
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2968–2980

August 1–6, 2021. ©2021 Association for Computational Linguistics

2968

LeeBERT: Learned Early Exit for BERT with Cross-Level Optimization

Wei Zhu1,2 ∗

1 East China Normal University, Shanghai, China
2 Pingan Health Tech, Shanghai, China

Abstract

Pre-trained language models like BERT are
performant in a wide range of natural language
tasks. However, they are resource exhaus-
tive and computationally expensive for indus-
trial scenarios. Thus, early exits are adopt-
ed at each layer of BERT to perform adap-
tive computation by predicting easier samples
with the first few layers to speed up the in-
ference. In this work, to improve efficiency
without performance drop, we propose a novel
training scheme called Learned Early Exiting
for BERT (LeeBERT). First, we ask each exit
to learn from each other, rather than learning
only from the last layer. Second, the weight-
s of different loss terms are learned, thus bal-
ancing off different objectives. We formulate
the optimization of LeeBERT as a bi-level op-
timization problem, and we propose a novel
cross-level optimization (CLO) algorithm to
improve the optimization results. Experiments
on the GLUE benchmark show that our pro-
posed methods improve the performance of
the state-of-the-art (SOTA) early exiting meth-
ods for pre-trained models.

1 Introduction

The last couple of years have witnessed the rise
of pre-trained language models (PLMs), such as
BERT (Devlin et al., 2018), GPT (Radford et al.,
2019), XLNet (Yang et al., 2019), and ALBERT
(Lan et al., 2020), etc. By pre-training on the un-
labeled corpus and fine-tuning on labeled ones,
BERT-like models achieved considerable improve-
ments in many Natural Language Processing (NLP)
tasks, such as text classification and natural lan-
guage inference (NLI), sequence labeling, etc.

However, these PLMs suffer from two problems.
The first problem is efficiency. The state-of-the-art
(SOTAs) achievements of these models usually rely

∗Contact: 52205901018@stu.ecnu.edu.cn.

on very deep model architectures accompanied by
high computational demands, impairs their prac-
ticalities. Like general search engines or online
medical consultation services, industrial settings
process generally millions of requests per minute.
What makes efficiency more critical is that the traf-
fic of online services varies drastically with time.
For example, during the flu season, the search re-
quests of Dingxiangyuan1 are ten times more than
usual. And the number of claims during the holi-
days is five to ten times more than that of the work-
days for online shopping. Many servers need to
be deployed to enable BERT in industrial settings,
which is unbearable for many companies.

Second, previous literature (Fan et al., 2020;
Michel et al., 2019; Zhou et al., 2020) pointed
out that large PLMs with dozens of stacked Trans-
former layers are over-parameterized and could suf-
fer from the “overthinking” problem (Kaya et al.,
2019). That is, for many input samples, their shal-
low representations at a shallow layer are enough
to make a correct classification. In contrast, the
final layer’s representations may be overfitting or
distracted by irrelevant features that do not gener-
alize. The overthinking problem leads to not only
poor generalization but also wasted computation.

To address these issues, both the industry and
academia have devoted themselves to accelerating
PLMs at inference time. Standard methods include
direct network pruning (Zhu and Gupta, 2018; Xu
et al., 2020; Fan et al., 2020; Michel et al., 2019),
knowledge distillation (Sun et al., 2019; Sanh et al.,
2019; Jiao et al., 2020), weight quantization (Zhang
et al., 2020; Bai et al., 2020; Kim et al., 2021) and
adaptive inference (Zhou et al., 2020; Xin et al.,
2020; Geng et al., 2021; Liu et al., 2020). Among
them, adaptive inference has attracted much atten-
tion. Given that real-world data is usually com-

1https://search.dxy.cn/

2969

posed of easy samples and difficult samples, adap-
tive inference aims to deal with simple examples
with only a small part of a PLM, thus speeding
up inference time on average. The speed-up ratio
can be controlled with certain hyper-parameters to
cope with drastic changes in request traffic. What’s
more, it can address the over-thinking problem and
improve the model’s generalization ability.

Early exiting is one of the most crucial adap-
tive inference methods (Bolukbasi et al., 2017). It
implements adaptive inference by installing exits,
or intermediate prediction layer, at each layer of
BERT and exiting ”easy” samples at exits of the
shallow layers to speed up inference (Figure 1).
Strategies for early exiting are designed (Teerapit-
tayanon et al., 2016; Kaya et al., 2019; Xin et al.,
2020; Zhou et al., 2020), which decides when to
exit given the current obtained predictions (from
previous and current layers).

Early exiting architectures’ training procedure
is essentially a multi-objective problem since each
exit is trying to improve its performance. Different
objectives from different classifiers may conflict
and interfere with one-another (Phuong and Lam-
pert, 2019; Yu et al., 2020). Thus they incorporate
distillation loss to improve the training procedure
by encouraging early exits to mimic the output dis-
tributions of the last exit. The motivation is that the
last exit has the maximum network capacity and
should be more accurate than the earlier exits. In
their work, only the last exit can act as a teacher
exit. Besides, the multiple objectives are uniformly
weighted.

In this work, we propose a novel training mecha-
nism called Learned Early Exiting for BERT (Lee-
BERT). Our contributions are three folded. First,
instead of learning from the last exit, LeeBERT
asks each exit to learn from each other. The mo-
tivation is that different layers extract features of
varying granularity. Thus they have different per-
spectives of the sentence. Distilling knowledge
from each other improves the expressiveness of
lower exits and alleviates the overfittng of the later
exits. Second, to achieve the optimal trade-offs be-
tween different loss terms, their weights are treated
as parameters and are learned along with model pa-
rameters. The optimization of the learnable weights
and model parameters is formulated as a bi-level
optimization problem, optimized with gradient de-
scent. Built upon previous literature (Liu et al.,
2019), we propose a novel cross-level optimization

(CLO) algorithm to solve the bilevel optimization
better.

Extensive experiments are conducted on the
GLUE benchmark (Wang et al., 2018), and show
that LeeBERT outperforms existing SOTA BERT
early exiting methods, sometimes by a large mar-
gin. Ablation study shows that: (1) knowledge
distillation among all the exits can improve their
performances, especially for the shallow ones; (2)
our novel CLO algorithm is useful in learning more
suitable weights and brings performance gains.

Our contributions are integrated into our Lee-
BERT framework, which can be summarized as
follows:

• We propose a novel training method for early
exiting PLMs to ask each exit to learn from
each other.

• We propose to find the optimal trade-off of
different loss terms by assigning learnable
weights.

• We propose a novel cross-level optimization
(CLO) algorithm to learn the loss term weight-
s better.

2 Preliminaries

In this section, we introduce the necessary back-
ground for BERT early exiting. Throughout this
work, we consider the case of multi-class classi-
fication with samples {(xn, yn), xn ∈ X , yn ∈
Y, i = 1, 2, ..., N}, e.g., sentences, and the num-
ber of classes is K.

2.1 Backbone models
In this work, we adopt BERT and ALBERT as
backbone models. BERT is a multi-layer Trans-
former (Vaswani et al., 2017) network, which is
pre-trained in a self-supervised manner on a large
corpus. ALBERT is more lightweight than BERT
since it shares parameters across different layers,
and the embedding matrix is factorized.

2.2 Early exiting architecture
As depicted in Figure 1, early exiting architectures
are networks with exits at different transformer lay-
ers. With M exits, M classifiers pm : X → ∆K

(m = 1, 2, ...,M) are designated at M layers of
BERT, each of which maps its input to the proba-
bility simplex ∆K , i.e., the set of probability dis-
tributions over the K classes. Previous literature
(Phuong and Lampert, 2019; Liu et al., 2020) think

2970

Figure 1: The training procedure of LeeBERT, which differs from the previous literature in two aspects. First, we
let exits learn from each other, instead of only asking shallow exits to learn from the deepest exit. Second, the
importance of each distillation loss term are retained along with the learning of model parameters.

of p1, ...,pM as being ordered from least to most
expressive. However, in terms of generalization a-
bility, due to the over-thinking problem, later layers
may not be superior to shallow layers.

In principle, the classifiers may or may not share
weights and computation, but in the most interest-
ing and practically useful case, they share both.

2.3 Early exiting strategies

There are mainly three early exiting strategies for
BERT early exiting. BranchyNet (Teerapittayanon
et al., 2016), FastBERT (Liu et al., 2020) and Dee-
BERT (Xin et al., 2020) calculated the entropy of
the prediction probability distribution as a proxy for
the confidence of exiting classifiers to enable ear-
ly exiting. Shallow-Deep Nets (Kaya et al., 2019)
and RightTool (Schwartz et al., 2020) leveraged
the softmax scores of predictions of exiting clas-
sifiers, that is, if the score of a particular class is
dominant and large enough, the model will exit.
Recently, PABEE (Zhou et al., 2020) propose a
patience based exiting strategy analogous to early
stopping model training, that is, if the exits’ predic-
tions remain unchanged for a pre-defined number
of times (patience), the model will stop inference
and exit. PABEE achieves SOTAs results for BERT
early exiting.

In this work, we mainly adopt the PABEE’s pa-
tience based early exiting strategy. However, in
ablation studies, we will show that our LeeBERT
framework can improve the inference performance

of other exiting strategies.

3 Our LeeBERT framework

In this section, we introduce the proposed Lee-
BERT framework. First, we present our distillation
based loss design, and then we elaborate on how
to optimize with learnable weights. Our main con-
tribution is a novel training mechanism for BERT
early exiting, which extends Liu et al. (2020) and
Phuong and Lampert (2019) via mutual distillation
and learned weights.

3.1 Loss objectives
3.1.1 Classification loss
When receiving an input sample (xn, yn), each ex-
it will calculate the cross-entropy loss based on
its predicted, and all the exits are simultaneously
optimized with a summed loss, i.e.,

LCE(xn, yn) =

M∑
m=1

LCE(pm(xn), yn). (1)

Note that the above objective directly assumes uni-
form weights for all M loss terms.

3.1.2 Distillation loss
To introduce our contribution, we first remind the
reader of the classical distillation framework as in-
troduced in Hinton et al. (2015): assume we want a
probabilistic classifier s (student) to learn from an-
other classifier t (teacher). This can be achieved by

2971

minimizing the (temperature-scaled) cross-entropy
between their prediction distributions,

LKD(t, s) = −τ2
K∑
k=1

[t1/τ (xn)]k log[[s1/τ (xn)]k],

(2)
where τ ∈ R+ is the distillation temperature, and

[t1/τ (x)]k =
tk(x)1/τ∑K

k
′
=1
tk′ (x)1/τ

, (3)

is the distribution obtained from the distribution
t(x) by temperature-scaling, and [t1/τ (x)]k is de-
fined analogously.

The temperature parameter allows controlling
the softness of the teachers’ predictions: the higher
the temperature, the more suppressed is the differ-
ence between the largest and the smallest value of
the probability vector. The temperature scaling al-
lows compensating for the over-confidence of the
network’s outputs, i.e., they put too much probabil-
ity mass on the top predicted class and too little on
the others. The factor τ2 in Eq 2 ensures that the
temperature scaling does not negatively affect the
gradient magnitude.

Returning to the early exiting architecture, we
follow the same strategy as classical distillation but
use exits of different layers both as students and
teachers. For any exit m, let T (m) ⊂ 1, ...,M
(which could be empty) be the set of teacher exits it
is meant to learn from. Then we define the overall
distillation loss as

LKD(xn) =
M∑
m=1

∑
t∈T (m)

LKD(pt(xn),pm(xn))

M ∗ |T (m)|
.

(4)
Previous work (Phuong and Lampert, 2019; Li-

u et al., 2020) considers using only the last exit
as as the teacher and all exits learn from it. The
usual belief is that deeper exits have more network
capacity and more accurate than the early exits.
However, the over-thinking phenomenon reveals
that later exits may not be superior to earlier ones.
The more shallow exit may provide different per-
spectives in semantic understanding of the input
sentences. Thus, to fully learn from available infor-
mation, later exits can benefit from learning from
early exits. With this motivation, we consider two
settings:

Learn from Later Exits (LLE). In this setting,
early exits learn from all its later exits.

Learn from All Exits (LAE). In this setting, an
exit learns from all other exits.

3.2 Weighted loss

Previous work considers uniform weights for the
distillation loss terms or classification loss term,
which does not effectively take the trade-off among
multiple objectives. First, from the perspective
of knowledge distillation, intuitively, later exits
should place little weights on the very early exits
since they have less to offer. And all exits should
place higher importance on exits that are perfor-
mant and not overfitting. Second, different loss
objectives are usually competing, which may hurt
the final results.

To address these issues, we propose to assign
a set of learnable weights to our loss objective,
which are updated via gradient descent along with
the model parameters. We give weight wi for each
classification loss term and wm,t for the distillation
loss term coming from exit m learning from exit t,
and the overall loss objective becomes

L(xn, yn) =
M∑
m=1

wiLCE(pm(xn), yn)

+
M∑
m=1

∑
t∈T (m)

wm,t
LKD(pt(xn),pm(xn))

M ∗ |T (m)|
.

(5)

Note that Ω = {wi, wm,t} can be understood as a
set of learnable training hyper-parameter.

3.3 Optimization of Learned weights

3.3.1 Single vs. Bi-level optimization
Assume we have two datasets D1 and D2, which
usually are both subsets of the training set Dtr.
D1 can be equal to D2. For a given set of Ω =
{wi, wm,t}, the optimal solution Θ∗(Ω) of network
parameters Θ are derived from D1, and the optimal
Ω∗ are determined on D2. We denote the loss on
dataset D as LD(Θ,Ω), a function of two sets of
parameters for convenience. Then the optimization
problem becomes

minΩLD2(Θ∗(Ω),Ω),

s.t.,Θ∗(Ω) = arg min
Θ
LD1(Θ,Ω) (6)

Though the above bi-level optimization can ac-
curately describe our problem, it is generally dif-
ficult to solve. One heuristic simplification of the
above equation is to let D1 = D2 = Dtr, and

2972

the optimization problem in Eq 16 reduces to the
single-level optimization (SLO),

minΘ,ΩLDtr(Θ,Ω), (7)

which can be solved directly by stochastic gradi-
ent descent. This reduced formulation treats the
learnable weights Ω just as a part of the model
parameters. Despite its efficiency, compared with
Θ, the number of parameters in Ω is almost ne-
glectable. Thus optimization will need to fit Θ
well for gradient descent, resulting in inadequate
solutions of Ω.

The most widely adopted optimization algorithm
for Eq 16 is the bi-level optimization (BLO) algo-
rithm Liu et al. (2019), which asksD1 andD2 to be
a random split of Dtr.2 And the gradient descent
is done following:

Θ = Θ− λ1∇ΘLD1 ,

Ω = Ω− λ2∇ΩLD2 . (8)

that is, updating the parameters in an interleaving
fashion: one-step gradient descent of Θ on D1 fol-
lowed by one step gradient descent of Ω on D2.
Note that Θ∗(ω) in Eq 16 is not satisfied in BLO
due to first-order approximation, leading gradient
updates of ω into wrong directions, collapsing the
bi-level optimization.

3.4 Cross-level optimization
We now propose our cross-level optimization algo-
rithm. The gradient descent updating of Θ and Ω
follows

Θ = Θ− λ1∇ΘLD1 ,

Ω = Ω− λ1∇ΩLD1 − λ2∇ΩLD2 . (9)

The above equation is the core of our CLO algo-
rithm, which we will refer to as CLO-v1, which are
derived and demonstrated in detail in the Appendix.
We can see that our cross-level optimization’s core
idea is to draw gradient information from both s-
plits of the training set, thus making the updating
of Ω more reliable.

Note that updating Ω requires its gradients on
both the D1 set and D2 set. Thus its computation
complexity is higher than the BLO algorithm. We
propose a more efficient version of cross-level opti-
mization (CLO-v2), which can also be found in the
Appendix. We divide the training procedure into

2Note that on each epoch start, the split of Dtr can be
re-generated.

groups, each group containing C steps, Θ is updat-
ed solely on the training set for C − 1 steps, and
updated following Eq 9 for the remaining one step.
We will call the hyper-parameter C as the cross-
level cycle length. CLO-v2 is more efficient than
CLO-v1, and our experiments show that CLO-v2
works well and is comparable with CLO-v1.

4 Experiments

4.1 Tasks and Datasets

We evaluate our proposed approach to the classifica-
tion tasks on GLUE benchmark. We only exclude
the STS-B task since it is a regression task, and we
exclude the WNLI task following previous work
(Devlin et al., 2018; Jiao et al., 2020; Xu et al.,
2020).

4.2 Backbone models

Backbone models. All of the experiments are built
upon the Google BERT, ALBERT. We ensure fair
comparison by setting the hyper-parameters related
to the PLM backbones the same with HuggingFace
Transformers (Wolf et al., 2020).

4.3 Baseline methods

We compare with the previous BERT early exiting
methods and compare other methods that speed up
BERT inference.

Directly reducing layers. We experiment with
directly utilizing the first 6 and 9 layers of the orig-
inal (AL)BERT with a single output layer on the
top, denoted by (AL)BERT-6L and (AL)BERT-9L,
respectively. These two baselines serve as a lower
bound for performance metrics since it does not
employ any technique.

Static model compression approaches. For
model parameter pruning, we include the result-
s of LayerDrop (Fan et al., 2020) and attention
head pruning (Michel et al., 2019) on ALBERT.
For knowledge distillation, we include DistillBERT
(Sanh et al., 2019), BERT-PKD (Sun et al., 2019).
3 For module replacing, we include BERT-of-
Theseus (Xu et al., 2020).

Input-adaptive inference. This category in-
cludes entropy-based method DeeBERT, score-
based method Shallow-deep, and patience-based
exiting method PABEE as our baselines. We also

3Note that the two methods consider knowledge distillation
on the fine-tuning stage, whereas TinyBERT (Jiao et al., 2020)
and Turc et al. (2019) investigate knowledge distillation during
both the pre-training stage and fine-tuning stage.

2973

Method #Param Speed-up CoLA MNLI MRPC QNLI QQP RTE SST-2
Dev set

ALBERT-base 12M 1.00x 57.4 84.6 89.5 89.2 89.6 75.6 91.8
ALBERT-6L 12M 1.96x 51.9 80.2 85.8 84.7 86.8 70.6 88.8
ALBERT-9L 12M 1.30x 53.8 81.2 87.1 86.2 88.3 72.9 90.3
LayerDrop 12M 1.96x 52.2 79.8 85.9 84.5 87.3 71.3 89.7
HeadPrune 12M 1.22x 52.6 80.3 86.2 84.3 88.0 72.1 89.5
DeeBERT 12M 1.88x 53.7 81.7 87.2 86.4 87.4 72.4 89.6

Shallow-Deep 12M 1.95x 54.1 81.5 87.1 86.7 87.8 72.2 89.7
PABEE 12M 1.91x 56.4 83.9 88.7 88.6 88.9 74.4 90.5

FastBERT 12M 1.94x 57.1 84.7 89.1 89.0 89.3 75.6 90.9
FastBERT-CLO-v2 12M 1.95x 57.2 85.0 89.2 89.3 89.5 76.3 91.1

LeeBERT-LLE 12M 1.96x 57.5 85.1 89.5 89.4 89.8 76.7 91.3
LeeBERT-rand 12M 1.95x 57.0 84.8 89.2 89.1 89.2 75.8 91.0

LeeBERT-uniform 12M 1.95x 57.1 84.9 89.1 89.0 89.3 75.9 91.0
LeeBERT-SLO 12M 1.94x 57.2 85.0 89.2 89.3 89.6 76.0 90.9
LeeBERT-BLO 12M 1.93x 57.4 85.1 89.5 89.4 89.8 76.4 91.3

LeeBERT-CLO-v1 12M 1.95x 57.9 85.4 89.9 89.7 90.3 76.9 91.8
LeeBERT 12M 1.96x 57.8 85.4 89.7 89.7 90.2 76.8 91.8

Test set
ALBERT-base 12M 1.00x 54.1 84.3 87.0 88.3 71.1 73.4 92.8

PABEE 12M 1.89x 53.5 83.6 86.5 88.1 69.8 72.8 92.0
FastBERT 12M 1.95x 54.0 84.4 86.7 88.3 70.5 73.7 92.5
LeeBERT 12M 1.96x 54.6∗ 84.8∗ 87.2 88.6 71.4∗ 74.6∗ 93.1∗

Table 1: Experimental results of models with ALBERT backbone on the development set and GLUE test set. If not
specified, LeeBERT and its variants (e.g., LeeBERT-LLE) are optimized using CLO-v2. The mean performance
scores of 5 runs are reported. The speed-up ratio is averaged across 7 tasks. Best performances are bolded, ”*”
indicates the performance gains are statistically significant.

include the results of FastBERT when it adopts the
PABEE’s exiting strategy.

4.4 Experimental settings

We implement LeeBERT on the base of Hugging-
Face’s Transformers. We conduct our experiments
on a single Nvidia V100 16GB GPU.

Training. We add a linear output layer af-
ter each intermediate layer of the pre-trained
BERT/ALBERT model as the internal classifier.
The hyperparameter tuning is done in a cross-
validation fashion on the training set so that the
dev set information of GLUE tasks are not re-
vealed. We perform grid search over batch sizes of
16, 32, 128, and learning rates of {1e-5, 2e-5, 3e-5,
5e-5} for model parameters Θ, and learning rates
of {1e-5, 1e-4, 1e-3, 5e-3} for learnable weights
Ω. The cross-level cycle length C will be selected
from 2, 4, 8. We will adopt the Adam optimizer.
At each epoch, the training set is randomly split
into D1 and D2 with a ratio 5 : 5. We apply an
early stopping mechanism with patience 5 and e-
valuate the model on dev set at each epoch end.
And we define the dev performance of our early

exiting architecture as the average performance of
all the exits. We will select the model with the best
average performance in cross validation.

We set CLO-v2 as the main optimization algo-
rithm of LeeBERT, and LAE as the main distilla-
tion strategy.4 To demonstrate LeeBERT’s ditilla-
tion objectives are beneficial, we train LeeBERT
with the LLE strategy (LeeBERT-LLE). We also
let the loss term weights in FastBERT to be learn-
able and train with our CLO-v2 algorithm, i.e.,
FastBERT-CLO-v2.

To compare our LeeBERT’s CLO optimization
procedure with baselines, we also train LeeBERT
with (1) single level algorithm (LeeBERT-SLO);
(2) bi-level algorithm (LeeBERT-BLO). To com-
pare CLO-v1 and CLO-v2, we also train the Lee-
BERT with CLO-v1, i.e., LeeBERT-CLO-v1. Be-
sides, we also include LeeBERT with randomly
assigned discrete weights (LeeBERT-rand) and u-
niform weights (LeeBERT-uniform) as baselines,
which will serve to demonstrate that our optimiza-
tion procedure is beneficial. The discrete weights

4Henceforth, unless otherwise specified, our LeeBERT
method will be the one with LAE and CLO-v2.

2974

are randomly selected from {1, 2, ..., 50}, and are
normalized so that the loss terms at each exit have
weights summed to 1.

Inference. Following prior work, inference with
early exiting is on a per-instance basis, i.e., the
batch size for inference is set to 1. We believe
this setting mimics the common latency-sensitive
production scenario when processing individual
requests from different users. We report the mean
performance over 5 runs with different random
seeds. For DeeBERT and Shallow-deep, we set the
threshold for entropy or score, such that the speed-
up ratio is between 1.80x to 2.1x. For FastBERT
and our LeeBERT, we mainly adopt the PABEE’s
patience based exiting strategy, and we compare
the results when the patience is set at 4. How the
patience parameter affects the inference efficiency
is also investigated for PABEE, FastBERT, and
LeeBERT.

4.5 Overall Comparison
Table 1 reports the main results on GLUE with
ALBERT as the backbone model. ALBERT is pa-
rameter and memory-efficient due to its cross-layer
parameter sharing strategy, however, it still has high
inference latency. From Table 1 we can see that
our approach outperforms all compared methods
to improve inference efficiency while maintaining
good performances, demonstrating the proposed
LeeBERT framework’s effectiveness. Note that our
system can effectively enhance the original AL-
BERT and PABEE by a relatively large margin
when speeding-up inference by 1.97x. We also
conduct experiments on the BERT backbone with
the MNLI, MRPC, and SST-2 tasks, which can be
found in the Appendix. To give more insight into
how early exits perform under different efficiency
settings, we illustrate how the patience parame-
ter affect the average number of inference layers
(which is directly related to speed-up ratios) (Fig-
ure 2), and prediction performances (Figure 3). We
also show that one can easily apply our LeeBERT
framework to image classification tasks in the Ap-
pendix.

4.6 Analysis
We now analyze more deeply the main take-aways
from Table 1 and our experiments.

Our LeeBERT can speed up inference. Fig-
ure 2 shows that on the MRPC task, with the same
patience parameter, LeeBERT usually goes through
fewer layers (on average) than PABEE and Fast-

Figure 2: The curve of patience vs. avg inference lay-
ers for PABEE, FastBERT and LeeBERT. The task is
MRPC.

BERT, showing the LeeBERT can improve the effi-
ciency of PLMs’ early exiting.

Our knowledge distillation strategies are ben-
eficial. Table 1 reveals that our LAE setting pro-
vides the best overall performances on GLUE in
terms of distillation strategies. LeeBERT outper-
forms FastBERT-CLO-v2 on all tasks and exceeds
LeeBERT-LLE on 6 of the seven tasks, and the
scores on QNLI the results are comparable. This
result proves that exits learning from each other are
generally beneficial.

Our CLO algorithm brings performance
gains. As a sanity check, LeeBERT-rand performs
worse than all optimized LeeBERT models. Table
1 also shows that the SLO and BLO algorithm-
s perform worse than our CLO. And we can see
that CLO-v1 and CLO-v2 have comparable results.
CLO-v1 seems to have slight advantages on tasks
with few samples, but the performance gaps seem
to be marginal. Since CLO-v2 is more efficien-
t, we will use CLO-v2 as our main optimization
algorithm.

The patience-score curves are different for d-
ifferent PLMs. Figures 3(a) and 3(b) show that
differnt PLMs have quite different patience-score
curves. For ALBERT, early exiting with PABEE’s
strategy can improve upon the ALBERT-base fine-
tuning, and the best performance is obtained with
patience 6. With patience 6, the average num-
ber of inference layers is 8.11. This phenomenon
shows that ALBERT base may suffer from the over-
thinking problem. With the help of our distillation
strategy and CLO optimization, the performance
gain is considerable. Note that: (a) Without distilla-

2975

(a) ALBERT backbone (b) BERT backbone

Figure 3: patience-performance curves for ALBERT and BERT on the MRPC task.

tion, shallow exits’ performances are significantly
worse, and our distillation can help these exits to
improve; (b) with LeeBERT, the performances of
the later exits are comparable to the earlier ones,
since the over-thinking problem is alleviated by
distillation. However, the patience-score curve for
BERT is quite monotonic, suggesting that over-
thinking problem is less severe. Note that BERT’s
shallow exits are significantly worse than that of
ALBERT, and with LeeBERT, the shallow exits’
performances are improved.

Training time costs. Table 2 presents the pa-
rameter numbers and time costs of training for Lee-
BERT compared with the original (AL)BERT, and
PABEE, FastBERT. We can see that although exits
need extra time for training, early exiting architec-
tures actually can reduce the training time. Intu-
itively, additional loss objectives can be regarded
as additional parameter updating steps for lower
layers, thus speeding up the model convergence.
LeeBERT-CLO-v1 requires a longer time for train-
ing. Notably, our LeeBERT’s time costs are com-
parable with PABEE and FastBERT, even though
it has more complicated gradient updating steps.

Working with different exiting strategies. Re-
call that our results are mainly obtained by adopt-
ing the PABEE’s patience based exiting strategies.
However, our LeeBERT framework is quite off-
the-shelf, and can be integrated with many other
exiting strategies. Our framework can work under
different exiting strategies.5 When using entropy-
based strategy, LeeBERT outperforms DeeBERT

5Due to length limitation, we will leave the detailed results
of this ablation study in the Appendix.

Method #Params Training time
- MRPC SST-2 MRPC SST-2

w/o early exiting 12M 12M 6.4 113
w PABEE +18k +18k 6.2 109

w FastBERT +18k +18k 6.0 102
w LeeBERT-CLO-v1 +18k +18k 13.2 226

w LeeBERT(-CLO-v2) +18k +18k 6.5 118

Table 2: Comparison of Parameter numbers and train-
ing time costs. The Training time is the time cost (in
minutes) until until the best performing checkpoint (on
the dev set) with and without early exiting strategies on
ALBERT as the backbone model.

by a large margin. When using Shallow-Deep’s
max probability strategy, LeeBERT outperforms
Shallow-Deep on all GLUE tasks.

5 Conclusion and discussions

In this work, we propose a new framework for
improving PLMs’ early exiting. Our main contri-
butions lie in two aspects. First, we argue that exits
should learn and distill knowledge from each other
during training. Second, we propose that early ex-
iting networks’ training objectives be weighted dif-
ferently, where the weights are learnable. The learn-
able weights are optimized with the cross-level op-
timization we propose. Experiments on the GLUE
benchmark datasets show that our framework can
improve PLMs’ early exiting performances, espe-
cially under high latency requirements. Our frame-
work is easy to implement and can be adapted to
various early exiting strategies. We want to explore
novel exiting strategies that better guarantee exiting
performances in the future.

2976

References
Haoli Bai, Wei Zhang, L. Hou, L. Shang, Jing Jin,

X. Jiang, Qun Liu, Michael R. Lyu, and Irwin King.
2020. Binarybert: Pushing the limit of bert quanti-
zation. ArXiv, abs/2012.15701.

Tolga Bolukbasi, J. Wang, O. Dekel, and Venkatesh
Saligrama. 2017. Adaptive neural networks for ef-
ficient inference. In ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, E. Grave, and Armand Joulin. 2020. Re-
ducing transformer depth on demand with structured
dropout. ArXiv, abs/1909.11556.

Shijie Geng, Peng Gao, Z. Fu, and Yongfeng Zhang.
2021. Romebert: Robust training of multi-exit bert.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

Geoffrey E. Hinton, Oriol Vinyals, and J. Dean. 2015.
Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531.

Xiaoqi Jiao, Y. Yin, L. Shang, Xin Jiang, X. Chen, Lin-
lin Li, F. Wang, and Qun Liu. 2020. Tinybert: Dis-
tilling bert for natural language understanding. ArX-
iv, abs/1909.10351.

Y. Kaya, Sanghyun Hong, and T. Dumitras. 2019.
Shallow-deep networks: Understanding and mitigat-
ing network overthinking. In ICML.

Se-Hoon Kim, Amir Gholami, Zhewei Yao, M. W. Ma-
honey, and K. Keutzer. 2021. I-bert: Integer-only
bert quantization. ArXiv, abs/2101.01321.

A. Krizhevsky. 2009. Learning multiple layers of fea-
tures from tiny images.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2020. Albert: A lite bert for self-supervised
learning of language representations. ArXiv, ab-
s/1909.11942.

Hanxiao Liu, K. Simonyan, and Yiming Yang. 2019.
Darts: Differentiable architecture search. ArXiv, ab-
s/1806.09055.

Weijie Liu, P. Zhou, Zhe Zhao, Zhiruo Wang, Haotang
Deng, and Q. Ju. 2020. Fastbert: a self-distilling
bert with adaptive inference time. ArXiv, ab-
s/2004.02178.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In NeurIP-
S.

Mary Phuong and Christoph H. Lampert. 2019.
Distillation-based training for multi-exit architec-
tures. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 1355–1364.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Roy Schwartz, Gabi Stanovsky, Swabha Swayamdipta,
Jesse Dodge, and N. A. Smith. 2020. The right tool
for the job: Matching model and instance complexi-
ties. In ACL.

S. Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. In EMNLP/IJCNLP.

Surat Teerapittayanon, Bradley McDanel, and H. T.
Kung. 2016. Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR),
pages 2464–2469.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristi-
na Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv: Computation and Language.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, L. Kaiser,
and Illia Polosukhin. 2017. Attention is all you need.
ArXiv, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

J. Xin, Raphael Tang, J. Lee, Y. Yu, and Jimmy Lin.
2020. Deebert: Dynamic early exiting for accelerat-
ing bert inference. ArXiv, abs/2004.12993.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and M. Zhou. 2020. Bert-of-theseus: Compressing
bert by progressive module replacing. In EMNLP.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

2977

Z. Yang, Zihang Dai, Yiming Yang, J. Carbonell,
R. Salakhutdinov, and Quoc V. Le. 2019. Xlnet:
Generalized autoregressive pretraining for language
understanding. In NeurIPS.

Tianhe Yu, Saurabh Kumar, A. Gupta, S. Levine, Karol
Hausman, and Chelsea Finn. 2020. Gradient surgery
for multi-task learning. ArXiv, abs/2001.06782.

W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang,
and Qun Liu. 2020. Ternarybert: Distillation-aware
ultra-low bit bert. ArXiv, abs/2009.12812.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian M-
cAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
ArXiv, abs/2006.04152.

M. Zhu and S. Gupta. 2018. To prune, or not to prune:
exploring the efficacy of pruning for model compres-
sion. ArXiv, abs/1710.01878.

A Derivation of our cross-level
optimization algorithm.

We now derive our cross-level optimization (CLO)
methods. Our objective is

minΩLD2(Θ∗(Ω),Ω), (15)

s.t.,Θ∗(Ω) = arg min
Θ
LD1(Θ,Ω)

Assume the optimal solution is Θ∗ and Ω∗. The
objective in Eq 16 can be viewed as minimiz-
ing the gap between LD1(Θ,Ω) and LD1(Θ∗,Ω∗),
and minimizing the gap between LD2(Θ∗,Ω) and
LD2(Θ∗,Ω∗). Thus, introducing slack variables δ1

and δ2, Eq 16 can be reformulated as

minΘ,Ωδ
2
1 + δ2

2 , (16)

s.t.,LD1(Θ,Ω) <= LD1(Θ∗,Ω∗) + δ1,

LD2(Θ∗,Ω) <= LD2(Θ∗,Ω∗) + δ2,

δ1 >= 0, δ2 >= 0.

Using the Lagrangian multiplier method, the La-
grangian function is

Lg(δ1, δ2,Θ,Ω,Λ) = δ2
1 + δ2

2 (17)

− λ1(LD1(Θ,Ω)− LD1(Θ∗,Ω∗)− δ1)

− λ2(LD2(Θ∗,Ω)− LD2(Θ∗,Ω∗)− δ2)

− λ3δ1 − λ4δ2.

To solve this Lagrangian function, the gradient de-
scent updating of Θ and Ω becomes

Θ = Θ− λ1∇ΘLD1 , (18)

Ω = Ω− λ1∇ΩLD1 − λ2∇ΩLD2 .

Now we formally illustrate the CLO-v1 algorith-
m, which is in Algorithm 1. We also officially give
the CLO-v2 algorithm in Algorithm 2.

B Hyper-parameters for each tasks

Table 3 reports the important hyper-parameters
of LeeBERT for each task. Note that our hyper-
parameter search was done on the training set with
cross-validation so that the GLUE benchmarks’ dev
set information was not revealed during training.

C Results with BERT backbone

We conduct experiments with the BERT backbone
on three representative tasks of GLUE, MNLI, M-
RPC, and SST-2. The results are reported in Table
5. The results show that our LeeBERT framework
works well with different types of PLMs.

D Patience-performance curves on sst-2

We also provide the patience-performance curves
(Figure 4) on the SST-2 task, with ALBERT and
BERT backbones.

E Working with different exiting
strategies

Our results are mainly obtained by adopting the
PABEE’s patience based exiting strategies. Now
we demonstrate that LeeBERT can work with other
exiting strategies. Table 4 shows that LeeBERT
can help improve DeeBERT with its entropy-based
exiting method and outperforms Shallow-deep with
its max-prediction-based approach.

F LeeBERT are effective for image
classification

To demonstrate the effectiveness of LeeBERT on
the image classification task, we follow the ex-
perimental settings in Shallow-Deep (Kaya et al.,
2019). We conduct experiments on two image
classification datasets, CIFAR-10 and CIFAR-100
(Krizhevsky, 2009). And ResNet-56 (He et al.,
2016) serves as the backbone and we compare Lee-
BERT with PABEE, DBT from Phuong and Lam-
pert (2019). After every two convolutional layers,
an exiting classifier is added. We set the batch size
to 128 and use SGD optimizer with learning rate
of 0.1. We set the cross level sycle to be 4, and
learning rate of the learnable weights Ω are 0.01.

Table 6 reports the results. LeeBERT outper-
forms the full ResNet-56 on both tasks even when
it provides 1.3x speed-up. Besides, it outperforms
PABEE and DBT.

2978

Algorithm 1: LeeBERT-CLO-v1

Parameters: Θ,Ω;
Return: the converged early exiting model; while not converge do

for t=1, ..., T do
sample batch B1 and B2 from D1 and D2, respectively
update Θ with

Θ = Θ− λ1∇ΘLB1 , (10)

calculate LB1 and LB2 with the updated Θ, and update Ω with:

Ω = Ω− λ1∇ΩLB1 − λ2∇ΩLB2 , (11)

end
end

Algorithm 2: LeeBERT-CLO-v2

Parameters: Θ,Ω, C;
Return: the converged early exiting model; while not converge do

for t=1, ..., T do
for c = 1, 2, ..., C do

if c != C then
sample batch B1 from D1, respectively update Θ and with

Θ = Θ− λ1∇ΘLB1 , (12)

Ω = Ω− λ1∇ΩLB1 ,

end
else

sample batch B1 and B2 from D1 and D2, respectively
update Θ with

Θ = Θ− λ1∇ΘLB1 , (13)

calculate LB1 and LB2 with the updated Θ, and update Ω with:

Ω = Ω− λ1∇ΩLB1 − λ2∇ΩLB2 , (14)

end
end

end
end

2979

Task
lr of

model params
lr of

learnable weights
batch
size

cross-level
steps

CoLA 2e-5 1e-3 16 2
MNLI 1e-5 1e-5 128 4
MRPC 1e-5 1e-4 32 4
QNLI 1e-5 1e-5 128 8
QQP 1e-5 1e-5 128 4
RTE 2e-5 1e-3 16 4

SST-2 2e-5 1e-4 128 4

Table 3: Hyper-parameter settings for each task.

Method #Param Speed-up MNLI MRPC SST-2
With DeeBERT’s entropy-based exiting strategy

DeeBERT 12M 1.88x 81.7 87.2 90.6
LeeBERT (ours) 12M 1.92x 83.9 88.6 91.8

With Shallow-Deep’s max-prob based exiting strategy
Shallow-Deep 12M 1.95x 81.5 87.1 90.7

LeeBERT (ours) 108M 2.04x 83.7 88.9 91.7

Table 4: Experimental results of LeeBERT when using different early exiting strategies.

Method #Param Speed-up MNLI MRPC SST-2
Dev set

BERT-base 108M 1.00x 83.5 88.3 91.5
BERT-6L 66M 1.96x 79.1 83.9 89.6
BERT-9L 87M 1.30x 80.4 85.8 90.5

DistillBERT 66M 1.96x 79.8 85.3 89.3
BERT-PKD 66M 1.96x 80.6 85.5 89.7

BERT-of-Theseus 66M 1.96x 80.7 85.4 89.6
PABEE 108M 1.86x 81.5 86.2 90.4

FastBERT 108M 1.95x 82.1 86.7 90.8
LeeBERT (ours) 108M 1.97x 83.1 88.5 91.8

Test set
BERT-base 108M 1.00x 83.3 87.2 92.7

PABEE 108M 1.86x 81.6 85.2 91.3
FastBERT 108M 1.96x 82.0 85.7 91.7

LeeBERT (ours) 108M 1.97x 83.1 87.1 92.6

Table 5: Experimental results of models with BERT backbone on the development set and GLUE test set. The
mean performance scores of 5 runs are reported. The speed-up ratio is averaged across 3 tasks. Best performances
are bolded.

Method CIFAR-10 CIFAR-100
- speed-up Acc. speed-up Acc.

ResNet-56 1.00x 91.8 1.00x 68.6
PABEE 1.26x 91.9 1.22x 69.0

DBT 1.28 92.1 1.25x 69.3
LeeBERT 1.30x 92.5 1.27x 69.6

Table 6: Experimental results of LeeBERT when applied in the image classification tasks.

2980

(a) ALBERT (b) BERT

Figure 4: patience-performance curves for ALBERT and BERT on the MRPC task.

