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Abstract

We pioneer the first extractive summarization-
based collaborative filtering model called ES-
COFILT. Our proposed model specifically pro-
duces extractive summaries for each item and
user. Unlike other types of explanations,
summary-level explanations closely resemble
real-life explanations. The strength of ES-
COFILT lies in the fact that it unifies repre-
sentation and explanation. In other words, ex-
tractive summaries both represent and explain
the items and users. Our model uniquely inte-
grates BERT, K-Means embedding clustering,
and multilayer perceptron to learn sentence
embeddings, representation-explanations, and
user-item interactions, respectively. We argue
that our approach enhances both rating pre-
diction accuracy and user/item explainability.
Our experiments illustrate that ESCOFILT’s
prediction accuracy is better than the other
state-of-the-art recommender models. Further-
more, we propose a comprehensive set of cri-
teria that assesses the real-life explainability of
explanations. Our explainability study demon-
strates the superiority of and preference for
summary-level explanations over other expla-
nation types.

1 Introduction

Collaborative filtering (CF) approaches are the
most dominant and outstanding models in recom-
mender systems literature. CF mainly focuses
on learning accurate representations of users and
items, denoting user preferences and item charac-
teristics, respectively (Chen et al., 2018; Tay et al.,
2018). The earliest CF models learned such rep-
resentations based on user-given numeric ratings,
but employing them is an oversimplification of user
preferences and item characteristics (Koren et al.,
2009; Musto et al., 2017). In this regard, review
texts have been utilized to alleviate this issue.

Reviews Received by the ‘Journaling Bible’ Item

1. I was not expecting this Bible to be so beautiful when I pre-ordered
it 5 months ago, but it arrived in the mail today and it is just gor-
geous! I love the concept of Bible journaling, but was always a
bit intimidated by where/how to start. This removes that concern
through some beautifully done artwork and lettering. I am ecstatic
at the quality of this Bible!

2. I brought this as I wanted a separate Bible to do Bible journaling.
It is very beautiful and has many images that can be coloured. The
pages are similar to Bible paper and cream in colour. Overall a
wonderful Bible to do journaling and meditate God’s Word.

Generated Explanations

• Review-Level: I brought this as I wanted a separate Bible to do
Bible journaling. It is very beautiful and has many images that can
be coloured. The pages are similar to Bible paper and cream in
colour. Overall a wonderful Bible to do journaling and meditate
God’s Word.

• Word-Level: I brought this as I wanted a separate Bible to do
Bible journaling. It is very beautiful and has many images that can
be coloured. The pages are similar to Bible paper and cream in
colour. Overall a wonderful Bible to do journaling and meditate
God’s Word.

• Summary-Level: I was not expecting this Bible to be so beautiful
when I pre-ordered it 5 months ago, but it arrived in the mail today
and it is just gorgeous! This removes that concern through some
beautifully done artwork and lettering. The pages are similar to
Bible paper and cream in colour. Overall a wonderful Bible to do
journaling and meditate God’s Word.

Table 1: Illustration of the different types of explana-
tions. A review-level explanation is simply the high-
est weighted review. A word-level explanation is com-
prised of highlighted words or tokens with the highest
attention scores. Our proposed summary-level explana-
tion closely resembles real-life explanations, wherein
the explanation text is derived from multiple reviews.

The primary benefit of using reviews as the
source of features is that they can cover the inher-
ently multi-faceted nature of user opinions. Users
can explain their rationales for the ratings they give
to items. Thus, reviews contain a large quantity
of rich latent information that cannot be otherwise
acquired solely from ratings (Chen et al., 2018).

Still, a typical limitation exists for most review-
based recommender systems recently; the intrin-
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sic black-box nature of neural networks (NN)
makes the explainability behind predictions ob-
scure (Ribeiro et al., 2016; Wang et al., 2018b). The
intricate architecture of hidden layers has opaqued
the decision-making processes of neural models
(Peake and Wang, 2018). Providing explanations
is essential as they could help persuade users to
develop further trust in a recommender system
and make eventual purchasing decisions (Peake
and Wang, 2018; Ribeiro et al., 2016; Zhang et al.,
2014).

In light of this, current research efforts have at-
tempted to improve the explainability aspect of
recommender systems. Common types of expla-
nations include review-level and word-level. In a
review-level explanation, the attention mechanism
is applied to measure every review’s contribution
to the item (or user) embedding (Chen et al., 2018;
Feng and Zeng, 2019). High-scoring reviews are
then selected to serve as explanations. On the other
hand, in a word-level or token-level explanation, in-
formative words in a local window or textual block
are selected together (Liu et al., 2019a; Pugoy and
Kao, 2020; Seo et al., 2017). Similar to the first
mechanism, top words are chosen due to their high
attention weights.

Evidently, review-level and word-level expla-
nations are side-effects of applying the attention
mechanism to reviews and words. These have been
integral and beneficial in formulating better user
and item representations. However, we contend
that both types of explanations may not completely
resemble real-life explanations. In logic, an expla-
nation is a set of intelligible statements usually con-
structed to describe and clarify the causes, context,
and consequences of objects, events, or phenomena
under examination (Drake, 2018). Based on our ex-
ample in Table 1, the review-level explanation is ex-
actly the same as the second item review, assuming
that it has the higher attention weight. Due to this, it
also inadvertently disregards other possibly useful
sentences from other reviews with lower attention
scores. Furthermore, even though the word-level
explanation contains informative words, it may not
be practical in an actual recommendation scenario
since it typically appears as fragments. Word-level
explanations may not be intelligible enough due to
humans’ natural bias toward sentences, which are
defined to express complete thoughts (Andersen,
2014).

Therefore, in this paper, we propose the first

extractive summarization-based collaborative
filtering model, ESCOFILT. For every item
and user, our novel model generates extrac-
tive summaries that bear more resemblance
to real-life explanations, as seen in Table 1’s
last row. Unlike a review-level explanation, a
summary-level explanation (which we also call
extractive summary, representative summary, and
representation-explanation in different sections of
this paper) is composed of informative statements
gathered from different reviews. As opposed to a
word-level explanation, an ESCOFILT-produced
explanation is more comprehensible as it can
convey complete thoughts. It should be noted that
our model performs extractive summarization in an
unsupervised manner since expecting ground-truth
summaries for all items and users in a large dataset
is unrealistic. The strength of ESCOFILT lies in
the fact that it uniquely unifies representation and
explanation. In other words, an extractive summary
both represents and explains a particular item
(or user). We argue that our approach enhances
both rating prediction accuracy and user/item
explainability, which are later validated by our
experiments and explainability study.

1.1 Contributions

These are the main contributions of our paper:

• To the best of our knowledge, we pioneer
the first extractive summarization-based CF
framework.

• Our proposed model uniquely integrates
BERT, K-Means embedding clustering, and
multilayer perceptron (MLP) to respec-
tively learn sentence embeddings, extractive
representation-explanations, and user-item in-
teractions.

• To the extent of our knowledge, ESCOFILT
is one of the first recommender models that
employ BERT as a review feature extractor.

• We also propose a comprehensive set of crite-
ria that assesses the explainability of explana-
tion texts in real life.

• Our experiments illustrate that the rating pre-
diction accuracy of ESCOFILT is better than
the other state-of-the-art models. Moreover,
our explainability study shows that summary-
level explanations are superior and more pre-
ferred than the other types of explanations.
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2 Related Work

Developing a CF model involves two crucial steps,
i.e., learning user and item representations and
modeling user-item interactions based on those rep-
resentations (He et al., 2018). One of the foun-
dational works in utilizing NN for CF is neural
collaborative filtering or NCF (He et al., 2017).
Originally implemented for implicit feedback data-
driven CF, NCF learns non-linear interactions be-
tween users and items by employing MLP layers
as its interaction function.

DeepCoNN is the first deep learning-based
model representing users and items from reviews
in a coordinated manner (Zheng et al., 2017). The
model consists of two parallel networks powered
by convolutional neural networks (CNN). One
network learns user behavior by examining all
reviews he has written, and the other network
models item properties by exploring all reviews
it has received. A shared layer connects these
two networks, and factorization machines capture
user-item interactions. Another notable model is
NARRE, which shares several similarities with
DeepCoNN. NARRE is also composed of two par-
allel CNN-based networks for user and item mod-
eling (Chen et al., 2018). For the first time, this
model incorporates the review-level attention mech-
anism that determines each review’s usefulness or
contribution based on attention weights. As a side-
effect, this also leads to review-level explanations;
reviews with the highest attention scores are pre-
sented as explanations. These weights are then in-
tegrated into the representations of users and items
to enhance embedding quality and prediction accu-
racy.

Other related studies include D-Attn (Seo et al.,
2017), MPCN (Tay et al., 2018) DAML (Liu et al.,
2019a), and HUITA (Wu et al., 2019). These all
employ different types of attention mechanisms to
distinguish informative parts of a given data sample,
resulting in simultaneous accuracy and explainabil-
ity improvements. D-Attn integrates global and
local attention to score each word to determine its
relevance in a review text. MPCN is similar to
NARRE, but the former relies solely on attention
mechanisms without any need for convolutional
layers. DAML utilizes CNN’s local and mutual at-
tention to learn review features, and HUITA incor-
porates a hierarchical, three-tier attention network.

Most of these aforementioned models take ad-
vantage of CNNs as automatic review feature ex-

tractors. Coupling them with mainstream word em-
beddings leads to the formulation of user and item
representations. However, such approaches fail to
consider global context and word frequency infor-
mation. The two said factors are crucial as they can
affect recommendation performance (Pilehvar and
Camacho-Collados, 2019; Wang et al., 2018a). To
deal with such dilemmas, NCEM (Feng and Zeng,
2019) and BENEFICT (Pugoy and Kao, 2020) use
a pre-trained BERT model to obtain review features.
BERT’s advantage lies in its full retention of global
context and word frequency information (Feng and
Zeng, 2019). For explainability, NCEM similarly
adopts NARRE’s review-level attention. On the
contrary, BENEFICT utilizes BERT’s self-attention
weights in conjunction with a solution to the maxi-
mum subarray problem (MSP). BENEFICT’s ap-
proach produces an explanation based on a subarray
of contiguous tokens with the largest possible sum
of self-attention weights.

In summary, there appears to be a trend; tack-
ling explainability improves prediction and recom-
mendation performance consequentially. While
most recommender models address this via atten-
tion mechanisms, our proposed model solves this
by unifying representation and explanation in the
form of extractive summaries. As evidenced in the
succeeding sections of this paper, we argue that our
approach can further enhance CF’s accuracy and
explainability.

3 Methodology

ESCOFILT, whose architecture is illustrated in
Figure 1, has two parallel components that learn
summarization-based user and item representations.
From Sections 3.2 to 3.3, we will only discuss the
item modeling process as it is nearly identical to
user modeling, with their inputs as the only differ-
ence.

3.1 Definition and Notation

The training dataset τ consists of N tuples, with
the latter denoting the size of the dataset. Each
tuple follows this form: (u, i, rui, vui) where rui
and vui respectively refer to the ground-truth rating
and review accorded by user u to item i. More-
over, let Vu = {vu1, vu2, ..., vuj} be the set of
all j reviews written by user u. Similarly, let
Vi = {v1i, v2i, ..., vki} be the set of all k reviews
received by item i. Both Vu and Vi are obtained
from scanning τ itself.
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Figure 1: The proposed ESCOFILT architecture.

The input of ESCOFILT is a user-item pair (u, i)
from each tuple in τ . We particularly feed Vu and
Vi to the model as they initially represent u and i.
The output is the predicted rating r̂ui ∈ R that user
u may give to item i. Thus, the rating prediction
task R can be expressed as:

R(u, i) = (Vu, Vi)→ r̂ui (1)

Its corresponding objective function, the mean
squared error (MSE), is given below:

MSE =
1

|τ |
∑
u,i∈τ

(rui − r̂ui)2 (2)

3.2 Sentence Extraction and BERT Encoding
First, the reviews in Vi are concatenated together
to form a single document. A sentence segmenta-
tion component called Sentencizer (by spaCy) is
utilized to split this document into individual sen-
tences (Gupta and Nishu, 2020). The set of all sen-
tences in Vi is now given by Si = {si1, si2, ..., sig}
where g refers to the total number of sentences.

Afterward, Si is fed to a pre-trained BERTLARGE
model. It should be noted that we opt not to use
[CLS] representations as these may not necessar-
ily provide the best sentence embeddings (Miller,
2019). In this regard, we tap BERT’s penultimate
encoder layer to obtain the contextualized word em-
beddings. The word embeddings of each sentence

in Si are stored in S̄i ∈ Rg×w×1024; w pertains to
the amount of words in a sentence, and 1024 is the
embedding size of BERT. Then, we average every
sentence’s word embeddings in S̄i to produce the
set of sentence embeddings S′i = {s′i1, s′i2, ..., s′ig},
with S′i ∈ Rg×1024.

3.3 Embedding Clustering

K-Means clustering is next performed to partition
the sentence embeddings in S′i into K clusters. Its
objective is to minimize the intra-cluster sum of the
distances from each sentence to its nearest centroid,
given by the following equation (Xia et al., 2020):

Ji =
K∑
x=1

∑
s′iy∈Cx

||s′iy − cx||2 (3)

where cx is the centroid of cluster Cx that is clos-
est to the sentence embedding s′iy. The objective
function Ji is optimized for item i by running the
assignment and update steps until the cluster cen-
troids stabilize. The assignment step assigns each
sentence to a cluster based on the shortest sentence
embedding-cluster centroid distance, provided by
the formula below:

d(s′iy) = argminx=1,...,K{||s′iy − cx||2} (4)

where d is a function that obtains the cluster closest
to s′iy. Furthermore, the update step recomputes the
cluster centroids based on new assignments from
the previous step. This is defined as:

cx =
1

|Cx|

g∑
y=1

{s′iy|d(s′iy) = x} (5)

where |Cx| refers to the number of sentences that
cluster Cx contains. By introducing clustering, re-
dundant and related sentences are grouped in the
same cluster. Concerning this, K is derived using
this equation:

K = φi × g (6)

where φi pertains to the item summary ratio, i.e.,
the percentage of sentences that comprise an item’s
extractive summary. This subsequently implies that
K denotes the actual number of sentences in the
summary. Sentences closest to each cluster cen-
troid are selected and combined to form the item’s
representation-explanation. This is mathematically
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expressed as:

e(Cx) = argminy=1,...,g{||s′iy − cx||2}

ItemRXi =
1

K

K∑
x=1

s′i,e(Cx)

(7)

where e is a function that returns the near-
est sentence to the centroid cx of cluster Cx,
and ItemRXi ∈ R1×1024 is the representation-
explanation embedding of item i.

3.4 Fusion Layers
Inspired by NARRE (Chen et al., 2018), we also
draw some principles from the traditional latent fac-
tor model by incorporating rating-based hidden vec-
tors that depict users and items to a certain extent.
These are represented by UserIV and ItemIV ,
both in R1×m where m is the dimension of the
latent vectors. Such vectors are fused with their
respective representation-explanation embeddings.
This is facilitated by these fusion levels, illustrated
by the following formulas:

fu = (UserRXu ×Wu + bu) + UserIVu

fi = (ItemRXi ×Wi + bi) + ItemIVi

fui = [fu, fi]

(8)

where fu and fi pertain to the preliminary fusion
layers and both are in R1×m; Wu and Wi are
weight matrices in R1024×m; bu and bi refer to
bias vectors; and fui ∈ R1×2m denotes the initial
user-item interactions from the third fusion layer
and is later fed to the MLP.

3.5 Multilayer Perceptron and Rating
Prediction

The MLP is necessary to model the CF effect, i.e.,
to learn meaningful non-linear interactions between
users and items. An MLP with multiple hidden
layers typically implies a higher degree of non-
linearity and flexibility. Similar to the strategy
of He et al. (2017), ESCOFILT adopts an MLP
with a tower pattern; the bottom layer is the widest
while every succeeding top layer has fewer neurons.
A tower structure enables the MLP to learn more
abstractive data features. Specifically, we halve
the size of hidden units for each successive higher
layer. ESCOFILT’s MLP component is defined as
follows:

h1 = ReLU(fui ×W1 + b1)

hL = ReLU(hL−1 ×WL + bL)
(9)

Dataset #Reviews #Users #Items

Automotive 20,473 2,928 1,835
Digital Music 64,706 5,541 3,568
Instant Video 37,126 5,130 1,685
Patio, Lawn,
& Garden

13,272 1,686 962

Table 2: Statistics of the datasets utilized in our study.

where hL represents the L-th MLP layer, and WL

and bL pertain to the L-th layer’s weight matrix
and bias vector, respectively. As far as the MLP’s
activation function is concerned, we select the rec-
tified linear unit (ReLU), which yields better per-
formance than other activation functions (He et al.,
2017). Finally, the MLP’s output is fed to one more
linear layer to produce the predicted rating:

r̂ui = hL ×WL+1 + bL+1 (10)

4 Empirical Evaluation

4.1 Research Questions
In this section, we detail our experimental setup de-
signed to answer the following research questions
(RQs):

• RQ1: Does ESCOFILT outperform the other
state-of-the-art recommender baselines?

• RQ2: Is embedding clustering effective?
• RQ3: Can our model produce explanations

acceptable to humans in real life?

4.2 Datasets, Baselines, and Evaluation
Metric

Table 2 summarizes the four public datasets1 that
we utilized in our study. These datasets are Ama-
zon 5-core, wherein users and items are guaranteed
to have at least five reviews each (McAuley et al.,
2015; He and McAuley, 2016). The ratings across
all datasets are in the range of [1, 5]. We split each
dataset into training (80%), validation (10%), and
test (10%) sets. Next, to validate the effectiveness
of ESCOFILT, we compared its prediction perfor-
mance against four state-of-the-art baselines:

• BENEFICT (Pugoy and Kao, 2020): This re-
cent recommender model uniquely integrates
BERT, MSP, and MLP to learn representa-
tions, explanations, and interactions.

1http://jmcauley.ucsd.edu/data/amazon/
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• DeepCoNN (Zheng et al., 2017): This is the
first deep collaborative neural network model
that is based on two parallel CNNs to jointly
learn user and item features.

• MPCN (Tay et al., 2018): Akin to NARRE,
this CNN-less model employs a new type of
dual attention for identifying relevant reviews.

• NARRE (Chen et al., 2018): Similar to Deep-
CoNN, it is a neural attentional regression
model that integrates two parallel CNNs and
the review-level attention mechanism.

All these recommender models employed the
same dataset split. We then computed the root
mean square error (RMSE) on the test dataset (τ̄ ),
as indicated by the formula below. RMSE is a
widely used metric for evaluating a model’s rating
prediction accuracy (Steck, 2013).

RMSE =

√
1

|τ̄ |
∑
u,i∈τ̄

(rui − r̂ui)2 (11)

4.3 Experimental Settings
For ESCOFILT, we mainly based its summarization
component on BERT Extractive Summarizer2 by
Miller (2019). We also utilized the pre-trained
BERTLARGE model afforded by the Transformers
library of HuggingFace3. In our implementation4,
the following hyperparameters were fixed:

• Learning rate: 0.006
• Quantity of MLP layers: 4
• Item summary ratio (φi): 0.4
• User summary ratio (φu): 0.4

On the other hand, we operated an exhaustive grid
search over these hyperparameters:

• Number of epochs: [1, 30]
• Latent vector dimension (m): {32, 128, 220}

Due to its architectural similarity to ESCOFILT,
we reimplemented BENEFICT by augmenting it
with the pre-trained BERTLARGE model and adopt-
ing our model’s fusion and latent vector dimension
strategies. For DeepCoNN, MPCN, and NARRE,
we employed the extensible NRRec framework5

and retained the other hyperparameters reported in
the framework (Liu et al., 2019b).

2https://github.com/dmmiller612/bert-extractive-
summarizer

3https://github.com/huggingface/transformers
4https://github.com/reinaldncku/ESCOFILT
5https://github.com/ShomyLiu/Neu-Review-Rec

For the four baselines, we also performed an
exhaustive grid search over the following:

• Number of epochs: [1, 30]
• Learning rates: {0.003, 0.004, 0.006}

All models, including ESCOFILT, used the same
optimizer, Adam, which leverages the power of
adaptive learning rates during training (Kingma
and Ba, 2014). This makes the selection of a learn-
ing rate less cumbersome, leading to faster conver-
gence (Chen et al., 2018). Without special mention,
the models shared the same random seed, batch
size (128), and dropout rate (0.5). We selected the
model configuration with the lowest RMSE on the
validation set. We ran our experiments on NVIDIA
GeForce RTX 2080 Ti.

4.4 Prediction Results and Discussion
4.4.1 Performance Comparison
The overall performances of our model and the
other baselines are summarized in Table 3. It is
essential to remark that although utilizing informa-
tion derived from reviews is beneficial, a model’s
performance can vary contingent on how the said
information is considered. These are our general
findings:

First, our proposed model consistently outper-
forms all baselines across all datasets. This ascer-
tains the effectiveness of ESCOFILT and clearly
answers RQ1. Moreover, this validates our case
that coupling BERT (a superior review feature ex-
tractor) with embedding clustering enables user
and item representations to have finer granularity
and fewer redundancies.

Second, receiving the two lowest average RMSE
values, BERT-based models (ESCOFILT and
BENEFICT) have generally better prediction ac-
curacies than the rest of the mostly CNN-powered
baselines. This particular observation verifies the
necessity of integrating BERT in a CF architec-
ture. Unlike its mainstream counterparts, BERT
produces more semantically meaningful embed-
dings that keep essential elements such as global
context and word frequency information.

4.4.2 Efficacy of Embedding Clustering
This section further discusses the efficacy of K-
Means embedding clustering, instrumental in pro-
ducing user and item representative summaries.
Concerning this, we prepared three variants of our
model. First is ESCOFILT-N, which does not uti-
lize any embedding clustering. Instead, it relies on
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Model Automotive Digital
Music

Instant
Video

Patio, Lawn,
& Garden Average

BENEFICT 0.9023 0.8910 0.9746 0.9352 0.9258
DeepCoNN 0.9076 0.8904 0.9778 0.9316 0.9269
MPCN 0.9107 0.9298 0.9976 0.9362 0.9436
NARRE 0.9144 0.8915 0.9758 0.9539 0.9339
ESCOFILT 0.8968 0.8831 0.9742 0.9298 0.9210

Table 3: Performance comparison of the recommender models. The best RMSE values are boldfaced.

Figure 2: Performance comparison of ESCOFILT variants for illustrating the effectiveness of embedding cluster-
ing.

traditional embeddings that are neither pre-trained
nor review-based. They are randomly initialized
yet optimized during training. Another variant is
ESCOFILT-I, wherein only item reviews undergo
embedding clustering while the user component
is based on traditional embeddings. ESCOFILT-
U also operates the same way; the difference is
that only user reviews are processed by embedding
clustering.

Based on Figure 2, having the lowest validation
RMSE values, the default ESCOFILT configura-
tion is the best across the datasets, while the worst
variant is ESCOFILT-N. This gives credence to em-
bedding clustering’s effectiveness and addresses
RQ2; it can simultaneously capture user prefer-
ences and item characteristics, resulting in precise
representations and accurate rating prediction.

There appears to be a trend as well: the second-
best and the third-best variants are ESCOFILT-I
and ESCOFILT-U, respectively. In some instances,
ESCOFILT-I seems to be on par with the default
ESCOFILT variant. This implies that items stand to
benefit more than users from embedding clustering.
One possible explanation is that each item normally
receives a far greater quantity of reviews than each
user actually writes, translating to more possibly
extractable information and features. Hence, item
reviews have a more significant influence than user

reviews in determining ratings. Still, this does not
immediately suggest that user embedding cluster-
ing is not helpful. It needs to be integrated first
with item embedding clustering via the MLP to
discover relevant user-item interactions, leading to
our original model’s performance.

5 Explainability Study

5.1 Real-Life Explainability Criteria

The assessment of explanations in existing recom-
mender systems literature is generally limited to
specific case studies. Most of these relied on simple
qualitative analysis of attention weights and high-
scoring reviews on selected samples (Liu et al.,
2019a; Seo et al., 2017; Wu et al., 2019). The
assessment criterion provided in the NARRE and
BENEFICT papers went a little further by asking
human raters to score each explanation’s helpful-
ness or usefulness on a given Likert scale (Chen
et al., 2018; Pugoy and Kao, 2020). Nevertheless,
to the best of our knowledge, there does not appear
to be a comprehensive set of criteria that assesses
the real-life explainability of explanations. We con-
tend that it is increasingly necessary to measure
how people actually perceive explanation texts gen-
erated by recommender models; after all, these
texts aim to explain entities in real life. Hence, we
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Model Cohe-
rence

Comple-
teness

Lack of
Alterna-

tives
Novelty Perceived

Truth Quality Visuali-
zation

BENEFICT 3.52 3.82 3.75 3.58 3.87 3.65 3.65
NARRE 3.68 3.82 3.82 3.72 3.75 3.72 3.92
ESCOFILT 3.92 3.87 3.73 3.75 3.92 3.72 3.78

Table 4: Comparison of the three explanation types based on the real-life explainability criteria (pointwise evalua-
tion). The best mean values for each criterion are boldfaced.

Figure 3: Distribution of the judges’ helpfulness rankings for the three explanation types (listwise evaluation).

propose the following explainability criteria, which
are inspired by Zemla et al. (2017):

1. Coherence: “Parts of the explanation fit to-
gether coherently.”

2. Completeness: “There are no gaps in the ex-
planation.”

3. Lack of Alternatives: “There are probably
less to no reasonable alternative explanations.”

4. Novelty: “I learned something new from the
explanation.”

5. Perceived Truth: “I believe this explanation
to be true.”

6. Quality: “This is a good explanation.”
7. Visualization: “It is easy to visualize what

the explanation is saying.”

5.2 Human Assessment of Explanations

We generated a total of 90 item explanations,
30 each from BENEFICT (token-level), NARRE
(review-level), and ESCOFILT (summary-level).
For pointwise evaluation, we asked two human
judges to assess the explanations based on our pro-
posed real-life explainability criteria on a five-point
Likert scale. For listwise evaluation, we instructed
them to rank the three explanation types for every
text according to helpfulness. We further exam-
ined these results by determining the strength of
agreement between the two judges, using Cohen’s
Kappa coefficient (κ) wherein -1 indicates a less

than chance agreement, 0 refers to a random agree-
ment, and 1 denotes a perfect agreement (Borromeo
and Toyama, 2015; Landis and Koch, 1977).

5.3 Explainability Results and Discussion

Table 4 summarizes the results of the human judges’
pointwise evaluation. For five out of seven crite-
ria, ESCOFILT-derived explanations have the high-
est explainability scores. Specifically, summary-
level explanations are most coherent, most com-
plete, most novel, and most truthful. ESCOFILT’s
strongest aspect is its perceived truth, obtaining a
mean rating of 3.92 and κ = 0.28 that indicates a
fair inter-judge agreement.

Interestingly, both ESCOFILT and NARRE have
the best quality, with the same mean rating of
3.72. The Kappa coefficient is 0.11, implying that
the judges agree with each other to a certain ex-
tent. Considering that a review-level explanation
is simply the highest weighted review, our model-
generated explanations are assessed on par with
the former. Furthermore, review-level explanations
have the highest explainability scores in two other
criteria, i.e., lack of alternatives and visualization.
NARRE’s strongest aspect is that its explanations
are easiest to visualize, having a mean rating of
3.92 and κ = 0.27 that denotes a fair inter-judge
agreement.

Lastly, Figure 3 shows the results of the human
judges’ listwise evaluation. Our model produces
the most helpful explanations; such explanations
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are ranked first for almost 83% of the items. These
are followed far behind by NARRE’s explanations,
ranked first for nearly 17% of the items. None of
BENEFICT’s explanations are ranked first. With
κ = 0.45 for ranking consistency, there is a moder-
ate agreement between the judges.

In summary, these results clearly illustrate the
superiority of summary-level explanations in real
life that can present necessary guidance to users in
making future purchasing decisions, thereby satis-
fying RQ3.

6 Conclusion and Future Work

In this study, unifying representations and expla-
nations, in the form of extractive summaries, have
further enhanced collaborative filtering accuracy
and explainability. We have successfully developed
a model that uniquely integrates BERT, embedding
clustering, and MLP. Our experiments on various
datasets verify ESCOFILT’s predictive capability,
and the human judges’ assessments validate its ex-
plainability in real life. In the future, we shall
consider expanding our model’s explainability ca-
pability by possibly incorporating other NLP princi-
ples such as abstractive summarization and natural
language generation.
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