
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 273–282

August 1–6, 2021. ©2021 Association for Computational Linguistics

273

Multi-Head Highly Parallelized LSTM Decoder
for Neural Machine Translation

Hongfei Xu1 Qiuhui Liu2 Josef van Genabith1 Deyi Xiong3,4 Meng Zhang5

1DFKI and Saarland University, Informatics Campus, Saarland, Germany
2China Mobile Online Services, Henan, China

3Tianjin University, Tianjin, China
4Global Tone Communication Technology Co., Ltd.

5Huawei Noah’s Ark Lab
{hfxunlp, liuqhano}@foxmail.com, josef.van genabith@dfki.de,

dyxiong@tju.edu.cn, zhangmeng92@huawei.com

Abstract
One of the reasons Transformer translation
models are popular is that self-attention net-
works for context modelling can be easily par-
allelized at sequence level. However, the com-
putational complexity of a self-attention net-
work is O(n2), increasing quadratically with
sequence length. By contrast, the complexity
of LSTM-based approaches is only O(n). In
practice, however, LSTMs are much slower to
train than self-attention networks as they can-
not be parallelized at sequence level: to model
context, the current LSTM state relies on the
full LSTM computation of the preceding state.
This has to be computed n times for a se-
quence of length n. The linear transformations
involved in the LSTM gate and state computa-
tions are the major cost factors in this. To en-
able sequence-level parallelization of LSTMs,
we approximate full LSTM context modelling
by computing hidden states and gates with
the current input and a simple bag-of-words
representation of the preceding tokens con-
text. This allows us to compute each input
step efficiently in parallel, avoiding the for-
merly costly sequential linear transformations.
We then connect the outputs of each parallel
step with computationally cheap element-wise
computations. We call this the Highly Paral-
lelized LSTM. To further constrain the num-
ber of LSTM parameters, we compute several
small HPLSTMs in parallel like multi-head at-
tention in the Transformer. The experiments
show that our MHPLSTM decoder achieves
significant BLEU improvements, while being
even slightly faster than the self-attention net-
work in training, and much faster than the stan-
dard LSTM.

1 Introduction

The Transformer translation model (Vaswani et al.,
2017) has achieved great success and is used exten-
sively in the NLP community. It achieves outstand-
ing performance compared to previous RNN/CNN

based translation models (Bahdanau et al., 2015;
Gehring et al., 2017) while being much faster to
train.

The Transformer can be trained efficiently due
to the highly parallelized self-attention network. It
enables sequence-level parallelization in context
modelling, as all token representations can be com-
puted in parallel, and linear transformations are
only required to compute the sequence once. On
the other hand, previous RNN-based methods pro-
cess a sequence in a token-by-token manner, which
means that they have to compute linear layers once
for each token, i.e. n times if the number of tokens
in the sequence is n.

However, the complexity of a self-attention net-
work which compares each token with all the other
tokens is O(n2), while for LSTM (Hochreiter and
Schmidhuber, 1997) it is only O(n). In practice,
however, LSTM is slower than the self-attention
network in training. This is mainly due to the fact
that the computation of its current step relies on
the computation output of the previous step, which
prevents efficient parallelization over the sequence.
As for the performance of using recurrent models
in machine translation, Chen et al. (2018) shows
that an LSTM-based decoder can further improve
the performance over the Transformer.

In this paper, we investigate how we can effi-
ciently parallelize all linear transformations of an
LSTM at the sequence level, i.e. compute its lin-
ear transformations only once with a given input
sequence. Given that linear transformations are
implemented by matrix multiplication, compared
to the other element-wise operations, we suggest
that they take the largest part of the model’s overall
computation, and parallelizing the linear transfor-
mations at sequence level may significantly accel-
erate the training of LSTM-based models.

Our contributions are as follows:

274

σ σ σ ɑ

itot-1

Concat

*

ct-1

*

+ *

fg
t og

t ig
t ht

ct ot

Figure 1: LSTM. Layer normalization is omitted for
simplicity.

• We present the HPLSTM model, which com-
putes LSTM gates and the hidden state with
the current input embedding and a bag-of-
words representation of preceding representa-
tions, rather than with the current input and
the full LSTM output of the previous step,
to enable efficient parallelization over the se-
quence and handling long sequences;

• We propose to divide a high-dimensional
HPLSTM computation into several low-
dimensional HPLSTM transformations,
namely Multi-head HPLSTM, to con-
strain both the number of parameters and
computation cost of the model;

• We empirically show that the MHPLSTM
decoder can achieve improved performance
over self-attention networks and recurrent ap-
proaches, while being even slightly faster in
training, and significantly faster in decoding.

2 Preliminaries: LSTM

We design our HPLSTM based on the Layer Nor-
malization (Ba et al., 2016) enhanced LSTM (LN-
LSTM) presented by Chen et al. (2018) as illus-
trated in Figure 1, which achieves better perfor-
mance than the Transformer when used in decod-
ing.

For the computation of gates and the hidden state,
the model concatenates the input it of the current
step t to the output of the previous step ot−1:

vt = it|ot−1 (1)

where “|” indicates concatenation, and vt is the
concatenated vector.

Next, it computes three gates (input gate itg, for-
get gate f tg and output gate otg) and the hidden rep-
resentation ht with vt:

itg = σ(LN(Wiv
t + bi)) (2)

f tg = σ(LN(Wfv
t + bf)) (3)

otg = σ(LN(Wov
t + bo)) (4)

ht = α(LN(Whv
t + bh)) (5)

where Wi, Wf , Wo, Wh and bi, bf , bo, bh are
weight and bias parameters, σ indicates the sig-
moid activation function, α is the activation func-
tion for the hidden state computation, LN is the
layer normalization.

Layer normalization (Ba et al., 2016) is com-
puted as follows:

LNOutput =
LNInput − µ

δ
∗ wLN + bLN (6)

where LNInput is the input, µ and δ stand for the
mean and standard deviation of LNInput, wLN and
bLN are two vector parameters initialized by ones
and zeros respectively.

After the computation of the hidden state, the
cell ct and the output of the LSTM unit ot are
computed as:

ct = ct−1 ∗ f tg + ht ∗ itg (7)

ot = ct ∗ otg (8)

where ∗ indicates element-wise multiplication.

3 Our Approach

3.1 Highly Parallelized LSTM
Equation 1 shows that the computation of the hid-
den state and gates for step t requires the output of
the step t− 1. This prevents the LSTM from effi-
cient parallelization at the sequence level: unless
ot−1 is ready, we cannot compute ot.

To enable the LSTM to compute ot in parallel,
we propose the HPLSTM, as shown in Figure 2.

275

Linear Linear Linear

i1|LN(s1), i2|LN(s2), …, in-1|LN(sn-1), in|LN(sn)

σ σ ɑ

h

*

ig

…c0

i1|c1,

*

fg
1

+

i2|c2,

* +

hr
1fg

2

+

hr
n

in|cn

Linear

σ

…,

og
*

o1, o2, …, on-1, on

hr
2

c

Figure 2: HPLSTM. All computations are parallelized
at sequence level except for the green dashed block.

The HPLSTM uses a bag-of-words representa-
tion st of preceding tokens for the computation of
gates and the hidden state:

st =
t−1∑
k=1

ik (9)

where s1 is a zero vector. The bag-of-words rep-
resentations st can be obtained efficiently via the
cumulative sum operation.

Next, we concatenate the input i and the corre-
sponding layer normalized bag-of-words represen-
tation LN(s) for subsequent computing:

v = i|LN(s) (10)

the layer normalization is introduced to prevent po-
tential explosions due to accumulation in Equation
9 to stabilize training.

Next, we compute the input gate, forget gate and
the hidden state:

ig = σ(LN(Wiv + bi)) (11)

fg = σ(LN(Wfv + bf)) (12)

h = α(LN(Whv + bh)) (13)

Since v is computed over the sequence before the
computation of these gates and the hidden states,
Equations 11, 12 and 13 are only required to be
computed once for the whole sequence, enabling
efficient sequence-level parallelization of high cost
linear transformations, while in the original LSTM,
they (Equations 2, 3 and 5) have to be computed
one after the other as many times as the number
of items in the sequence. However, the bag-of-
words context representation st lacks a weighting
mechanism compared to the previous step output
ot−1 of the original LSTM, thus we also try to use
a two-layer feed-forward network for the hidden
state computation to alleviate potentially related
drawbacks:

h =Wh2α(LN(Wh1v + bh1)) + bh2 (14)

Then we update the hidden state h with the input
gate ig:

hr = h ∗ ig (15)

where hr is the updated hidden state.
With hr and fg, we compute LSTM cells across

the sequence:

ct = ct−1 ∗ f tg + htr (16)

Equation 16 preserves the step-by-step recur-
rence update of the LSTM cell and cannot be par-
allelized across the sequence, but it only contains
element-wise multiplication-addition operations,
which are light-weight and, compared to linear
transformations, can be computed very fast on mod-
ern hardware.

Unlike the original LSTM which computes the
output gate og based on the concatenated vector
vt (Equation 4), we compute the output gate with
the newly produced cell state c and the input to the
LSTM, as c is expected to have better quality than
the bag-of-words representation.

og = σ(LN(Woi|c+ bo)) (17)

Finally, we apply the output gate to the cell, and
obtain the output of the HPLSTM layer.

o = c ∗ og (18)

Both Equation 17 (including the linear transforma-
tion for the computation of the output gate) and
18 can also be efficiently parallelized over the se-
quence.

276

HPLSTM
HPLSTMHPLSTM

Split

Concat

Input

Linear

Linear

Output

Figure 3: Multi-head HPLSTM

3.2 Multi-Head HPLSTM

Computing n smaller networks in parallel can re-
move the connections between hidden units across
sub-networks, reducing both computation and the
number of parameters.

Take for example a 512→ 512 transformation:
using a densely fully-connected linear layer costs 8
times the number of parameters and computation
compared to splitting the 512 dimension input into
8 folds and processing them with 8 × 64 → 64
linear transformations correspondingly.

Since our HPLSTM involves more parameters
and computation than a self-attention network
with the same input size, to constrain the num-
ber of parameters, we compute n low-dimensional
HPLSTMs in parallel. The resulting Multi-head
HPLSTM (MHPLSTM) is illustrated in Figure 3.

Specifically, the MHPLSTM first transforms
its input i into n different embedding spaces of
HPLSTM transformations with a linear transforma-
tion and splits the transformed representation into
n folds:

i1|...|in=Wsi+ bs (19)

Next, the kth input ik is fed into the correspond-
ing HPLSTM network HPLSTMk, and the output
ok is obtained:

Models En-De En-Fr

Transformer Base 27.55 39.54
HPLSTM 28.37† 40.31†

Transformer Big 28.63 41.92
HPLSTM 29.76† 42.84†

Table 1: Results on WMT 14 En-De and En-Fr. † indi-
cates p < 0.01 in the significance test.

ok = HPLSTMk(ik) (20)

In practice, the forward propagation of each
HPLSTM is independent, thus for each HPLSTM
Equation 20 is computed in parallel.

Finally, outputs of all individual HPLSTM net-
works are concatenated and transformed by an-
other linear transformation as the output of the
MHPLSTM layer o:

o =Wm(o1|...|on) + bm (21)

4 Experiments

We replace the self-attention layers of the Trans-
former decoder with the MHPLSTM in our exper-
iments.

4.1 Settings

To compare with Vaswani et al. (2017), we con-
ducted our experiments on the WMT 14 English
to German and English to French news translation
tasks. The concatenation of newstest 2012 and
newstest 2013 was used for validation and newstest
2014 as test set.

We applied joint Byte-Pair Encoding (BPE)
(Sennrich et al., 2016) with 32k merging opera-
tions on all data sets. We only kept sentences with
a maximum of 256 subword tokens for training.
Training sets were randomly shuffled in each train-
ing epoch.

We followed Vaswani et al. (2017) for the exper-
iment settings. The training steps for Transformer
Base and Transformer Big were 100k and 300k
respectively. We used a dropout of 0.1 for all ex-
periments except for the Transformer Big setting on
the En-De task which was 0.3. For the Transformer
Base setting, the embedding dimension and the hid-
den dimension of the position-wise feed-forward
neural network were 512 and 2048 respectively,
the corresponding values for the Transformer Big

277

Model BLEU Para. (M)
Speed-Up

Train Decode

Attention Based
Transformer (Vaswani et al., 2017) 27.55 62.37 1.00 1.00
AAN (Zhang et al., 2018a) 27.63 74.97 1.04 1.52

Recurrent
LN-LSTM (Chen et al., 2018) 27.96 68.69 0.45 1.47
ATR (Zhang et al., 2018b) 27.93 59.23 0.50 1.69

Ours
MHPLSTM 28.37 62.80 1.16 1.69

Table 2: Comparison on WMT 14 En-De. For recurrent approaches, we replace the self-attention sub-layer of
standard Transformer decoder layers with the corresponding module proposed in previous work.

setting were 1024 and 4096 respectively. The di-
mension of each head is 64, thus there were 8 and
16 heads for the base setting and the big setting re-
spectively. We implemented our approaches based
on the Neutron implementation (Xu and Liu, 2019)
of the Transformer translation model. Parameters
were initialized under the Lipschitz constraint (Xu
et al., 2020c).

We used a beam size of 4 for decoding, and
evaluated tokenized case-sensitive BLEU with the
averaged model of the last 5 checkpoints for the
Transformer Base setting and 20 checkpoints for
the Transformer Big setting saved with an interval
of 1500 training steps. We also conducted signifi-
cance tests (Koehn, 2004).

4.2 Main Results

We first verify the performance by comparing our
approach with the Transformer in both the base
setting and the big setting. Results are shown in
Table 1.

Table 1 shows that using an LSTM-based de-
coder can bring significant improvements over the
self-attention decoder. Specifically, using MH-
PLSTM improves +0.82 and +0.77 BLEU on the
En-De and En-Fr task respectively using the base
setting, +1.13 and +0.92 correspondingly using
the big setting. The fact that using an LSTM-based
decoder can improve the translation quality is con-
sistent with Chen et al. (2018), with MHPLSTM
further improving over LN-LSTM (Table 2).

We also compare our approach with the Aver-
aged Attention Network (AAN) decoder (Zhang
et al., 2018a), LN-LSTM and the Addition-
subtraction Twin-gated Recurrent (ATR) network
(Zhang et al., 2018b) on the WMT 14 En-De task.

The AAN consists of an average layer that av-
erages preceding embeddings, a feed-forward net-
work to perform context-aware encoding based on
the averaged context embedding, and a gating layer
to enhance the expressiveness.

With a simple addition and subtraction opera-
tion, Zhang et al. (2018b) introduce a twin-gated
mechanism to build input and forget gates which
are highly correlated, and present a heavily sim-
plified ATR which has the smallest number of
weight matrices among units of all existing gated
RNNs. Despite this simplification, the essential
non-linearities and capability of modelling long-
distance dependencies are preserved.

As LN-LSTM and ATR lead to the out-of-
memory issue when handling long sentences, we
follow Zhang et al. (2018b) to use sentences no
longer than 80 subwords for their training, but we
keep the batch size and training steps the same
as the others for fairness. Their training without
excluding these long sentences is slower than we
reported. Results are shown in Table 2.

Table 2 shows that the MHPLSTM is not only
the fastest in both training and decoding, but also
leads to the best performance compared to base-
lines. Surprisingly, MHPLSTM even surpasses
LN-LSTM. We conjecture potential reasons that
MHPLSTM surpasses both self-attention and LN-
LSTM might be:

• The self-attention network relies on absolute
positional embedding for position encoding,
which has its drawbacks (Shaw et al., 2018;
Wang et al., 2019; Chen et al., 2019a; Wang
et al., 2020), while LSTMs seem to have natu-
ral advantages in (relative) positional encod-

278

Approach
BLEU

Para. (M)
Speed-Up

dev test Train Decode

Transformer 24.00 27.55 62.37 1.00 1.00
MHPLSTM 24.65 28.37 62.80 1.16 1.69
- FFN 24.08 27.67 50.21 1.49 1.91

Table 3: The effects of decoder FFN.

Hidden Gates
BLEU

dev test
√

× 24.65 28.37√ √
24.71 28.38

× × 24.23 27.92
×

√
24.36 27.97

Table 4: Using 2-layer FFN computation.

ing (Chen et al., 2019b).

• LSTMs lack a mechanism to directly connect
distant words, which may lead to overlooking
neighboring information, while the use of a
bag-of-words representation (Equation 9) en-
ables MHPLSTM to connect tokens directly
regardless of the distance, thus MHPLSTM is
able to leverage both local (Equation 16) and
global patterns (Xu et al., 2019). (Please refer
to Section 4.7 for empirical verification.)

• Compared to the self-attention network, the
MHPLSTM computation is more complex.

• The computation for the LSTM hidden state
(Equation 14) and output gate (Equation 17)
in MHPLSTM is enhanced compared to the
LN-LSTM.

4.3 Effect of FFN Layers

We conducted ablation studies on the WMT 14
En-De task.

Since the LSTM hidden state computation may
take the role of the position-wise Feed-Forward
Network (FFN) sub-layer of decoder layers, we
first study removing the FFN sub-layer in decoder
layers. Results are shown in Table 3.

Table 3 shows that removing the FFN layer of the
MHPLSTM-based decoder can lead to further ac-
celeration while performing competitively with the
Transformer baseline with fewer parameters. How-
ever, it hampers MHPLSTM performance, thus we

keep the feed-forward layer in the other experi-
ments.

We also study the effects of using a 1-layer or
a 2-layer neural network for the computation of
the MHPLSTM hidden states (Equations 13 and
14) and gates (Equations 11 and 12). Results are
shown in Table 4.

Table 4 shows that using a 2-layer neural net-
work for the computation of hidden states is impor-
tant for the performance, but the impact of using
a 2-layer neural network for the gate computation
is neglectable. Thus we only apply the 2-layer
network for the computation of the LSTM hidden
states in the other experiments.

4.4 Number of MHPLSTM Heads
We examined the effects of the impact of the num-
ber of MHPLSTM heads on performance and effi-
ciency with the base setting (input dimension: 512).
Results are shown in Table 5.

Table 5 shows that reducing the number of heads
increases both parameters and time consumption
with small performance gains compared to using 8
heads (with a dimension of 64 per head). Using 16
heads significantly hampers the performance with
only a small reduction in the number of parameters
and a slight acceleration. Thus we use a head di-
mension of 64 (8 heads for the base setting, 16 for
the big setting) in our experiments, consistent with
the Transformer.

4.5 MHPLSTM for Encoding
We tested the performance of using a bidirectional
MHPLSTM for encoding. Results are shown in
Table 6.

Table 6 shows that using MHPLSTM for encod-
ing leads to a significant performance drop with
more parameters: it even underperforms the base-
line, while slowing down both training and decod-
ing.

We conjecture that the self-attention network
has advantages in encoding compared to the MH-
PLSTM: it can collect and process bi-directional

279

Heads
BLEU

Para. (M)
Speed-Up

dev test Train Decode

2 24.71 28.43 73.42 0.98 1.51
4 24.67 28.41 66.35 1.04 1.57
8 24.65 28.37 62.80 1.16 1.69

16 24.21 28.03 61.03 1.27 1.76

Table 5: The effects of the number of MHPLSTM heads.

Approach
BLEU

Para. (M)
Speed-Up

dev test Train Decode

Transformer 24.00 27.55 62.37 1.00 1.00
MHPLSTM 24.65 28.37 62.80 1.16 1.69
+ Encoder 23.59 27.12 69.98 0.83 1.38

Table 6: MHPLSTM for encoding.

25

26

27

28

29

30

31

15 30 45 >45

Transformer AAN ATR LN-LSTM MHPLSTM

Figure 4: BLEU scores with respect to various input
sentence length.

context in one forward pass, while MHPLSTM has
to compute 2 forward passes, one for the forward
direction, another one for the reverse direction. For
each direction, relevant context is processed sepa-
rately in the recurrent models.

4.6 Length Analysis

To analyze the effects of MHPLSTM on perfor-
mance with increasing input length, we conducted
a length analysis on the news test set of the WMT
14 En-De task. Following Bahdanau et al. (2015);
Tu et al. (2016); Xu et al. (2020b), we grouped
sentences of similar lengths together and computed
BLEU scores of the MHPLSTM and our baselines
for each group. BLEU score results and decoding
speed-up of each group are shown in Figure 4 and
5 respectively.

Figure 4 shows that MHPLSTM surpasses the
other approaches in most length groups, and im-
provements of using an MHPLSTM based-decoder

20

40

60

80

100

120

140

160

180

200

220

15 30 45 >45

Transformer AAN ATR LN-LSTM MHPLSTM

Figure 5: Decoding speed on a single GTX 1080Ti
GPU with respect to various input sentence length. Y-
axis: number of sentences / second. Beam size: 4.

are more significant for long sentences than short
sentences.

Figure 5 shows that all recurrent-based ap-
proaches are faster than the self-attention decoder
in all length groups, and MHPLSTM achieves com-
parable decoding speed as LSTM and ATR. Even
though the decoding speed of all approaches de-
creases very fast with increasing sentence length,
the acceleration of MHPLSTM is more significant
with long sentences (1.91 times faster than Trans-
former for sentences longer than 45) than with short
sentences (1.41 times faster than Transformer for
sentences no longer than 15).

4.7 Local / Global Pattern Learning Analysis

We compare the ability of the MHPLSTM and base-
lines in capturing dependencies of various distances
with the linguistically-informed verb-subject agree-
ment analysis on the Lingeval97 dataset (Sennrich,

280

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

Transformer Base AAN ATR LN-LSTM MHPLSTM

Figure 6: Subject-verb agreement analysis. X-axis and
y-axis represent subject-verb distance in words and ac-
curacy respectively.

2017).
In German, subjects and verbs must agree with

one another in grammatical number and person. In
Lingeval97, each contrastive translation pair con-
sists of a correct reference translation, and a con-
trastive example that has been minimally modified
to introduce one translation error. The accuracy
of a model is the number of times it assigns a
higher score to the reference translation than to
the contrastive one, relative to the total number of
predictions. Results are shown in Figure 6.

Figure 6 shows that the MHPLSTM outperforms
baselines in almost all cases. For distances longer
than 15, the self-attention network still performs
best, indicating its strong ability in long-distance
relation learning, but the MHPLSTM still surpasses
the other recurrent approaches.

5 Related Work

Sequence-to-sequence neural machine translation
models started with recurrent models (Sutskever
et al., 2014; Bahdanau et al., 2015; Cho et al., 2014).
But recurrent models cannot be parallelized at the
sequence level. Convolutional models (Gehring
et al., 2017; Wu et al., 2019) and the Transformer
(Vaswani et al., 2017) have been proposed.

Due to the O(n2) self-attention network com-
plexity, which slows down decoding, Zhang et al.
(2018a) presented the average attention network to
accelerate decoding. Even though LSTMs cannot
be parallelized at the sequence level, its complexity
is O(n), and Chen et al. (2018) shows that using
the layer normalization enhanced LSTM-based de-
coder can bring improvements in translation quality
and accelerate decoding.

LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014) are the most popular recur-

rent models. To accelerate RNN models, Zhang
et al. (2018b) propose a heavily simplified ATR
network to have the smallest number of weight
matrices among units of all existing gated RNNs.

Peter et al. (2016) investigate exponentially
decaying bag-of-words input features for feed-
forward NMT models. In addition to sequence-
level parallelization, asynchronous optimization
(Heigold et al., 2014) and data parallelization with
a larger batch size (Ott et al., 2018; Chen et al.,
2018; Xu et al., 2020a) can also accelerate training.

6 Conclusion

In this paper, we observe that the sequence-level
parallelization issue of LSTM is due to the fact
that its computation of gates and hidden states of
the current step relies on the computation result
of the preceding step, and linear transformations
have to be propagated the same number of times
as the sequence length. To improve the sequence-
level parallelization of the LSTM, we propose to
remove the dependency of the current step LSTM
computation on the result of the previous step by
computing hidden states and gates with the current
input embedding and a bag-of-words representation
of preceding tokens, and present the Highly Paral-
lelized LSTM. To constrain the number of LSTM
parameters, we compute several small HPLSTMs
in parallel like multi-head self-attention.

In our experiments, we empirically show that the
MHPLSTM model achieves better performance
than self-attention networks, while being even
slightly faster in training, and much faster in decod-
ing, than the self-attention Transformer decoder.

Acknowledgments

We thank anonymous reviewers for their insight-
ful comments. Hongfei Xu acknowledges the sup-
port of China Scholarship Council ([2018]3101,
201807040056). Josef van Genabith is supported
by the German Federal Ministry of Education and
Research (BMBF) under funding code 01IW20010
(CORA4NLP). Deyi Xiong is partially supported
by the joint research center between GTCOM and
Tianjin University and the Royal Society (London)
(NAF\R1\180122). Meng Zhang is partially sup-
ported by MindSpore,1 which is a new deep learn-
ing computing framework.

1https://www.mindspore.cn/.

https://www.mindspore.cn/

281

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Kehai Chen, Rui Wang, Masao Utiyama, and Eiichiro
Sumita. 2019a. Neural machine translation with re-
ordering embeddings. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1787–1799, Florence, Italy.
Association for Computational Linguistics.

Kehai Chen, Rui Wang, Masao Utiyama, and Eiichiro
Sumita. 2019b. Recurrent positional embedding for
neural machine translation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1361–1367, Hong Kong,
China. Association for Computational Linguistics.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin
Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar,
Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Zhifeng Chen, Yonghui Wu, and Macduff Hughes.
2018. The best of both worlds: Combining recent
advances in neural machine translation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 76–86. Association for Computational
Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1243–1252, International
Convention Centre, Sydney, Australia. PMLR.

G. Heigold, E. McDermott, V. Vanhoucke, A. Senior,
and M. Bacchiani. 2014. Asynchronous stochas-
tic optimization for sequence training of deep neu-
ral networks. In 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 5587–5591.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388–
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Myle Ott, Sergey Edunov, David Grangier, and
Michael Auli. 2018. Scaling neural machine trans-
lation. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 1–9,
Brussels, Belgium. Association for Computational
Linguistics.

Jan-Thorsten Peter, Weiyue Wang, and Hermann Ney.
2016. Exponentially decaying bag-of-words input
features for feed-forward neural network in statis-
tical machine translation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
293–298, Berlin, Germany. Association for Compu-
tational Linguistics.

Rico Sennrich. 2017. How grammatical is character-
level neural machine translation? assessing MT qual-
ity with contrastive translation pairs. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 376–382, Valencia,
Spain. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725.
Association for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 27, pages 3104–3112. Curran Asso-
ciates, Inc.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–
85, Berlin, Germany. Association for Computational
Linguistics.

https://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/P19-1174
https://doi.org/10.18653/v1/P19-1174
https://doi.org/10.18653/v1/D19-1139
https://doi.org/10.18653/v1/D19-1139
http://aclweb.org/anthology/P18-1008
http://aclweb.org/anthology/P18-1008
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1109/ICASSP.2014.6854672
https://doi.org/10.1109/ICASSP.2014.6854672
https://doi.org/10.1109/ICASSP.2014.6854672
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/P16-2048
https://doi.org/10.18653/v1/P16-2048
https://doi.org/10.18653/v1/P16-2048
https://www.aclweb.org/anthology/E17-2060
https://www.aclweb.org/anthology/E17-2060
https://www.aclweb.org/anthology/E17-2060
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.18653/v1/P16-1008
https://doi.org/10.18653/v1/P16-1008

282

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Benyou Wang, Donghao Zhao, Christina Lioma, Qi-
uchi Li, Peng Zhang, and Jakob Grue Simonsen.
2020. Encoding word order in complex embeddings.
In International Conference on Learning Represen-
tations.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019. Self-attention with structural position
representations. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1403–1409, Hong Kong, China. As-
sociation for Computational Linguistics.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. In Interna-
tional Conference on Learning Representations.

Hongfei Xu, Josef van Genabith, Deyi Xiong, and
Qiuhui Liu. 2020a. Dynamically adjusting trans-
former batch size by monitoring gradient direction
change. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3519–3524, Online. Association for Computa-
tional Linguistics.

Hongfei Xu, Josef van Genabith, Deyi Xiong, Qiuhui
Liu, and Jingyi Zhang. 2020b. Learning source
phrase representations for neural machine transla-
tion. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 386–396, Online. Association for Computa-
tional Linguistics.

Hongfei Xu and Qiuhui Liu. 2019. Neutron: An Im-
plementation of the Transformer Translation Model
and its Variants. arXiv preprint arXiv:1903.07402.

Hongfei Xu, Qiuhui Liu, Josef van Genabith, Deyi
Xiong, and Jingyi Zhang. 2020c. Lipschitz con-
strained parameter initialization for deep transform-
ers. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 397–402, Online. Association for Computa-
tional Linguistics.

Mingzhou Xu, Derek F. Wong, Baosong Yang, Yue
Zhang, and Lidia S. Chao. 2019. Leveraging lo-
cal and global patterns for self-attention networks.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3069–3075, Florence, Italy. Association for Compu-
tational Linguistics.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018a. Ac-
celerating neural transformer via an average atten-
tion network. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1789–
1798, Melbourne, Australia. Association for Compu-
tational Linguistics.

Biao Zhang, Deyi Xiong, Jinsong Su, Qian Lin, and
Huiji Zhang. 2018b. Simplifying neural machine
translation with addition-subtraction twin-gated re-
current networks. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4273–4283, Brussels, Belgium.
Association for Computational Linguistics.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://openreview.net/forum?id=Hke-WTVtwr
https://doi.org/10.18653/v1/D19-1145
https://doi.org/10.18653/v1/D19-1145
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://www.aclweb.org/anthology/2020.acl-main.323
https://www.aclweb.org/anthology/2020.acl-main.323
https://www.aclweb.org/anthology/2020.acl-main.323
https://www.aclweb.org/anthology/2020.acl-main.37
https://www.aclweb.org/anthology/2020.acl-main.37
https://www.aclweb.org/anthology/2020.acl-main.37
http://arxiv.org/abs/1903.07402
http://arxiv.org/abs/1903.07402
http://arxiv.org/abs/1903.07402
https://www.aclweb.org/anthology/2020.acl-main.38
https://www.aclweb.org/anthology/2020.acl-main.38
https://www.aclweb.org/anthology/2020.acl-main.38
https://doi.org/10.18653/v1/P19-1295
https://doi.org/10.18653/v1/P19-1295
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/D18-1459
https://doi.org/10.18653/v1/D18-1459
https://doi.org/10.18653/v1/D18-1459

