estimate the textual difficulty.

Heuristic Metric d3 A serious problem for med-
ical report generation models is the tendency to
generate plausible general reports with no promi-
nent abnormal narratives (Jing et al., 2019; Li et al.,
2018; Yuan et al., 2019). The normal sentences are
easy to learn, but are less informative, while most
abnormal sentences, consisting of more rare and
diverse abnormalities, are relatively more difficult
to learn, especially at the initial learning stage. To
this end, we adopt the number of abnormal sen-
tences in a report to define the difficulty of a report.
Following Jing et al. (2018), we consider sentences
which contain “no”, “normal”, “clear”, “stable” as
normal sentences, the rest sentences are consider
as abnormal sentences.

Model Confidence ds Similar to visual diffi-
culty, we further introduce a model confidence as a
metric. To this end, we define the difficulty using
the negative log-likelihood loss values (Xu et al.,
2020; Zhang et al., 2018) of training samples. To
acquire the negative log-likelihood loss values, we
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Algorithm 1 Single Difficulty-based Curriculum Learning
(Platanios et al., 2019).

Input: The training set D",
Output: A model with single difficulty-based curriculum
learning. ]
1: Compute difficulty d for each training sample in D"™";
2: Sort D"™" based d to acquire DJ"";
3: Att = 0, initialize the model competence ¢(0) by Eq. (2);
Uniformly sample a data batch, B(0), from the top ¢(0)
portions of D{n;

4: repeat

5:  Train the model with the B(t);

6: t—t+1;

7:  Estimate the model competence, c(t), by Eq. (2);

Uniformly sample a data batch, B(t), from the top c(t)
portions of D™";
8: until Model converge.

adopt the widely-used and classic CNN-HLSTM
(Jing et al., 2018), in which the CNN is imple-
mented with ResNet-50, trained on the downstream
dataset used for evaluation with a cross-entropy
loss.

It is worth noticing that since we focus on the
medical report generation and design the metrics
based on the difficulty of accurately capturing and
describing the abnormalities, we do not consider
some language difficulty metrics used in neural ma-
chine translation, e.g., the sentence length (Platan-
ios et al., 2019), the n-gram rarity together with
Named Entity Recognition (NER) and Parts of
Speech (POS) taggings (Zhao et al., 2020).

S Approach

In this section, we first briefly introduce the con-
ventional single difficulty-based curriculum (Pla-
tanios et al., 2019). Then we propose the multiple
difficulty-based curriculum learning for medical
report generation.

5.1 Single Difficulty-based Curriculum
Learning

Platanios et al. (2019) proposed a competence-
based and single difficulty-based curriculum learn-
ing framework (see Algorithm 1), which first sorts
each instance in the training dataset D" accord-
ing to a single difficulty metric d, and then defines
the model competence c(t) € (0, 1] at training step
t by following functional forms:

L »/,1—c(0)? »
¢(t) = min (1, \/tT + ¢(0) > ?2)

where ¢(0) is the initial competence and usually
set to 0.01, p is the coefficient to control the cur-
riculum schedule and is usually set to 2, and T’ is

Algorithm 2 Multiple Difficulty-based Curriculum Learn-
ing. The Red colored text denotes the differences from Algo-
rithm 1.

Input: The training set D", i € {1,2,3,4}.
Output: A model with multiple difficulty-based curriculum
learning.

1: Compute four difficulties, d;, for each training sample in

Dtram;

2: Sort D™ based each difficulty of every sample, resulting
in D;rain (i.e., Dtlrain’ DtQmin, Dgain, Zrain);
fori=1,2,3,4do

t; = 0; Initialize the model competence from it
perspective, c;(0), by Eq. (2); Uniformly sample a data
batch, B;(0), from the top c;(0) portions of DY,
Compute the perplexity (PPL) on B;(0), PPL(B;(0));
end for
repeat
j = arg max(PPL(B;(t:)));

h

B

Train the model with the B;(t;);

ti <t +1;

Estimate the model competence from j*" perspective,

¢;j(t;), by Eq. (2); Uniformly sample a data batch,

B (t;), from the top c; (t;) portions of D}*";

12:  Compute the perplexity (PPL) of model on Bj;(t;),
PPL(B;(t;));

13: until Model converge.

— oY XX

—_

the duration of curriculum learning and determines
the length of the curriculum. In implementations,
at training time step ¢, the top ¢(t) portions of the
sorted training dataset are selected to sample a train-
ing batch to train the model. In this way, the model
is able to gradually proceed from easy samples to
more complex ones in training, resulting in first
starting to utilize the simple and easy-written re-
ports for training, and then attempting to utilize
harder reports for training.

5.2 Multiple Difficulty-based Curriculum
Learning

The training instances of medical report generation
task are pairs of medical images and corresponding
reports which is a multi-modal data. It’s hard to
estimate the difficulty with only one metric. In ad-
dition, the experimental results (see Table 4) show
that directly fusing multiple difficulty metrics as
one (dj + ds + ds3 + dy) is obviously inappropriate,
which is also verified in Platanios et al. (2019). To
this end, we extend the single difficulty-based cur-
riculum learning into the multiple difficulty-based
curriculum learning, where we provide the medical
report generation models with four different diffi-
culty metrics, i.e., d1, da, d3, d4 (see Section 4).

A simple and natural way is to randomly or se-
quentially choose a curricula to train the model,
ie., 1-2—3—4—1. However, a better approach
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is to adaptively select the most appropriate curric-
ula for each training step, which follows the com-
mon practice of human learning behavior: When
we have learned some curricula well, we tend to
choose the under-learned curricula to learn. Algo-
rithm 2 summarizes the overall learning process
of the proposed framework and Figure 3 illustrates
the process of Algorithm 2. In implementations,
similarly, we first sort the training dataset based on
the four difficulty metrics and acquire four sorted
training datasets in line 1-2. Then, based on the
model competence, we acquire the training samples
for each curricula, in line 4. In line 5, we further
estimate the perplexity (PPL) of model on different
training samples B;(t;) corresponding to different
curricula, defined as:

PPLBE) = 30 A TT prr e
RkEBi(ti) et " "
where R* = {w¥, wh, ... wk} denotes the k-th

report in B;(t;). The perplexity (PPL) measures
how many bits on average would be needed to en-
code each word of the report given the model, so
the current curricula with higher PPL. means that
the model is not well-learned for this curricula and
need to be improved. Therefore, the PPL can be
used to determine the curricula at each training
step dynamically. Specifically, in line 8-9, we se-
lect the under-learned curricula, i.e., the curricula
with maximum PPL, to train the current model. Af-
ter that, we again estimate the model competence
in the selected curricula in line 11 and compute the
PPL of model on the training samples correspond-
ing to the selected curricula in line 12.

6 Experiment

We firstly describe two public datasets as well as
the widely-used metrics, baselines and settings.
Then we present the evaluation of our CMCL.

6.1 Datasets

We conduct experiments on two public datasets,
i.e., a widely-used benchmark IU-Xray (Demner-
Fushman et al., 2016) and a recently released large-
scale MIMIC-CXR (Johnson et al., 2019).

» IU-Xray? is collected by Indiana University
and is widely-used to evaluate the perfor-
mance of medical report generation methods.

https://openi.nlm.nih.gov/

Perplexity ]

PPL(B,(t2)) PPL(B4(t4))
Update

—————————

j = arg max PPL(B;(t;)) ]
i

f
L

e.
€ --}----

Update

Dltrain D%rain Dgrain D‘Erain
Figure 3: Illustration of Algorithm 2.

It contains 7,470 chest X-ray images asso-
ciated with 3,955 radiology reports sourced
from Indiana Network for Patient Care.

« MIMIC-CXR? is the recently released
largest dataset to date and consists of 377,110
chest X-ray images and 227,835 radiology re-
ports from 64,588 patients of the Beth Israel
Deaconess Medical Center.

For IU-Xray dataset, following previous works
(Chen et al., 2020; Jing et al., 2019; Li et al., 2019,
2018), we randomly split the dataset into 70%-
10%-20% training-validation-testing splits. At last,
we preprocess the reports by tokenizing, convert-
ing to lower-cases and removing non-alpha tokens.
For MIMIC-CXR, following Chen et al. (2020);
Liu et al. (2021a,b), we use the official splits to
report our results, resulting in 368,960 samples in
the training set, 2,991 samples in the validation set
and 5,159 samples in the test set. We convert all to-
kens of reports to lower-cases and filter tokens that
occur less than 10 times in the corpus, resulting in
a vocabulary of around 4,000 tokens.

6.2 Baselines

We tested three representative baselines that were
originally designed for image captioning and three

*https://physionet.org/content/
mimic-cxr/2.0.0/
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competitive baselines that were originally designed
for medical report generation.

6.2.1 Image Captioning Baselines

* NIC: Vinyals et al. (2015) proposed the
encoder-decoder network, which employs a
CNN-based encoder to extract image features
and a RNN-based decoder to generate the tar-
get sentence, for image captioning.

* Spatial-Attention: Lu et al. (2017) proposed
the visual attention, which is calculated on the
hidden states, to help the model to focus on
the most relevant image regions instead of the
whole image.

* Adaptive-Attention: Considering that the
decoder tends to require little or no visual
information from the image to predict the non-
visual words such as “the” and “of”, Lu et al.
(2017) designed an adaptive attention model
to decide when to employ the visual attention.

6.2.2 Medical Report Generation Baselines

* CNN-HLSTM: Jing et al. (2018) introduced
the Hierarchical LSTM structure (HLSTM),
which contains the paragraph LSTM and the
sentence LSTM. HLSTM first uses the para-
graph LSTM to generate a series of high-level
topic vectors representing the sentences, and
then utilizes the sentence LSTM to generate a
sentence based on each topic vector.

 HLSTM+att+Dual: Harzig et al. (2019) pro-
posed a hierarchical LSTM with the atten-
tion mechanism and further introduced two
LSTMs, i.e., Normal LSTM and Abnormal
LSTM, to help the model to generate more
accurate normal and abnormal sentences.

e Co-Attention: Jing et al. (2018) proposed
the co-attention model, which combines the
merits of visual attention and semantic atten-
tion, to attend to both images and predicted
semantic tags* simultaneously, exploring the
synergistic effects of visual and semantic in-
formation.

6.3 Metrics and Settings

We adopt the widely-used BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
ROUGE-L (Lin, 2004), which are reported by the

*nttps://ii.nlm.nih.gov/MTI/

evaluation toolkit (Chen et al., 2015)°, to test the
performance. Specifically, ROUGE-L is proposed
for automatic evaluation of the extracted text sum-
marization. METEOR and BLEU are originally
designed for machine translation evaluation.

For all baselines, since our focus is to change the
training paradigm, which improves existing base-
lines by efficiently utilizing the limited medical
data, we keep the inner structure of the baselines
untouched and preserve the original parameter set-
ting. For our curriculum learning framework, fol-
lowing previous work (Platanios et al., 2019), the
¢(0) and p are set to 0.01 and 2, respectively. For
different baselines, we first re-implement the base-
lines without using any curriculum. When equip-
ping baselines with curriculum, following Platan-
ios et al. (2019), we set T" in Eq.(2) to a quarter
of the number of training steps that the baseline
model takes to reach approximately 90% of its fi-
nal BLEU-4 score. To boost the performance, we
further incorporate the Batching method (Xu et al.,
2020), which batches the samples with similar dif-
ficulty in the curriculum learning framework. To
re-implement the baselines and our approach, fol-
lowing common practice (Jing et al., 2019; Li et al.,
2019, 2018; Liu et al., 2021a,b), we extract image
features for both dataset used for evaluation from
a ResNet-50 (He et al., 2016), which is pretrained
on ImageNet (Deng et al., 2009) and fine-tuned
on public available CheXpert dataset (Irvin et al.,
2019). To ensure consistency with the experiment
settings of previous works (Chen et al., 2020), for
IU-Xray, we utilize paired images of a patient as
the input; for MIMIC-CXR, we use single image
as the input. For parameter optimization, we use
Adam optimizer (Kingma and Ba, 2014) with a
batch size of 16 and a learning rate of le-4.

6.4 Automatic Evaluation

As shown in Table 1, for two datasets, all baselines
equipped with our approach receive performance
gains over most metrics. The results prove the
effectiveness and the compatibility of our CMCL
in promoting the performance of existing models
by better utilizing the limited medical data. Be-
sides, in Table 2, we further select six existing
state-of-the-art models, i.e., HRGR-Agent (Li et al.,
2018), CMAS-RL (Jing et al., 2019), SentSAT +
KG (Zhang et al., 2020a), Up-Down (Anderson
et al., 2018), Transformer (Chen et al., 2020) and

Shttps://github.com/tylin/coco-caption
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Dataiel MIMIC CXR (Johmon etal., 2019)

DataGet 1U- Xray (Demner Fushman etal., 2016)

Methods [ BT [ B2 [ B3 [ B4 [ M [ RL | BI [ B2 [ B3 [ B4 [ M [ R

NIC (Vinyals et al., 2015)7 0.290 | 0.182 | 0.119 0.081 0.112 | 0249 | 0352 | 0227 | 0.154 | 0.109 0.133 0313
w/ CMCL 0.301 | 0.189 | 0.123 | 0.085 | 0.119 | 0.241 | 0358 | 0.223 | 0.160 | 0.114 | 0.137 | 0.317
Spatial-Attention (Lu et al., 2017)7 0.302 | 0.189 | 0.122 | 0.082 | 0.120 | 0.259 | 0374 | 0.235 | 0.158 | 0.120 | 0.146 | 0.322
w/ CMCL 0.312 | 0.200 | 0125 | 0.087 | 0.118 | 0.258 | 0.381 | 0.246 | 0.164 | 0.123 | 0.153 | 0.327
Adaptive-Attention (Lu ct al., 2017)7 0.307 | 0.192 | 0.124 | 0.084 | 0.119 | 0.262 | 0433 | 0.285 | 0.194 | 0.137 | 0.166 | 0.349
w/ CMCL 0.302 | 0.192 | 0129 | 0.091 | 0.125 | 0.264 | 0.437 | 0.281 | 0.196 | 0.140 | 0.174 | 0.338
CNN-HLSTM (Krause et al., 2017)7 0321 | 0203 | 0129 | 0.092 | 0.125 | 0.270 | 0435 | 0.280 | 0.187 | 0.131 | 0.173 | 0.346
w/ CMCL 0.337 | 0210 | 0136 | 0.097 | 0.131 | 0.274 | 0462 | 0.293 | 0.207 | 0.155 | 0.179 | 0.360
HLSTM-+att+Dual (Harzig etal, 2019)7 | 0.328 | 0204 | 0.127 | 0.090 | 0.122 | 0.267 | 0447 | 0.289 | 0.192 | 0.144 | 0.175 | 0.358
w/ CMCL 0.330 | 0.206 | 0.133 | 0.088 | 0.119 | 0.272 | 0461 | 0.298 | 0.201 | 0.150 | 0.173 | 0.359
Co-Attention (Jing et al., 2018) 0.329 | 0206 | 0.133 | 0.095 | 0.129 | 0.273 | 0463 | 0.293 | 0207 | 0.155 | 0.178 | 0.365
w/ CMCL 0.344 | 0217 | 0140 | 0.097 | 0.133 | 0.281 | 0473 | 0.305 | 0.217 | 0.162 | 0.186 | 0.378

Table 1: Performance of automatic evaluations on the test sets of the MIMIC-CXR and the IU-Xray datasets.
CMCL denotes the Competence-based Multimodal Curriculum Learning framework. B-n, M and R-L are short for
BLEU-n, METEOR and ROUGE-L, respectively. Higher is better in all columns. T denotes our re-implementation.

As we can see, all baseline models enjoy comfortable improvements in most metrics with our CMCL.

Methods

Dataset: MIMIC-CXR (Johnson et al., 2019) |

Dataset: [U-Xray (Demner-Fushman et al., 2016)

[ BT T B2 [ B3 [ B4 [ M [RL [ BI [ B2 ] B3] B4 ] M [RL
HRGR-Agent (Li et al., 2018) - - - - - - 0.438 | 0.298 | 0.208 | 0.151 - 0.322
CMAS-RL (Jing et al., 2019) - - - - - - 0.464 | 0.301 | 0.210 | 0.154 - 0.362
SentSAT + KG (Zhang et al., 2020a) - - - - - - 0.441 | 0.291 | 0.203 | 0.147 - 0.367
Up-Down (Anderson et al., 2018) 0.317 | 0.195 | 0.130 | 0.092 | 0.128 | 0.267 - - - - - -
Transformer (Chen et al., 2020) 0.314 | 0.192 | 0.127 | 0.090 | 0.125 | 0.265 | 0.396 | 0.254 | 0.179 | 0.135 | 0.164 | 0.342
R2Gen (Chen et al., 2020) 0.353 | 0.218 | 0.145 | 0.103 | 0.142 | 0.277 | 0.470 | 0.304 | 0.219 | 0.165 | 0.187 | 0.371

CMCL (Ours)

[ 0.344 1 0.217 [ 0.140 [ 0.097 [ 0.133 [ 0.281 [ 0.473 [ 0.305 [ 0.217 [ 0.162 [ 0.186 [ 0.378

Table 2: Comparison with existing state-of-the-art methods on the test set of the MIMIC-CXR dataset and the
IU-X-ray dataset. CMCL is taken from the “Co-Attention w/ CMCL” in Table 1. In this table, the Red and Blue
colored numbers denote the best and second best results across all approaches, respectively.

vs. Models [ Baseline wins [ Tie [ ‘w/ CMCL’ wins
CNN-HLSTM (Jing et al., 2018)T 15 28 57
Co-Attention (Jing et al., 2018)T 24 35 41

Table 3: We invite 2 professional clinicians to conduct
the human evaluation for comparing our method with
baselines. All values are reported in percentage (%).

R2Gen (Chen et al., 2020), for comparison. For
these selected models, we directly quote the re-
sults from the original paper for IU-Xray, and from
Chen et al. (2020) for MIMIC-CXR. As we can
see, based on the Co-Attention (Chen et al., 2020),
our approach CMCL achieves competitive results
with these state-of-the-art models on major metrics,
which further demonstrate the effectiveness of the
proposed approach.

6.5

In this section, to verify the effectiveness of our
approach in clinical practice, we invite two profes-
sional clinicians to evaluate the perceptual qual-
ity of 100 randomly selected reports generated
by “Baselines” and “Baselines w/ CMCL”. For
the baselines, we choose a representative model:
CNN-HLSTM and a state-of-the-art model: Co-
Attention. The clinicians are unaware of which

Human Evaluation

model generates these reports. In particular, to
have more documents examined, we did not use
the same documents for both clinicians and check
the agreements between them. That is to say, the
documents for different clinicians do not overlap.
The results in Table 3 show that our approach is
better than baselines in clinical practice with win-
ning pick-up percentages. In particular, all invited
professional clinicians found that our approach can
generate fluent reports with more accurate descrip-
tions of abnormalities than baselines. It indicates
that our approach can help baselines to efficiently
alleviate the data bias problem, which also can be
verified in Section 6.7.

6.6 Quantitative Analysis

Analysis on the Difficulty Metrics In this sec-
tion, we conduct an ablation study by only using
a single difficulty metric during the curriculum
learning, i.e., single difficulty-based curriculum
learning, to investigate the contribution of each
difficulty metric in our framework and the results
are shown in Table 4. Settings (a-d) show that
every difficulty metric can boost the performance
of baselines, which verify the effectiveness of our
designed difficulty metrics. In particular, 1) the
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Visual Difficulty Textual Difficulty Route Dataset: IU-Xray (Demner-Fushman et al., 2016)

Settings Heuristic Model Heuristic Model Strate Baseline: CNN-HLSTM (Jing et al., 2018)
Metic | Confidence | Metric | Confidence &y B1 [ B2 | B3 | B4 | M | RL
Baseline | - [ - [ - [ - [ [ 0.435 T 0280 | 0.187 [ 0.131 | 0.173 | 0.346
(a) N - - - 0.438 | 0.283 | 0.188 | 0.132 | 0.173 | 0.348
(b) - Vv - - 0.447 | 0.288 | 0.195 | 0.143 | 0.175 | 0.354
(c) - - v - 0.443 | 0.287 | 0.192 | 0.135 | 0.175 | 0.351
(d) - - - Vv - 0.454 | 0.290 | 0.201 | 0.148 | 0.177 | 0.357
(e) N N - - Dynamically | 0.450 | 0.289 | 0.196 | 0.144 | 0.176 | 0.355
63) Vv Vv Vv - Dynamically | 0.455 | 0.290 | 0.199 | 0.145 | 0.176 | 0.357
(2) v v v vV Dynamically | 0.462 | 0.293 | 0.207 | 0.155 | 0.179 | 0.360
(h) vV v Vv Vv Fuse 0.440 | 0.282 | 0.190 | 0.134 | 0.174 | 0.349
(i) Vv Vv Vv v Randomly 0.457 | 0.291 | 0.199 | 0.146 | 0.178 | 0.358
() v v v v Sequentially | 0.459 | 0.290 | 0.203 | 0.150 | 0.176 | 0.354

Table 4: Quantitative analysis of our approach, which includes four designed difficulty metrics (see Section 4) and
the route strategy (see Section 5.2). We conduct the analysis on the widely-used baseline model CNN-HLSTM
(Jing et al., 2018). The setting (g) also denotes our full proposed approach.

model confidence in both visual and textual diffi-
culties achieves better performance than the heuris-
tic metrics. It shows that the model confidence
is the more critical in neural models. 2) Both the
model confidence and heuristic metrics in the tex-
tual difficulty achieve better performance than their
counterparts in the visual difficulty, which indi-
cates that the textual data bias is the more critical
in textual report generation task. When progres-
sively incorporate each difficulty metric, the per-
formance will increase continuously (see settings
(e-g2)), showing that integrating different difficulty
metrics can bring the improvements from different
aspects, and the advantages of all difficulty metrics
can be united as an overall improvement.

Analysis on the Route Strategy As stated in
Section 5.2, to implement the multiple difficulty-
based curriculum learning, three simple and nat-
ural ways is to: 1) Fuse multiple difficulty met-
rics directly as a single mixed difficulty metric,
di1 4+ do + d3 + dy; 2) Randomly choose a cur-
ricula and 3) Sequentially choose a curricula (i.e.,
1—2—3—4—1) to train the model. Table 4 (h-j)
show the results of the three implementations. As
we can see, all route strategies are viable in prac-
tice with improved performance of medical report
generation, which proves the effectiveness and ro-
bustness of our CMCL framework. Besides, all
of them perform worse than our approach (Setting
(g)), which confirms the effectiveness of dynami-
cally learning strategy at each training step.

6.7 Qualitative Analysis

In Figure 1, we give two intuitive examples to bet-
ter understand our approach. As we can see, our
approach generates structured and robust reports,
which show significant alignment with ground truth

reports and are supported by accurate abnormal
descriptions. For example, the generated report
correctly describes “Blunting of right costophrenic’
in the first example and “Scoliosis is present” in the
second example. The results prove our arguments
and verify the effectiveness of our proposed CMCL
in alleviating the data bias problem by enabling
the model to gradually proceed from easy to more
complex instances in training.

’

7 Conclusion

In this paper, we propose the novel competence-
based multimodal curriculum learning framework
(CMCL) to alleviate the data bias by efficiently uti-
lizing the limited medical data for medical report
generation. To this end, considering the difficulty
of accurately capturing and describing the abnor-
malities, we first assess four sample difficulties
of training data from the visual complexity and
the textual complexity, resulting in four different
curricula. Next, CMCL enables the model to be
trained with the appropriate curricula and gradually
proceed from easy samples to more complex ones
in training. Experimental results demonstrate the
effectiveness and the generalization capabilities of
CMCL, which consistently boosts the performance
of the baselines under most metrics.

Acknowledgments

This work is partly supported by Tencent Medical
Al Lab, Beijing, China. We would like to sincerely
thank the clinicians Xiaoxia Xie and Jing Zhang of
the Harbin Chest Hospital in China for providing
the human evaluation. We sincerely thank all the
anonymous reviewers for their constructive com-
ments and suggestions that substantially improved
this paper.

3009



Ethical Considerations

In this work, we focus on helping a wide range of
existing medical report generation systems allevi-
ate the data bias by efficiently utilizing the limited
medical data for medical report generation. Our
work can enable the existing systems to gradually
proceed from easy samples to more complex ones
in training, which is similar to the learning curve
of radiologist: (1) first start from simple and easy-
written reports; (2) and then attempt to consume
harder reports, which consist of rare and diverse
abnormalities. As a result, our work can promote
the usefulness of existing medical report generation
systems in better assisting radiologists in clinical
decision-makings and reducing their workload. In
particular, for radiologists, given a large amount
of medical images, the systems can automatically
generate medical reports, the radiologists only need
to make revisions rather than write a new report
from scratch. We conduct the experiments on the
public MIMIC-CXR and IU-Xray datasets. All
protected health information was de-identified. De-
identification was performed in compliance with
Health Insurance Portability and Accountability
Act (HIPAA) standards in order to facilitate public
access to the datasets. Deletion of protected health
information (PHI) from structured data sources
(e.g., database fields that provide patient name or
date of birth) was straightforward. All necessary pa-
tient/participant consent has been obtained and the
appropriate institutional forms have been archived.
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