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Abstract

Transformers are not suited for process-
ing long documents, due to their quadrati-
cally increasing memory and time consump-
tion. Simply truncating a long document or
applying the sparse attention mechanism will
incur the context fragmentation problem or
lead to an inferior modeling capability against
comparable model sizes. In this paper, we
propose ERNIE-Doc, a document-level lan-
guage pretraining model based on Recurrence
Transformers (Dai et al., 2019). Two well-
designed techniques, namely the retrospective
feed mechanism and the enhanced recurrence
mechanism, enable ERNIE-Doc !, which has
a much longer effective context length, to
capture the contextual information of a com-
plete document. We pretrain ERNIE-Doc
to explicitly learn the relationships among
segments with an additional document-aware
segment-reordering objective. Various exper-
iments were conducted on both English and
Chinese document-level tasks. ERNIE-DocC
improved the state-of-the-art language model-
ing result of perplexity to 16.8 on WikiText-
103. Moreover, it outperformed competitive
pretraining models by a large margin on most
language understanding tasks, such as text
classification and question answering.

1 Introduction

Transformers (Vaswani et al., 2017) have achieved
remarkable improvements in a wide range of nat-
ural language tasks, including language model-
ing (Dai et al., 2019), text classification (Yang et al.,
2019), and question answering (Devlin et al., 2018;
Radford et al., 2019). This success is largely due
to the self-attention mechanism, which enables the
network to capture contextual information from the

*indicates equal contribution.

'Source code and pre-trained checkpoints can be found

at https://github.com/PaddlePaddle/ERNIE/
tree/repro/ernie-doc.
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Figure 1: Available contextual information utilized by
Transformer variants, where a long document D is par-
titioned into three segments S;(¢ € [1,2,3]). When
training on Sg, (a) and (b) optimize the pretraining ob-
jective depending only on the contextual information
from the current segment or segments in the forward
pass, whereas ERNIE-Doc utilizes the contextual in-
formation of the entire document for each segment.

entire input sequence. Nevertheless, the memory
usage and computation complexity caused by the
self-attention mechanism grows quadratically with
the sequence length, incurring excessive cost when
processing a long document on existing hardware.

Currently, the most prominent pretrained mod-
els, such as BERT (Devlin et al., 2018), are used
on fixed-length input segments of a maximum of
512 tokens owing to the aforementioned limita-
tion. Thus, a long document input must be parti-
tioned into smaller segments of manageable sizes.
However, this leads to the loss of important cross-
segment information, that is, the context fragmen-
tation problem (Dai et al., 2019), as shown in
Fig. 1(a). To mitigate the problem of insufficient in-
teractions among the partitioned segments of long
documents, Recurrence Transformers (Dai et al.,
2019; Rae et al., 2019) permit the use of contextual
information from previous segments in computing
the hidden states for a new segment by maintaining
a memory component from the previous activation;
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this enables the modeling of long documents. In ad-
dition, Sparse Attention Transformers (Child et al.,
2019; Tay et al., 2020; Beltagy et al., 2020; Zaheer
et al., 2020) focus on reducing the complexity of
self-attention operations to explicitly improve the
modeling length, but only up to a restricted context
length (4,096) due to resource limitations.

We argue that existing strategies are not suffi-
ciently effective or reliable, because the contex-
tual information of a complete document is still
not available for each segment during the train-
ing phase. As depicted in Fig. 1, when training
on segment S, the model is ideally optimized
by maximizing P(y | (S1, S2,53)) conditioned on
the contextual information of the entire document
D = {51, 52, S3}, in contrast to the following sub-
optimal solutions: P(y | S2) for Vanilla/Sparse
Transformers” and P(y | (S, S2)) for Recurrence
Transformers.

To address this limitation, we propose ERNIE-
Doc (A Retrospective Long-Document Modeling
Transformer) based on the Recurrence Transformer
paradigm. Inspired by the human reading behavior
of skimming a document first and then looking back
upon it attentively, we design a retrospective feed
mechanism in which segments from a document
are fed twice as input. As a result, each segment in
the retrospective phase could explicitly fuse the se-
mantic information of the entire document learned
in the skimming phase, which prevents context
fragmentation.

However, simply incorporating the retrospective
feed mechanism into Recurrence Transformers is
infeasible because the maximum effective context
length is limited by the number of layers (Dai et al.,
2019), as shown in Fig. 1 (b). Thus, we present an
enhanced recurrence mechanism, a drop-in re-
placement for a Recurrence Transformer, by chang-
ing the shifting-one-layer-downwards recurrence to
the same-layer recurrence. In this manner, the max-
imum effective context length can be expanded, and
past higher-level representations can be exploited
to enrich future lower-level representations.

Moreover, we introduce a segment-reordering
objective to pretrain a document-level model.
Specifically, it is a document-aware task of pre-
dicting the correct order of the permuted set of
segments of a document, to model the relationship
among segments directly. This allows ERNIE-

2For Sparse Transformers, the length of segment So could
be up to 4,096 in Beltagy et al. (2020); Zaheer et al. (2020).

Doc to build full document representations for
prediction. This is analogous to the sentence-
reordering task in ERNIE 2.0 (Sun et al., 2020b)
but at a segment level of granularity, spanning
(commonly) multiple training steps.

We first evaluate ERNIE-DOC on autoregres-
sive word-level language modeling using the en-
hanced recurrence mechanism, which, in theory,
allows the model to process a document with in-
finite words. ERNIE-DoOC achieves state-of-the-
art (SOTA) results on the WiKiText-103 bench-
mark dataset, demonstrating its effectiveness in
long-document modeling. Then, to evaluate the
potential of ERNIE-DOC on document-level nat-
ural language understanding (NLU) tasks, we pre-
trained the English ERNIE-DoOC on the text cor-
pora utilized in BigBird (Zaheer et al., 2020) from
the RoBERTa-released checkpoint, and the Chi-
nese ERNIE-DOC on the text corpora utilized in
ERNIE 2.0 (Sun et al., 2020b) from scratch. After
pretraining, we fine-tuned ERNIE-DOC on a wide
range of English and Chinese downstream tasks, in-
cluding text classification, question answering and
keypharse extraction. Empirically, ERNIE-DoC
consistently outperformed RoBERTa on various
benchmarks and showed significant improvements
over other high-performance long-text pretraining
models for most tasks.

2 Related Work

Sparse Attention Transformers have been exten-
sively explored (Child et al., 2019; Tay et al., 2020;
Beltagy et al., 2020; Zaheer et al., 2020). The
key idea is to sparsify the self-attention operation,
which scales quadratically with the sequence length.
For instance, the Sparse Transformer (Child et al.,
2019) uses a dilated sliding window that reduces
the complexity to O(L+v/L), where L is the se-
quence length. Reformer (Kitaev et al., 2020) fur-
ther reduces the complexity to O(L log L) using
locality-sensitive hashing attention to compute the
nearest neighbors. BP-Transformers (Ye et al.,
2019) employs a binary partition for the input
sequence. Recently, Longformer (Beltagy et al.,
2020) and BigBird (Zaheer et al., 2020) have been
proposed, and both achieved state-of-the-art perfor-
mance on a variety of long-document tasks. They
reduce the complexity of self-attention to O(L)
by combining random attention, window attention,
and global attention. However, it has been proven
in Zaheer et al. (2020) that sparse attention mech-
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anisms cannot universally replace dense attention
mechanisms; moreover, solving the simple problem
of finding the furthest vector requires (n)-layers
of a sparse attention mechanism but only O(1)-
layers of a dense attention mechanism. In addition,
the aforementioned methods require customized
CUDA kernels or TVM programming to imple-
ment sparse attention, which are not maintainable
and are difficult to use. In this study, we adopt a
different approach to adapting Recurrence Trans-
formers for a pretraining-then-finetuning setting, to
model a long document.

Recurrence Transformers (Dai et al., 2019; Rae
et al., 2019) have been successfully applied in gen-
erative language modeling. They employ the Trans-
former decoder as a parametric model for each con-
ditional distribution in p(x) = Hle p(ze|T<t),
where x denotes a text sequence. To capture long
dependencies, they process the text in segments
from left to right based on the segment recurrence
mechanism (Dai et al., 2019). This mechanism
maintains a memory bank of past activations at
each layer to preserve a history of context. Com-
pressive Transformer (Rae et al., 2019) adds a
compressive memory bank to sufficiently store old
activations instead of discarding them, which fa-
cilitates long-range sequence learning. However,
these methods operate from left to right, which
limits their capacity for discriminative language
understanding tasks that require bidirectional in-
formation. XLNet (Yang et al., 2019) proposed a
permutation language modeling objective to con-
struct bidirectional information and achieve supe-
rior performance in multiple NLP tasks; however,
its application to long-document modeling tasks
remains largely unexplored. ERNIE-DoOC builds
on the ideas of the Recurrence Transformers to 1)
tackle the limitation of Recurrence Transformers
for utilizing bidirectional contextual information
and 2) improve the behavior of the segment recur-
rence mechanism to capture longer dependencies.

Hierarchical Transformers (Zhang et al., 2019;
Lin et al., 2020) have enabled significant progress
on numerous document-level tasks, such as docu-
ment summarization (Zhang et al., 2019) and docu-
ment ranking (Lin et al., 2020). Similar to Vanilla
Transformers, Hierarchical Transformers also split
long documents into shorter segments with man-
ageable lengths and then feed them independently
to produce corresponding segment-level semantic
representations. Unlike in Vanilla Transformers,

however, separate Transformer layers are used in
Hierarchical Transformers to process the concate-
nation of these representations. Hierarchical Trans-
formers ignore the contextual information from the
remaining segments when processing each segment
of a long document, thus suffering from the context
fragmentation problem.

3 Proposed Method

In this section, we first describe the background
(Sec. 3.1) that ERNIE-DoC builds on. Then,
we present the implementation of ERNIE-DoC,
including the retrospective feed mechanism in
Sec. 3.2, the enhanced recurrence mechanism in
Sec. 3.3, and the segment-reordering objective in
Sec. 3.4.

3.1 Background

Formally, a long document D is sliced into T
sequential segments, denoted as {51, Sa, ..., ST},
where S; = {z;1,%:2,...,2,,1} is the 7-th seg-
ment with L tokens; x denotes a single token.
Vanilla, Sparse, and Recurrence Transformers em-
ploy different strategies to produce the hidden state
h” € RE*4 for segment S, at the n-th layer:

~n1 {hfﬂl, Vanilla or Sparse Transformers
T+1 =

[SG(h?™") o h!} 1], Recurrence Transformers,
a7y, ki, Vi = YW WL R W
h7,, = Transformer-Block (q7;1, K71, Vri1).
M

where q € REXA k and v € RET™XA gre the
query, key and value vectors, respectively with
hidden dimension d and memory length m (Note
that m = 0 for Vanilla or Sparse Transform-
ers); h!';| € RUEFmMxd is the extended context;
W, € R%*? represents learnable linear projec-
tion parameters; the function SG(-) denotes the
stop-gradient operation; and the notation [o] de-
notes the concatenation of two hidden states along
the length dimension. In contrast to Vanilla or
Sparse Transformers, where h” ; is produced us-
ing only itself, Recurrence Transformers introduce
a segment-level recurrence mechanism to promote
interaction across segments. The hidden state com-
puted for the previous segment h”~! is cached as
an auxiliary context to help process the current seg-
ment h”. However, from the concatenation part in
Eq. 1, ie., [SG(h?~1) o h}|], there is apparently
a constraint that the current hidden state can only
fuse information from the previous segments. In

2916



(.

|
| -7
. s |
Transformer block Effective Context | [ ] [ ] [ } - | Layer-3
r-5 : - £ = 1
| _ - - _-
- T CD e
Memory concatenation Larger Effective Context Length ! | |
R | — = - - |
— L2 i ! &] | Layer-1
) ! | —_— = _ == ..
L T LSS S Se ..
Larger Effective Context Length
[F=S=S=S=-S=-=-=S=-=-SC-=-=Sc-=-=---o=-ooo---o-=-=-====S=Z=z===c=c=co=c J= = = ————
| F—— T T/ T T /T 11
1 G0 S G S D S (D SN ) S S @D ravers
| R = === T+ ey Ty Sy 1!
1 [Jj [jj [jj [jj ! 1!
ERNIE-DOC | . ~_L ~-_L ~ L\\\ L\\\ L :: Layer-2
1 1 )
| ! | Layer-1
1 ! 1!
-
|

The Retrospective Phase

Figure 2: Illustrations of ERNIE-DoOC and Recurrence Transformers, where models with three layers take as input
along document D which is sliced into four segments S;, ¢ € [1, 2, 3, 4]. Recurrence Transformers (upper-right):
When training on Sy, it can only fuse the contextual information of the previous two consecutive segments So, S3,
since the largest effective context length grows linearly w.r.t the number of layers. ERNIE-DoOC (lower):The
effective context length is much larger aided by the enhanced recurrence mechanism (Sec. 3.3). Thus, S4 can
fuse the information of S; discarded by Recurrence Transformers. Moreover, segments in the retrospective phase
contains the contextual information of an entire document, powered by the retrospective feed mechanism (Sec. 3.2).

other words, the contextual information of an entire
document is not available for each segment.

3.2 Retrospective Feed Mechanism

ERNIE-Doc employs a retrospective feed mecha-
nism to address the unavailability of the contextual
information of a complete document for each seg-
ment. The segments from a long document are
twice fed as input. Mimicking the human reading
behavior, we refer to the first and second input-
taking phases as the skimming and retrospective
phases, respectively. In the skimming phase, we
employ a recurrence mechanism to cache the hid-
den states for each segment. In the retrospective
phase, we reuse the cached hidden states from the
skimming phase to enable bi-directional informa-
tion flow. Naively, we can rewrite Eq. 1 to obtain
the contextual information of an entire document
in the skimming phase to be utilized in the retro-
spective phase as follows,

ﬁ = lﬁl 1.7 © I/_\I% O I/‘\I]lVT], (skim. phase)
hr—l—l = [SG(H oh?’™ Do hr—l—l] (retro. phase)

(2)
where H € RE#T*N)xd denotes the cached hid-
den states in the skimming phase with 7" segments,
L length of each segment and total N layers, and

Yo = = [hiohi---oh! *-] is the concatenation of
i-th layer’s hidden states of the skimming phase.
Thus, the extended context h 1 is guaranteed to
capture the bidirectional contextual information of
the entire document. However, it will incur massive

memory and computation cost for directly employ-
ing H in self-attention mechanism. Henceforth, the
main issue is how H should be implemented in a
memory- and computation-efficient manner.

By rethinking segment-level recurrence (Dai
et al., 2019), we observe that the largest possible
context dependency length increases linearly w.r.t
the number of layers (V). For 1nstance at ¢-th
layer, hZ have the longest dependency to hT (i=1)"
Thus, to minimize memory and computation con-
sumption, hidden states from the /V-th layer (top-
layer) are included at a stride of NV, which is suf-
ficient to build the contextual information of an
entire document. Formally, H can be reduced to
H, thth*N thT/N .v] (Note that when
T is not evenly divisible by N, the last hidden state
lA1¥ need to be included). However, for a long doc-
ument input, the extra computational and memory
cost of H, € RIT/N1xd where T > N is still
excessive on existing hardware.

3.3 Enhanced Recurrence Mechanism

To effectively utilize the retrospective feed mech-
anism in practice, an ideal strategy is to ensure
that the cached hidden state h”~! already contains
the contextual information of an entire document
without explicitly taking H or I/-\IT as input. Es-
sentially, we should tackle the problem of limited
effective context length in the segment-level re-
currence mechanisms. Herein, we introduce the
enhanced recurrence mechanism, a drop-in replace-
ment for the segment-level recurrence mechanism,
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by changing the shifting-one-layer-downwards re-
currence to the same-layer recurrence as follows:

b} = [SG(hY) o b7y} 3)

where the cached hidden state h”~! in Eq. 1 and
Eq. 2 is replaced with h” in Eq. 3.

As shown in Fig. 2, when the retrospective feed
mechanism is combined with the enhanced recur-
rence mechanism, every segment in the retrospec-
tive phase (shown in the box with a green dotted
border) has bidirectional contextual information of
the entire text input. We successfully modeled a
larger effective context length (shown in the box
with a orange dotted border) than traditional Re-
currence Transformers can without extra memory
and computation costs. Another benefit of the en-
hanced recurrence scheme is that past higher-level
representations can be exploited to enrich future
lower-level representations.

3.4 Segment-Reordering Objective

In addition to the masked language model
(MLM) objective (Devlin et al., 2018), we intro-
duce an additional document-aware task called
segment-reordering objective for pretraining.
Benefitting from the much larger effective context
length provided by the enhanced recurrence mecha-
nism, the goal of the segment-reordering objective
is to predict the correct order for the permuted
set of segments of a long document, to explicitly
learn the relationships among segments. During
the pretraining process of this task, a long text
input D is first randomly partitioned into 1 to m
chunks; then, all the combinations are shuffled in
a random order. As shown in Fig. 3, D is parti-
tioned into three chunks and then permuted, that
is, D = {Cl, CQ, Cg} — ’ZA) = {CQ, C3, Cl},
where C; denotes the i-th chunk. Subsequently,
the permuted long context D is split into T se-
quential segments as a common practice, denoted
as D = {51, 52, ...,S7}. We let the pretrained
model reorganize these permuted segments, mod-
eled as a K-class classification problem, where
K="

The pretraining objective is summarized as fol-
lows for the 7-th input segment:

max 10gp9(57|§7) + 1 -7 logpg(D\ﬁ)

where §T is the corrupted version of S, which is
obtained by randomly setting a portion of tokens

label = “C,C,C,”

f

A
&

Model l ~ l - N
(~512 tokens each) ! 2 i

*

CZ:[Rclalcd Work] Sparse attention based transformers are

Permuated Chunks of larecly explored ...
a Long Text Input Csz[Pmposed Method] In this section, we firstly describe the

background of proposed ERNIE-DOC ...
C,:[Immduction] Transformers have achieved remarkable

improvements ...
Figure 3: Illustrations of segment-reordering objective.

to [MASK]; D is the permutated version of D; 6 is
the model parameter; and 1,_7 indicates that the
segment-reordering objective is optimized only at
the T'-th step.

4 Experiments

4.1 Autoregressive Language Modeling

Autoregressive language modeling aims to esti-
mate the probability distribution of an existing to-
ken/character based on previous tokens/characters
in an input sequence. For comparison with pre-
vious work, we conducted experiments on word-
level LM, that is, WikiText-103 (Merity et al.,
2016), which is a document-level language model-
ing dataset.

4.1.1 Experimental Setup

For autoregressive language modeling, we use
a memory-enhanced Transformer-XL (Dai et al.,
2019), that is, we employ our enhanced recurrence
mechanism to replace the primitive one used in
the Transformer-XL. Additionally, as proposed
by Segatron (Bai et al., 2020), we introduce the
segment-aware mechanism into Transformer-XL..
Based on Transformer-XL, we trained a base-size
model (L=16, H=410, A=10) and a large-size
model (L=18, H=1,024, A=16)>. The models were
trained for 200K/400K steps using a batch size
of 64/128 for the base/large configurations. Dur-
ing the training phase, the sequence length and
memory length were limited to 150 and 384 for
the base and the large model, respectively. The re-
maining hyper-parameters were identical to those
of Transformer-XL.

3We denote the number of Transformer layers as L, the
hidden size as H, and the number of self-attention heads as A.
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Models #Param. PPL Models IMDB HYP
Results of base models Acc. Fl1 F1
LSTM (Grave et al., 2016) - 487 RoBERTa (Liu et al., 2019) 953 950 878
LSTM+Neural Cache (Grave et al., 2016) - 40.8 Longformer (Beltagy et al., 2020) 95.7 B 94.8
GCNN-14 (Dauphin et al., 2017) B 37.2 BigBird (Zaheer et al., 2020) - 95.2 922
QRNN (Merity et al., 2018) 15IM  33.0 ” ’ ’
Transformer-XL Base (Dai et al., 2019) 151IM 24.0 ERNIE-Doc 9.1 96.1 96.3
SegaTransformer-XL Base (Bai et al., 2020) 151M 22.5 XLNet-Large (Yang et al., 2019)  96.8 - -
ERNIE-DoC Base 151M 21.0 ERNIE-Doc-Large 97.1 97.1 96.6
Results of large models

Adaptive Input (Baevski and Auli, 2018) 247M 18.7 Table 3: Results on the IMDB and HYP dataset for
Transformer-XL Large (Dai et al., 2019) 247M 18.3 long-text classification.

Compressive Transformer (Rae et al., 2019) 247M 17.1

SegaTransformer-XL Large (Bai et al., 2020) 247M 17.1 ~ A=16). For Chinese tasks, we used only one size,
ERNIE-Doc Large 247TM  16.8

Table 1: Comparison between Transformer-XL and
competitive baseline results on WikiText-103.

4.1.2 Results

Tab. 1 summarizes the evaluation results for
WikiText-103. ERNIE-DOC achieves an impres-
sive improvement compared with Transformer-XL:
the perplexity (PPL) decreases by 3.0 for the base
model and by 1.5 for the large model. Finally, we
improve the state-of-the-art result of PPL to 21.0
(the base model) and 16.8 (the large model).

4.2 Pretraining and Finetuning

4.2.1 Pretraining Text Corpora

Dataset #tokens Avglen Size
WIKIPEDIA 2.7B 480 8G
BOOKSCORPUS 1.2B 2,010 3.5G
CC-NEWS 14B 560 42G
STORIES 7.5B 1,891 22G

Table 2: English datasets used for pretraining.

English Data. To allow ERNIE-DOC to capture
long dependencies in pretraining, we compiled a
corpus from four standard datasets: WIKIPEDIA,
BOOKSCORPUS (Zhu et al., 2015), CC-NEWS?,
and STORIES (Trinh and Le, 2018) (details listed
in Tab. 2). We tokenized the corpus using the
RoBERTa wordpieces tokenizer (Liu et al., 2019)
and duplicated the pretraining data 10 times.
Chinese Data. The Chinese text corpora used in
ERNIE 2.0 (Sun et al., 2020b) were adopted for
pretraining ERNIE-Doc.

4.2.2 Experimental Setup

Pretraining. We trained three sizes of models for
English tasks: small (L=6, H=256, A=4), base
(L=12, H=768, A=12), and large (L=24, H=1,024,

*We used news-please to crawl English news articles

published between September 2016 and February 2019 and
adopted Message Digest Algorithm5 (MDS5) for deduplication.

i.e., base (L=12, H=768, A=12). We limited the
length of the sentences in each mini-batch to
512 tokens and the length of the memory to 128.
The models were trained for 500K/400K/100K
steps using a batch size of 2,560/2,560/3,920
sentences for the small/base/large configurations.
ERNIE-Doc was optimized with the Adam
(Kingma and Ba, 2014) optimizer. The learning
rate was warmed up over the first 4,000 steps to a
peak value of le-4, and then it linearly decayed.
The remaining pretraining hyperparameters were
the same as those of ROBERTa (Liu et al., 2019)
(see Tab. 12). Additionally, we employed relative
positional embedding (Shaw et al., 2018) in our
model pretraining because it is necessary for
reusing hidden state without causing temporal
confusion (Dai et al., 2019).

Finetune. In contrast to previous models, such as
BERT, RoBERTa, and XLNet, the proposed model
employs the retrospective feed mechanism and the
enhanced recurrence mechanism during the fine-
tuning phase to fully utilize the advantages of these
two strategies.

4.2.3 Results on English Tasks

Results on Long-Text Classification Tasks. We
consider two datasets: IMDB reviews (Maas
et al., 2011) and Hyperpartisan News Detection
(HYP) (Kiesel et al., 2019). The former is a widely
used sentiment analysis dataset containing 50,000
movie reviews, labeled as positive or negative. The
latter contains news that takes extreme left-wing
or right-wing standpoints. The documents in HYP
are extremely long (50% of the samples contain
more than 537 tokens) and are thus suitable for
testing long-text classification ability. Tab. 3 sum-
marizes the results of the ERNIE-Doc-Base and
ERNIE-Doc-Large models for long-text classifi-
cation tasks, and ERNIE-Doc achieves a SOTA
result. On IMDB, we observed a modest perfor-
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Models TQA HQA

F1  Span Supp Joint
RoBERTa 743 735 834 635
Longformer 752 743 844 644
BigBird 795 755 871 678
ERNIE-Doc 80.1 794 863 70.5

Longformer-Large 778 810 858 714
BigBird-Large - 81.3 894 -
ERNIE-Doc-Large 82,5 822 87.6 73.7

Table 4: Results on TQA and HQA dev dataset for
document-level QA. HQA metrics are F1.

OpenKP dataset Fl@l Fl@3 Fl@5
BLING-KPE (Xiong et al., 2019)  26.7 29.2 20.9
JointKPE (Sun et al., 2020a) 39.1 39.8 33.8
ETC (Ainslie et al., 2020) - 40.2 -
ERNIE-Doc 40.2 40.5 344

Table 5: Results on OpenKP dev dataset. The baseline
results are obtained from corresponding papers under
no-visual-features setting.

mance gain compared with ROBERTa. This is be-
cause nearly 90% of the samples in the dataset
consist of fewer than 569 tokens. Unlike on IMDB,
ERNIE-DoOC surpasses the baseline models on
HYP by a substantial margin, demonstrating its
capability of utilizing information from a long doc-
ument input. Note that we include XL Net-Large,
the previous SOTA pretraining model on the IMDB
dataset, as the baseline for a large model setting;
ERNIE-DoOC achieves a result comparable to that
of XLNet-Large.

Results on Document-level Question-
Answering Tasks. We utilized two document-
level QA datasets (Wikipedia setting of TriviaQA
(TQA) (Joshi et al., 2017) and distractor setting of
HotpotQA (HQA) (Yang et al., 2018)) to evaluate
the reasoning ability of the models over long
documents. TQA and HQA are extractive QA
tasks, and we follow the simple QA model of
BERT (Devlin et al., 2018) to predict an answer
with the maximum sum of start and end logits
across multiple segments of a sample. In addition,
we use a modified cross-entropy loss (Clark and
Gardner, 2017) for the TQA dataset and use a
two-stage model (Groeneveld et al., 2020) with the
backbone of ERNIE-Doc for the HQA dataset.
Tab. 4. shows that ERNIE-DoOC outperforms
RoBERTa and Longformer by a considerable
margin on these two datasets, and is comparable to
current SOTA long-document model, i.e., BigBird
on HQA in large-size model setting.

Results on the Keyphrase Extraction Task. We
include OpenKP (Xiong et al., 2019) dataset to eval-

uate ERNIE-DOC’s ability to extract keyphrases
from a long document. Each document contains
up to three short keyphrases and we follow the
model setting of JointKPE (Sun et al., 2020a) and
ETC (Ainslie et al., 2020) by applying CNNs on
BERT’s output to compose n-gram embeddings
for classification. We report the results of base-
size models in Tab. 5 under no-visual-features set-
ting for easy and fair comparison with baselines.
ERNIE-Doc performs stably better on all metrics
on the OpenKP dataset.

4.2.4 Results on Chinese Tasks

We conducted extensive experiments on seven
Chinese natural language understanding (NLU)
tasks, including machine reading comprehension
(CMRC2018 (Cui et al., 2018), DRCD (Shao
et al., 2018), DuReader (He et al., 2017), C3 (Sun
et al., 2019a)), semantic similarity (CAIL2019-
SCM (CAIL) (Xiao et al., 2019)), and long-text
classification (IFLYTEK (IFK) (Xu et al., 2020),
THUCNews (THU)? (Sun et al., 2016)). The docu-
ments in all the aforementioned datasets are suffi-
ciently long to be used to evaluate the effectiveness
of ERNIE-DocC on long-context tasks (see detailed
datasets statistics in Tab. 9). We reported the mean
results with five runs for the seven Chinese tasks
in Tab. 6, and summarized the hyperparameters in
Tab. 16. ERNIE-DoOC outperforms previous mod-
els across these Chinese NLU tasks by a significant
margin in the base-size model group.

4.2.5 Ablation Studies
No. Models TQA HYP
I ERNIE-Doc 64.56 86.10
II I w/osegment-reordering 63.59 84.60
IIT I w/o retrospective feed 63.38 83.27
IV III w/o enhanced recurrence 61.09 81.67
\Y% IV w/o recurrence 58.35 77.72

Table 7: Performance of ERNIE-DocC-Small after ab-
lating each proposed component (F1 result is reported).

Effect of proposed components. Tab. 7 shows
the performance of ERNIE-DocC-Small on two
English tasks after ablating each proposed compo-
nent. All models were pretrained and fine-tuned
with the same experimental setup, and we report
the mean results of five runs. We observed a stable
performance gain across these two tasks by incor-
porating each proposed component. By comparing

We use a subset of THUCNews which can

be found at Thttps://github.com/gaussic/
text-classification-cnn-rnn.
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DRCD CMRC2018 DuReader CAIL THU IFK C3

Models EM/F1 EM/F1 EM/F1 Acc. Acc.  Acc. Acc.

Dev Test Dev Dev Dev Test Dev Test Dev Dev Test
BERT (Devlin et al., 2018) 85.7/91.6 84.9/90.9 66.3/85.9 59.5/73.1 61.9 67.3 97.7 97.3 60.3 65.7 64.5
BERT-wwm-ext* 85.0/91.2 83.6/90.4 67.1/85.7 -/- - - 976 97.6 59.4 67.8 68.5
RoBERTa-wwm-ext* 86.6/92.5 85.2/92.0 67.4/87.2 -/- - - - - 60.3 67.1 66.5
MacBERT (Cui et al., 2020a) |88.3/93.5 87.9/93.2 69.5/87.7 -/- - - - - - - -
XLNet-zh (Cui et al., 2020b) |83.2/92.0 82.8/91.8 63.0/85.9 -/- - - - - - - -
ERNIE 1.0 (Sun et al., 2019b) | 84.6/90.9 84.0/90.5 65.1/85.1 57.9/72/1 - - 977 97.3 59.0 65.5 64.1
ERNIE 2.0 (Sun et al., 2020b) | 88.5/93.8 88.0/93.4 69.1/88.6  61.3/749 64.9 67.9 98.0 97.5 61.7 72.3 73.2
ERNIE-DoC 90.5/95.2 90.5/95.1 76.1/91.6 65.8/77.9 65.6 68.8 98.3 97.7 62.4 76.5 76.5

Table 6: Results on seven Chinese NLU tasks for ERNIE-DocC-base model. The results of the models with "+’ are
from Cui et al. (2019). The XLNet-zh is the abbreviation of Chinese-XLNet. Notably, the result of BERT on CAIL
was obtained from Xiao et al. (2019), where BERT was post-pretrained with a legal dataset.

No.IV and No.V, we see that segment-level recur-
rence is necessary for modeling long documents
and produces 2.74 and 3.95 % points improvement
on the TQA and HYP dateset, respectively. More-
over, a substantial improvement is achieved using
the enhance recurrence mechanism (2.29% point
on TQA and 1.40% point on HYP, see No.III - IV).
Retrospective feed mechanism further improves
0.21% point on TQA and 1.33% point on HYP
(No.Il - No.IIl). Considering different types of
tasks, we observe that on HYP, an extremely long
text classification dataset, a substantial improve-
ment is achieved using the segment-reordering ob-
jective (1.5% point). This indicates that the [CLS]

token, pretrained using the segment-reordering ob-
jective, is more adaptable to the document-level
text classification task.
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Figure 4: Acc. (dotted line) and PPL (solid line) met-
rics for variants of our small models with different max-
imum sequence length during pretraining.

Effect of enhanced recurrence mechanism with
regard to different maximum sequence lengths.
As depicted in Fig. 4, the enhanced recurrence
mechanism plays an important role in pretraining
an effective language model with lower PPL and

higher accuracy under both the maximum sequence
input lengths of 128 and 512. The effect of the
enhanced recurrence mechanism is more signifi-
cant under a smaller maximum sequence length,
even makes the ERNIE-DocC-Small (max-len:128)
comparable to ERNIE-Doc-Small_w/o_en_recur
(max-len:512) w.r.t accuracy. This intriguing prop-
erty of the enhanced recurrence mechanism enables
more efficient model training and inference by re-
ducing maximum sequence length while remaining
comparable modeling capability.

5 Conclusion

In this paper, we proposed ERNIE-DocC, a
document-level language pretraining model based
on the Recurrence Transformers paradigm. Two
well-designed mechanisms, namely the retrospec-
tive feed mechanism and the enhanced recurrent
mechanism, enable ERNIE-Doc, which theoreti-
cally has the longest possible dependency, to model
bidirectional contextual information of a complete
document. Additionally, ERNIE-DoC is pre-
trained with a document-aware segment-reordering
objective to explicitly learn the relationship among
segments of a long context. Experiments on var-
ious downstream tasks demonstrate that ERNIE-
Doc outperforms existing strong pretraining mod-
els such as RoBERTa, Longformer, and BigBird
and achieves SOTA results on several language
modeling and language understanding benchmarks.
In future studies, we will evaluate ERNIE-DoC on
language generation tasks, such as generative ques-
tion answering and text summarization. We will
also investigate its potential applicability in other
areas, such as computational biology. Another pos-
sibility is to incorporate graph neural networks into
ERNIE-DoOC to enhance its modeling capability
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for tasks that require multi-hop reasoning and long-
document modeling ability.
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A Appendices
A.1 Tasks

Following previous work, we evaluate ERNIE-
Doc on various tasks that require the ability to
model a long document.

Document-level Language Modeling Task. We
employ WikiText-103 (Merity et al., 2016) in
language modeling experiments. WikiText-103 is
the largest available word-level benchmark with
long-term dependency for language modeling,
which consists of 28K articles, where each article
has 3.6K tokens on average, thus 103M training
tokens in total.

Long Text classification. We consider two En-
glish datasets: IMDB reviews (Maas et al., 2011)
and Hyperpartisan news detection (Kiesel et al.,
2019) (see Tab. 8), and two Chinese datasets: IFLY-
TEK (Xu et al., 2020) and THUCNews (Sun et al.,
2016) (see Tab. 9). IMDB is a widely used senti-
ment analysis dataset containing 50,000 movie re-
views labeled as positive or negative. Training and
dev dataset is equally split. Hyperpartisan contains
news that takes an extreme left-wing or right-wing
standpoint. Documents are extremely long in Hy-
perpartisan which makes it a good test for long text
classification. We use the same split as Longformer
by dividing 654 documents into train/dev/test sets.
IFLYTEK contains 17,332 app descriptions. The
task is to assign each description into one of 119
categories, such as food, car rental and education.
THUCNews is generated by filtering historical data
of Sina News RSS subscription channel from 2005
to 2011, including 740,000 news documents and
14 categories. In this paper, we employ the subset
version instead of the full one ©, which contains 10
categories, each with 5,000 pieces of data.

For the above four long text classification
datasets, we concatenate [CLS] token with
each segment and takes as input multiple seg-
ments of a text sequentially. Each segment
is generated by slicing the text with a sliding
window of 128 tokens. We apply binary cross
entropy loss on the [CLS] token of the last segment.

Long Text Semantic Similarity. Considering that
there is no available long text semantic similarity
dataset in English, we evaluate the effectiveness

The subset version is also released and can be downloaded
from the official website of THUCTC.

of ERNIE-DoOC on semantic similarity task only
depending on Chinese dataset CAIL2019-SCM.
According to Xiao et al. (2019), CAIL2019-SCM
is a sub-task of the Chinese AI and Law Challenge
(CAIL) competition in 2019, which contains
8,964 triplets of legal documents collected from
China Judgments Online. Every document in a
majority of triplet has more than 512 characters,
therefore, the total length of a triplet is quite long.
CAIL2019-SCM requires researchers to decide
which two cases are more similar in a triplet.
Specifically, given a triplet (A, B, C'), where A, B,
C are fact descriptions of three cases. The model
needs to predict whether sim (A, B) > sim(A, C)
or sim(A,C) > sim(A,B), in which sim
denotes the similarity between two cases. Instead
of separately feeding the document A, B, C
into the model to get the feature h, we use the
combinations of (A, B) and (A4, C) as input. We
generate multiple segments for (A, B) or (A, C)
with a sliding window of 128 tokens and feed them
as input sequentially. The binary cross entropy
loss is applied to the difference of [CLS] token
output of each segment.

Document-level Question answering. We utilize
two English question answering datasets (Trivi-
aQA (Joshi et al., 2017), HotpotQA (Yang et al.,
2018)) (see Tab. 8) and four Chinese question an-
swering datasets (CMRC2018 (Cui et al., 2018),
DRCD (Shao et al., 2018), DuReader (He et al.,
2017), C? (Sun et al., 2019a)) (see Tab. 9) to evalu-
ate models’ reasoning ability over long documents.

TriviaQA is a large scale QA dataset that
contains over 650K question-answer pairs. We
evaluate models on its Wikipedia setting where
documents are Wikipedia articles, and answers
are named entities mentioned in multiple docu-
ments. The dataset is distantly supervised mean-
ing that there is no golden span, thus we find
all superficial identical answers in provided docu-
ments’. We use the following input format for each
segment: “[CLS] context [g] question
[ /g]” where context is generated by slicing multi-
documents input with a sliding window of 128 to-
kens. We take as input multiple segments of a sam-
ple sequentially and attach a linear layer to each
token in a segment to predict the answer span. We

"We use the same preprocessing code for TriviaQA
dataset as BigBird, see https://github.com/
tensorflow/models/blob/master/official/
nlp/projects/triviaqa/preprocess.py
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Datasets IMDB Hyperpartisan TriviaQA HotpotQA OpenKP

split train dev train dev test train dev train dev train dev
#samples | 25,000 2,000 516 64 65 61,888 7,993 90,432 7,404 134,894 6,616
# tokens of context length in each percentile using ROBERTa wordpiece tokenizer

50% 215 212 537 521 639 8,685 8,586 1,279 1,325 894 681
90% 569 550 1,519 1,539 1,772 25,207 24,825 1,725 1,785 3,451 2,734
95% 745 724 1,997 1979 1,994 32,018 32,132 1,888 1,943 5,340 4,130
max 3,084 2,778 5566 2,643 5566 173,302 146,012 3,733 3,618 105,548 43,609

Table 8: English Datasets statistics.

Datasets IFLYTEK  THUCNews CAIL CMRC2018  DuReader Cc? DRCD

split train dev  train dev train dev train dev train dev train dev train dev  test
# samples | 12,133 2,599 50,000 5,000 5,102 1,500 10,121 3,219 15,763 1,628 11,869 3,816 26,936 3,524 3,493
# tokens of context length in each percentile using BERT tokenizer

50% 243 242 656 579 1,837 1,834 423 426 163 182 96 89 397 421 405
90% 507 508 1,821 1,599 1,965 1962 745 771 550 567 591 554 616 666 626
95% 563 560 2455 27245 2,008 1,995 827 840 652 667 697 692 709 740 736

max 3,153

1,698 26,659 9,128 2,400 2,310 970

961 1,021 854 1,534 1,167 1,678 989 950

Table 9: Chinese Datasets statistics.

use a modified cross entropy loss (Clark and Gard-
ner, 2017) assuming that each segment contains at
least one correct answer span. The final prediction
for each question is a span with the maximum sum
of start and end logit across multiple segments.

HotpotQA is a QA dataset where golden
spans of an answer and sentence-level supporting
facts are provided. Thus, it contains two tasks
namely, answer span prediction and support-
ing facts prediction. In the distractor setting,
each question is associated with 10 documents
where only 2 documents contain supporting
facts. It requires the model to find and reason
over multiple documents to find answers, and
explain the predicted answers using predicted
supporting facts. Following Groeneveld et al.
(2020), we implemented a two-stage model based
on ERNIE-DoC and use the following input

format for each segment: “[CLS] title;
[p] senty; [SEP] sent;s [SEP]
titles [p] sents; [SEP] sentap
[SEP] ... [g] question [/g]” For

evidence prediction, we apply 2 layer feedforward
networks over the special token [SEP] and [p]
representing a sentence and a paragraph separately.
Then we use binary cross entropy loss to do binary
classification. For answer span prediction, we train
the model with a multi-task objective: 1) question
type (yes/no/span) classification on the [CLS]
token. 2) supporting evidence prediction on [SEP]
and [p]. 3) span prediction on the start and end
token of a golden span.

CMRC2018, DRCD and DuReader are com-
mon Chinese QA datasets with same format, which
have been evaluated in numerous popular pretrain-

ing models, such as BERT (Devlin et al., 2018),
ERNIE 1.0 (Sun et al., 2019b), ERNIE 2.0 (Sun
et al., 2020b) and etc. The detailed descriptions
of three datasets can refer to Cui et al. (2018),
Shao et al. (2018) and He et al. (2017). We
adopt the same input format as TriviaQA for each
segment, denotes as “[CLS] context [SEP]

question [SEP]‘“ where context is generated
by slicing multi-documents input with a sliding
window of 128 tokens. We take as input multiple
segments of a sample sequentially and attach a lin-
ear layer to each token in a segment to predict the
answer span. Then, we apply a softmax and use
the cross entropy loss with the correct answer. The
final prediction for each question is a span with
the maximum sum of start and end logit across
multiple segments.

The multiple Choice Chinese machine reading
Comprehension dataset (C?) (Sun et al., 2019a)
is the first Chinese free-form multi-choice
dataset where each question is associated with
at most four choices and a single document.
According to (Sun et al., 2019a), m segments are
constructed for a question, in which m denotes
the number of choice for that question. We
use the following input format for each seg-
ment: “[CLS] context [SEP] question
[SEP] choice; [SEP] ” where context is
generated by slicing document input with a sliding
window of 128 tokens stride. We take as input
multiple segments of a sample in a single batch
and attach a linear layer to [CLS] that outputs
an unnormalized logit. Then we obtain the final
prediction for a question by applying a softmax
layer over the unnormalized logits of all choices
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Models\Dataset TriviaQA HotpotQA IMDB Hyperpartisan Avg.
#0 ERNIE-DocC 64.56 50.85 93.14 86.10 73.66
#1 w/o so 63.59 50.04 93.15 84.60 72.85
#2 w/o so&retro 63.38 49.87 92.56 83.27 72.27
#3 w/o so&retro&en-rec 61.09 44.05 92.07 81.67 69.72
#4 w/o so&retro&recur 58.35 31.54 91.60 77.72 64.80

Table 10: Performance of ERNIE-DoOC-small after ablating each proposed component. (so denotes the segment-
reordering objective, re denotes the retrospective feed mechanism, en-rec denotes the enhanced recurrence mech-
anism, and recur denotes the segment-level recurrence module. We used the Acc. metric for IMDB, F1 metric for

TriviaQA and Hyperpartisan, Joint-F1 for HotpotQA.)

associated with it.

Keyphrase Extraction. We include
OpenKP (Xiong et al., 2019) dataset  to evaluate
ERNIE-DoC’s ability to extract keyphrases
from a long document. Each document contains
up to three short keyphrases and we follow the
model setting of JointKPE (Sun et al., 2020a) and
ETC (Ainslie et al., 2020) by applying CNNs on
BERT’s output to compose n-gram embeddings for
classification. We clean the dataset by removing
some nonsense words such as the HTTP links. In
detail, we apply five CNNs on BERT’s output with
the kernel size ranging from 1 to 5. Since each
word is composed of several sub-tokens, we take
the first token’s embedding as the input for CNNs.
Finally, we use the binary cross entropy loss as the
optimization objective.

A.2 Ablation Studies

Tab. 10 shows the performance of ERNIE-DoOC-
Small on English tasks after ablating each proposed
component. All models were pretrained and fine-
tuned with the same experimental setup, and we
report the mean results of five runs. In the last col-
umn in Tab. 10, we see that the segment-reordering
objective is improved ERNIE-Doc by 0.81% on
average (#1 - #0), the retrospective feed mecha-
nism is improved ERNIE-DOC by an average of
0.58% (#2 - #1), and the enhanced recurrence mech-
anism makes a large contribution of 2.55 percent-
age points on average (#3 - #2). By comparing #3
with #4, we see that segment-level recurrence is
necessary for modeling long documents and pro-
duces a 4.92 percentage point improvement on av-
erage. Considering different types of tasks, we
observe that on Hyperpartisan, an extremely long
text classification dataset, a substantial improve-
ment is achieved using the segment-reordering ob-

8The dataset can be downloaded from https://
github.com/thunlp/BERT-KPE

jective (1.5% point). This indicates that the [CLS]
token, pretrained using the segment-reordering ob-
jective, is more adaptable to the document-level
text classification task. Moreover, we observed a
stable performance gain across all tasks using the
enhanced recurrence mechanism.

A.3 Hyperparameters for Language
Modeling

In Tab. 11, we present the detailed hyperparameters
used for our experiments, which are the same as
the hyperparameters employed in Transformer-XL
(Dai et al., 2019).

Hyperparameters WikiText-103  WikiText-103
Base Large
Layers 16 18
Hidden size 410 1,024
Attention heads 10 16
Training sequence length 150 384
Training memory length 150 384
Testing sequence length 64 128
Testing sequence length 640 1,600
Batch size 64 128
Learning rate 2.5¢e-4 2.5e-4
Warmup steps 0 16,000
Training steps 200k 400k

Table 11: Hyperparameters used for WikiText-103.
A.4 Hyperparameters for Pre-Training

As shown in Tab. 12, we present the detailed
hyperparameters adopted to pretraining ERNIE-
Doc on English text corpora and Chinese text cor-
pora. For comparisons, we follow the same op-
timization hyperparameters of ROBERTagasg or
RoBERTa; argg (Liu et al., 2019) for base-size or
large-size model in English domain. As for Chinese
ERNIE-Doc, we follow the same optimization hy-
perparameters of ERNIE 2.0gasE.

A.5 Hyperparameters for Fine-Tuning

A.5.1 Long Text Classification tasks

The finetuning hyperparameters for IMDB (Maas
et al., 2011) and Hyperpartisan (Kiesel et al., 2019)
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Hyperparameters English Chinese
BASE LARGE BASE
Layers 12 24 12
Hidden size 768 1,024 768
Attention heads 12 16 12
Training steps 400K 100K 300K
Batch size 2,560 3,920 2,560
Learning rate le-4 le-4 le-4
Warmup steps 4,000 4,000 4,000
Adam (betal,beta2) (0.9,0.999) (0.9,0.999) (0.9, 0.999)
Adam (epsilon) le-6 le-6 le-6
Learning rate schedule Linear Linear Linear
Weight decay 0.01 0.01 0.01
Dropout 0.1 0.1 0
GPU (Nvidia V100) 40 80 40

Table 12: Hyperparameters used for ERNIE-DoC pre-
training.

are presented in Tab. 13.

Hyperparameters BASE LARGE
IMDB HYP | IMDB HYP
Batch size 32 32 32 16
Learning rate Te-5 le-4 le-5 4e-6
Epochs 3 15 3 15
LR schedule linear linear | linear linear
Layerwise LR decay 1 0.7 0.9 1
Warmup proportion 0.1 0.1 0.1 0.1
Weight decay 0.01 0.01 0.01  0.01

Table 13: Hyperparameters used for finetuning on
IMDB and Hyperpartisan (HYP).

A.5.2 Document-level Question answering
tasks

The finetuning hyperparameters for TriviaQA
(Welbl et al., 2018) and HotpotQA (Yang et al.,
2018) are presented in Tab. 14. HQA-sent. is the
model for coarse-grained evidence prediction, and
we choose the evidence with the probability larger
than a pre-defined threshold 1e-3 and 1e-5 for base
and large models, respectively. HQA-span. is the
model for span prediction.

A.5.3 Keyphrase Extraction task

The finetuning hyperparameters for the OpenKP
(Xiong et al., 2019) dataset are presented in Tab. 15.

Hyper. BASE LARGE

TQA HQA-sent. HQA-span. | TQA HQA-sent. HQA-span.
Batch size 64 128 128 64 32 32
Learning rate 3e-5 3e-5 1.5e-4 Se-6 Se-6 1.5e-5
Epochs S 6 6 3 5 5
LR schedule linear linear linear linear linear linear
Layer-decay 0.8 1 0.8 0.9 0.9 0.9
‘Warmup prop. | 0.1 0.1 0.1 0.1 0.1 0.1
Weight decay | 0.01 0.01 0.01 0.01 0.01 0.01

Table 14: Finetuning hyperparameters on the TQA and
HQA for base- and large-size ERNIE-DocC.

Hyperparameters OpenKP
Batch size 32
Learning rate 1.5e-4
Epochs 5

LR schedule linear
Layerwise LR decay 0.8
Warmup proportion 0.1
Weight decay 0.01

Table 15: Finetuning hyperparameters on the OpenKP
for base-size ERNIE-Doc.

A.5.4 Chinese NLU tasks

Tab. 16 lists the finetuning hyperparameters for
Chinese NLU tasks including IFLYTEK (Xu et al.,
2020), THUCNews (Sun et al., 2016), CMRC2018
(Cui et al., 2018), DRCD (Shao et al., 2018),
DuReader He et al. (2017), C2 (Sun et al., 2019a)
and CAIL2019-SCM (Xiao et al., 2019).

Tasks B?tCh Learning Epochs Dropout
size rate
DRCD 64 2.25-4 5 0.1
CMRC2018 64 1.75e-4 5 0.2
DuReader 64 2.75e-4 5 0.1
C3 24 le-4 8 0.1
CAIL 48 5e-5 15 0.1
THU 16 1.5¢-4 16 0.1
IFK 16 1.5¢-4 5 0.1

Table 16: Hyperparameters used for finetuning on Chi-
nese NLU tasks. Note that the warmup proportion are
set to 0.1 and the layerwise learning rate decay rate are
set to 0.8 for all tasks.

B Attention Complexity

Given a long document with length L, Longformer
and BigBird usually applies a local attention with
a window size of 512 tokens on the entire input
resulting in L * 512 token-to-token calculations.
While the long document is fed twice as input and
each input is sliced with a sliding window size
of 512 tokens in ERNIE-Doc, which resulting
in 2 % 5—% % 512 % (512 + m) token-to-token cal-
culations where m is the memory length. Since
5912 <« L and m < L, the attention complexity
of ERNIE-Doc is comparable to Longformer and
BigBird which scales linearly with respect to the
input length L, i.e., O(L). Notably, the segments
produced from the long document are fed one by
one in ERNIE-DoC, leading to the lower spatial
complexity.

2927



