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Abstract

Although teacher forcing has become the main
training paradigm for neural machine transla-
tion, it usually makes predictions only condi-
tioned on past information, and hence lacks
global planning for the future. To address
this problem, we introduce another decoder,
called seer decoder, into the encoder-decoder
framework during training, which involves fu-
ture information in target predictions. Mean-
while, we force the conventional decoder to
simulate the behaviors of the seer decoder
via knowledge distillation. In this way, at
test the conventional decoder can perform like
the seer decoder without the attendance of
it. Experiment results on the Chinese-English,
English-German and English-Romanian trans-
lation tasks show our method can outper-
form competitive baselines significantly and
achieves greater improvements on the bigger
data sets. Besides, the experiments also prove
knowledge distillation the best way to trans-
fer knowledge from the seer decoder to the
conventional decoder compared to adversarial
learning and L2 regularization.

1 Introduction

Neural machine translation (NMT) (Kalchbrenner
and Blunsom, 2013; Sutskever et al., 2014; Bah-
danau et al., 2014; Gehring et al., 2017; Vaswani
et al., 2017) has achieved great success and is draw-
ing larger attention recently. Most NMT models are
under the attention-based encoder-decoder frame-
work which assumes there is a common seman-
tic space between the source and target languages.
The encoder encodes the source sentence to the
common space to get its meaning, and the decoder
projects the source meaning to the target space to
generate corresponding target words. Whenever
generating a target word at a time step, the decoder

∗The code: https://github.com/ictnlp/SeerForcingNMT

needs to retrieve the attended source information
and then decodes into a target word. The underline
principle which makes sure the framework works
is that the information hold by the source sentence
and its target counterpart is equivalent. Thus the
translation procedure can be considered to decom-
pose source information into different pieces and
then to convert each piece to a proper target word
according to bilingual context. When all the infor-
mation encoded in the source sentence is throughly
processed, the whole translation has been gener-
ated.

Neural machine translation models are usually
trained via maximum likelihood estimation (MLE)
(Johansen and Juselius, 1990) and the operation
form is known as teacher forcing (Williams and
Zipser, 1989). The teacher forcing strategy per-
forms one-step-ahead predictions with the past
ground truth words fed as context and forces the
distribution of the next prediction to approach a
0-1 distribution where the probability of the next
ground truth word corresponds to 1 and others to
0. In this way, the predicted sequence is trained to
be close to the ground truth sequence. From the
perspective of information division, the function
of teacher forcing is to teach the translation model
how to segment source information and derive the
ground truth word from the source information at a
maximum probability.

However, teacher forcing can only provide up-
to-now ground truth words for one-step-ahead pre-
dictions and hence lacks global planning for the
future. This will result in local optimization espe-
cially when the next prediction is highly related to
the future. Besides, as the translation grows, the
previous prediction errors will be accumulated and
affect later predictions (Zhang et al., 2019c). This
is the important reason why NMT models cannot
always produce the ground truth sequence during
training. Therefore, it is more possible to achieve
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Figure 1: The architecture of the proposed method

global optimization by getting to know the future
ground truth words. This can lead to better cross-
attention to the source sentence and thus better
information devision. But unfortunately, ground
truth can be only obtained during training and we
cannot inference with future ground truth at test.

To address this problem, we introduce an addi-
tional seer decoder into the encoder-decoder frame-
work to integrate future information. During train-
ing, the seer decoder is used to guide the behaviors
of the conventional decoder while at test the trans-
lation model only inferences with the conventional
decoder without introducing any extra parameters
and calculation cost. Specifically, the conventional
decoder only gets past information participating in
the next prediction, while the seer decoder has both
the past and future ground truth words engaged
in the next prediction. Both decoders are trained
to generate ground truth via MLE and meanwhile
the conventional decoder is forced to simulate the
behaviors of the seer decoder via knowledge distil-
lation (Buciluǎ et al., 2006; Hinton et al., 2015). In
this way, at test the conventional decoder can per-
form like the seer decoder as if it knew the future
translation.

We conducted experiments on two small data
sets (Chinese-English and English-Romanian) and
two big data sets (Chinese-English and English-
German) and the experiment results show that our
method can outperform strong baselines on all the
data sets. In addition, we also compared different
mechanisms of transferring knowledge and found
that knowledge distillation is more effective than
adversarial learning and L2 regularization. To the
best of our knowledge, this paper is the first to
explore the effects of the three mechanisms simul-
taneously in machine translation.
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Figure 2: The architecture of the seer decoder

2 The Proposed Method

We introduce our method on the basis of Trans-
former which is under the encoder-decoder frame-
work (Vaswani et al., 2017). Our model consists
of three components: the encoder, the conventional
decoder and the seer decoder. The architecture is
shown in Figure 1. The encoder and the conven-
tional decoder work in the same way as the corre-
sponding components of Transformer do. The seer
decoder integrates future ground truth information
into its self-attention representation and calculates
cross-attention over source hidden states with the
self-attention representation as the query. During
training, the encoder is shared by the two decoders
and both decoders perform predictions to generate
ground truth. The behaviors of the conventional de-
coder are guided by the seer decoder via knowledge
distillation. If the conventional decoder can predict
a similar distribution as the seer decoder, we think
the conventional decoder performs like the seer
decoder. Then we can only use the conventional
decoder for test.

The details of the encoder and the conventional
decoder can be got from Vaswani et al. (2017).
Assume the input sequence is x = (x1, ..., xJ), the
ground truth sequence is y∗ = (y∗1, ..., y

∗
I ) and the

generated translation is y = (y1, ..., yI). We will
give more description to the seer decoder and the
training in what follows.
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2.1 The Seer Decoder

Although we feed the future ground truth words to
the seer decoder, we will not tell it the next ground
truth word to be generated, in case it will only learn
a copy operation, not how to derive a word. Consid-
ering efficiency, the seer decoder does not integrate
the past and future ground truth information with a
unique decoder , but two separate subdecoders. As
a result, the seer decoder consists of three compo-
nents: the past subdecoder, the future subdecoder
and the fusion layer. The architecture of the seer
decoder is given in Figure 2. The past and future
subdecoders are employed to decode the past and
future ground truth information into hidden states
respectively and the fusion layer is used to fuse the
output of the past and future subdecoders and cal-
culate the final hidden state for the next prediction.

The past subdecoder is composed ofN−1 layers
and each layer has three sublayers which are the
multi-head sublayer, the cross-attention sublayer
and the feed-forward network (FNN) sublayer, the
same as Transformer. The multi-attention sublayer
accepts the whole ground truth sequence as the
input and applies a mask matrix Mp to make sure
only the past ground truth words attend the self-
attention. Specifically, to generate the i-th target
word, its corresponding mask vector in the mask
matrix Mp is set to mask the words y∗i , y

∗
i+1, ..., y

∗
I .

Then after the cross-attention sublayer and the FFN
sublayer, the past subdecoder output a sequence of
past hidden states, the packed matrix of which is
denoted as Hp.

The future subdecoder has the same structure
as the past subdecoder except for the mask matrix.
The future subdecoder also has the whole ground
truth sequence as the input but employs a different
mask matrix Mf to only remain the future ground
truth information. To generate the i-th target word,
the corresponding mask vector in Mf masks the
words y∗1, ..., y

∗
i−1, y

∗
i . The packed matrix of the

future hidden states generated by the future subde-
coder is denoted as Hf .

The fusion layer is composed of four sublay-
ers: the multi-head sublayer, the linear sublayer,
the cross-attention sublayer and the FFN sublayer.
Except the linear sublayer, the rest three sublay-
ers works in the same way as Transformer does.
The multi-head sublayer encodes the outputs of
the past and future subdecoders separately with the
mask matrix Mp and Mf , and the packed matrix
of their output are denoted as H′p and H′f respec-

tively. Then we reverse the order of the vectors in
H′f to get H′′f , so that the same index in H′p and
H′′f can correspond to the past and future repre-
sentation needed for the same prediction. Assume
H′f = [h′f1;h

′
f2; ...;h

′
fI ], then its reversed matrix

is H′′f = [h′fI ; ...;h′f2;h
′
f1]. The linear sublayer

fuses H′p and H′′f via a linear transformation as

A = WpH
′
p + WfH

′′
f (1)

Now we can think each representation in the matrix
A incorporates the past and future information for
its corresponding prediction. Then after the cross-
attention sublayer over the outputs of the encoder
and then the FFN sublayer, we can get the target
hidden states produced by the seer decoder as Ss =
[ss1 ; ...; ssI ]T . Then the probability to generate the
target word yi is

ps(yi|y∗>i,y
∗
<i,x) ∝ exp (Wossi) (2)

Note that the past and the future subdecoders
share the same set of parameters, and the same
linear transformation matrix Wo is applied to the
outputs of the conventional and seer decoders.

3 Training

In our method, only the conventional decoder is
employed for test and the seer decoder is only
used to guide the conventional decoder during train-
ing. Given a sentence pair 〈x,y∗〉 in the training
set, the conventional decoder and the seer decoder
can predict a distribution for target position i as
pc(yi|y∗<i,x) and ps(yi|y∗>i,y

∗
<i,x), respectively.

The two decoders are both trained by comparing its
predicted distribution with the 0-1 distribution of
the ground truth word by minimizing the cross en-
tropy, that is to maximize the likelihood of the cor-
responding ground truth word. As the two decoders
involve different information for next prediction,
we call the training strategy teacher forcing and
seer forcing, respectively. The cross-entropy loss
for the conventional decoder is

Lc = −
K∑

k=1

Ik∑
i=1

log pc(y
∗
i |y∗<i,x), (3)

and the cross-entropy loss for the seer decoder is

Ls = −
K∑

k=1

Ik∑
i=1

log ps(y
∗
i |y∗>i,y

∗
<i,x). (4)

where K is the size of the training set and Ik is the
length of the k-th target sentence.
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The conventional decoder is further trained to
get close to the distribution of the seer decoder via
knowledge distillation. In knowledge distillation,
the conventional decoder (the student) has to not
only match the one-hot ground truth word, but fit
the distribution over the target vocabulary V drawn
by the seer decoder (the teacher). The knowledge
distillation loss can be formalized as

Lkd = −
K∑

k=1

Ik∑
i=1

|V|∑
l=1

ps(yi = l|y∗>i,y
∗
<i,x)

× log pc(yi = l|y∗<i,x)
(5)

where |V| is the size of the target vocabulary.
The final training loss is

L = Ls + λLc + (1− λ)Lkd . (6)

Different from the conventional knowledge distilla-
tion which first trains the teacher via cross entropy
against ground truth, then fixes the teacher and only
trains the student, we train all the parameters from
the scratch, but we still follow the above rule to
keep the teacher (i.e. the seer decoder) unchanged
in the process of distillation. To do this, we do not
update the parameters of the seer decoder through
the loss Lkd, that is, we only back propagate gradi-
ents to the seer decoder throughLs, but not through
Lkd.

4 Related Work

Reinforcement-learning-based methods also en-
code future information in the rewards to supervise
fine-tuning of the translation model. The rewards
are worked out either by sampling future transla-
tion with the REINFORCE algorithm (Williams,
1992; Yu et al., 2017; Yang et al., 2018; Shao et al.,
2019), or by directly calculating a value with the
actor-critic algorithm (Bahdanau et al., 2016; Li
et al., 2017). This set of methods only give a weak
supervision to the NMT model through rewards
and suffer from unstable training. In contrast, Shao
et al. (2018) propose to train autoregressive NMT
with the probabilistic n-gram based GLEU (Wu
et al., 2016) and Shao et al. (2020) propose to
minimize the bag-of-ngrams difference for non-
autoregressive NMT so that the two methods can
abandon reinforcement learning and perform train-
ing directly by gradient descent.

Another set of methods introduce future infor-
mation into inference with additional pass of de-
coding or extra components at test. Niehues et al.

(2016), Xia et al. (2017), Hassan et al. (2018) and
Zhang et al. (2018) proposed a two-pass decoding
algorithm to first generate a draft translation and
then generate final translation referring to the draft.
Geng et al. (2018) expand this line of methods by
performing an adaptive multi-pass decoding where
the number of decoding passes is determined by
a policy network. Liu et al. (2016a), Liu et al.
(2016b), Hoang et al. (2017), Zhang et al. (2019d)
and He et al. (2019) perform bidirectional decod-
ing simultaneously and the two decoders correlate
to each other via an agreement term or a regu-
larization term in the loss. Zhou et al. (2019a) ,
Zhou et al. (2019b) and Zhang et al. (2019b) also
maintain a forward decoder and a backward de-
coder to decode simultaneously but they interact
to each other when making predictions. Zhang
et al. (2019a) introduce a future-aware vector at
test which is learned via the knowledge distilla-
tion framework during training. The difference
between this set of methods and our method is that
our method does not require any other cost at test
and is easy to use.

There are some other works which integrate fu-
ture information during training while only perform
one-pass decoding. Serdyuk et al. (2018) introduce
a twin network to perform bidirectional decoding
simultaneously during training and force the hid-
den states generated by the two decoders to be
consistent, then at inference it can only use the
forward decoder. But in this method the two de-
coders act as a counterpart to each other and no
decoder plays a role of teacher, which determines
that it can only be trained via L2 regularization,
not knowledge distillation which has proven in the
experiments more effective than L2 regularization.
Feng et al. (2020) introduce an evaluation module
to give each translation more reasonable evaluation
when it cannot match the ground truth. The evalua-
tion is conducted from the perspective of fluency
and faithfulness which both need the participation
of past and future information. The difference from
the method proposed in this paper is their method
uses self-generated translation as past information
and does not train with knowledge distillation.

Some researchers work in another perspective
by introducing future information. Zhang et al.
(2020b) propose to employ future source informa-
tion to guide simultaneous machine translation with
knowledge distillation, so that the incompleteness
of source can be mitigated. Zheng et al. (2018) and
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Zheng et al. (2019) propose to model past and fu-
ture information for the source to help the decoder
focus on untranslated source information.

5 Experiments

5.1 Settings

5.1.1 Data Preparation

We conducted experiments on two small data sets
and two big data sets.

Small Data Sets
Chinese→English The training set consists of

about 1.25M sentence pairs from LDC corpora with
27.9M Chinese words and 34.5M English words
respectively1. We used MT02 for validation and
MT03, MT04, MT05, MT06, MT08 for test. We
tokenized and lowercased English sentences using
the Moses scripts2, and segmented the Chinese
sentences with the Stanford Segmentor3. The two
sides were further segmented into subword units
using Byte-Pair Encoding(BPE) (Sennrich et al.,
2016) with 30K merge operations. 32K size of
the Chinese dictionary and 29K size of the English
dictionary were built for the two sides.

English→Romanian We used the preprocessed
version of WMT16 En-Ro dataset released by Lee
et al. (2018) which includes 0.6M sentence pairs.
We used news-dev 2016 for validation and news-
test 2016 for test. The two languages share the 35K
size of the joint vocabulary generated with 40K
merge operations of BPE on the combined data.

Big Data Sets
Chinese→English The training data is from

WMT 2017 Zh-En translation tasks that contains
20.18M sentence pairs after deleting duplicate ones.
The newsdev2017 was used as the development
set and newstest2017 was used as the test set. To
avoid the effects of the translationese (Graham
et al., 2019), we also tested the methods on the
newstest2019 test set. We tokenized and truecased
the English sentences with Moses scripts. For the
Chinese data, we performed word segmentation by
using Stanford Segmenter. 32K BPE sizes were
applied to the training data seperately and then we
filtered out the sentences which are longer than 128
sub-words. 44K size of the Chinese dictionary and

1The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

2http://www.statmt.org/moses/
3https://nlp.stanford.edu/

33K size of the English dictionary were built based
on the corresponding data.

English→German The training data is from
WMT2016 which consists of about 4.5M sentences
pairs with 118M English words and 111M German
words. The newstest2014 was used as the develop-
ment set and newstest2016 and newstest2019 were
used as the test sets. The two languages share the
32K size of the joint vocabulary generated with
30K merge operations of BPE on the combined
data.

5.1.2 Systems

TRANSFORMER We used an open-source
toolkit called Fairseq-py released by Facebook (Ott
et al., 2019) which was implemented strictly fol-
lowing Vaswani et al. (2017).

RL-NMT We trained Transformer under the
reinforcement learning framework using the RE-
INFORCE algorithm (Williams, 1992) with the
BLEU as the rewards. The implementation details
for the RL part is the same as Yang et al. (2018).

ABDNMT Our implementation of Zhang et al.
(2018) based on Transformer.

TWINNET Our implementation of Serdyuk et al.
(2018) based on Transformer. The weight of L2

loss was 0.2 .
EVANMT Our implementation of Feng et al.

(2020).
SEER+L2 Seer forcing with L2 regulariza-

tion. Similar to TWINNET, we set L2 =∑K
k=1

∑Ik
i=1 ‖g(sti) − ssi)‖2 where g is a linear

transformation. We first pretrained the two de-
coders together only withL = Lt+Ls, then trained
them with the loss of L = Lt + Ls + αL2 where
α = 0.2, too. Please note that the L2 loss did not
update the seer decoder and the encoder so that
the conventional decoder would approach the seer
decoder, which followed Serdyuk et al. (2018).

SEER+AL Seer forcing with adversarial learn-
ing. A discriminator is employed to distinguish the
hidden state sequences generated by the conven-
tional decoder and the seer decoder. The discrim-
inator is based on CNN, implemented according
to Gu et al. (2019). The translation model and
the discriminator are trained jointly via a gradient
reversal layer just like our method. The loss is
L = Lt + Ls + αLd where Ld is the loss of the
discriminator and α = 0.3 on the EN→RO data set
and α = 0.2 on the other data sets.
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CN→EN EN→RO
MT03 MT04 MT05 MT06 MT08 AVG ∆ TIME WMT16 ∆ TIME

TRANSFORMER 46.54 46.95 46.39 45.39 36.75 44.40 1.0 32.60 1.0
RL-NMT 45.75 47.41 46.44 47.08 37.65 44.87 +0.47 1.70 32.79 +0.19 2.38
ABDNMT 47.16 47.58 46.77 45.97 36.43 44.78 +0.38 2.78 33.80 +1.20 3.36
TWINNET 47.78 48.74 48.59 46.65 38.80 46.11 +1.71 2.56 33.79 +1.19 2.62
EVANMT 47.05 47.76 46.59 46.58 37.39 45.07 +0.67 2.19 33.29 +0.69 2.91
SEER+L2 47.98** 48.66** 48.16** 47.02** 38.64** 46.09 +1.69 1.90 33.55** +0.95 1.83
SEER+AL 47.91** 48.38** 47.97** 47.04** 38.18** 45.89 +1.49 2.64 33.59** +1.04 2.35
Our Method 48.12** 48.85** 48.25** 47.25** 38.71** 46.24 +1.84 1.92 33.86** +1.26 1.86

Table 1: BLEU scores on small data sets. ** mean the improvements over TRANSFORMER is statistically signifi-
cant (Collins et al., 2005) (ρ < 0.01, respectively).

CN→EN EN→DE
2017 ∆ 2019 ∆ TIME 2016 ∆ 2019 ∆ TIME

TRANSFORMER 23.75 26.00 1.0 33.49 36.20 1.0
TWINNET 23.39 -0.36 26.09 +0.09 2.58 33.05 -0.44 35.69 -0.51 2.57
EVANMT – – – – – 34.00 +0.51 37.25 +1.05 2.48
SEER+L2 23.95 +0.20 25.82 -0.18 1.93 33.58 +0.09 36.65 +0.45 1.53
SEER+AL 24.01 +0.26 26.47* +0.47 2.29 34.03 +0.54 36.81 +0.61 2.39
Our Method 24.35* +0.60 26.80** +0.80 1.97 34.25** +0.76 37.34* +1.14 1.57

Table 2: BLEU scores on big data sets. * and ** mean the improvements over TRANSFORMER is statistically
significant (Collins et al., 2005) (ρ < 0.05 and ρ < 0.01, respectively).

Our Method Implemented based on Fairseq-
py. The weight λ in Equation 6 for the small
Chinese→English data set is set to 0.25, and for
other data sets is set to 0.5.

All the Transformer-based systems have the
same configuration as the base model described
in Vaswani et al. (2017) except that dropout rate
is 0.3. The translation quality was evaluated with
BLEU (Papineni et al., 2002) with n=4 using the
SacreBLEU tool (Post, 2018)4, where small data
sets employ case-insensitive BLEU while big data
sets use case-sensitive BLEU.

5.2 Main Results

We compare our method with other methods
that can make global planning, including the
reinforcement-based method (RL-NMT), the two-
pass decoding method (ABDNMT), twin net-
works which match past and future information
(TWINNET) and the NMT model with an evalu-
ate module to evaluate fluency and faithfulness
(EVANMT). In addition, we also explore learning
mechanisms which can transfer knowledge from
the seer decoder to the conventional decoder, in-
cluding L2 regularization (SEER+L2), adversarial
learning (SEER+AL) and knowledge distillation
(Our Method).

4BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.3.6

We report results together with training time on
the small and big data sets in Table 1 and Table 2,
respectively.5 As for different methods, in the small
data sets, RL-NMT can only get small improve-
ments over Transformer which are in line with the
results reported in Wu et al. (2018), and ABDNMT
cannot get consistent improvements over Trans-
former with an obvious difference on the EN→RO
data set and a small difference on the CN→EN data
set. TWINNET can get comparable BLEU scores
with our method on the small data sets but mostly
negative difference on the big data sets. EVANMT
can achieve consistent improvements and greater
improvements on the EN→DE data set. For the
learning mechanisms, knowledge distillation show
consistent superiority over L2 regularization and ad-
versarial learning, which is remarkable especially
on the big data sets. Adversarial learning can bring
improvements over Transformer on all the data sets
while L2 regularization acts unstable on the big
data sets. In summary, our method proved to be
effective not only in the term of the architecture but
also in the learning mechanism.

5Please note that there is no comparability between our re-
sults and that of Zhang et al. (2019a) because we used different
validation and test sets.
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MT03 MT04 MT05 MT06 MT08 AVG

CD w/o CA 6.24 6.68 6.70 6.77 4.49 6.12
SD w/o CA 16.39 16.70 16.64 17.21 11.97 15.78
CD with CA 29.45 25.03 30.14 32.07 23.39 28.02
SD with CA 52.61 45.57 52.02 52.68 44.14 49.40

Table 3: BLEU scores of teacher forcing and seer forcing with and without cross-attention on NIST CN→EN
translation. CD and SD denote the conventional decoder and the seer decoder, respectively. CA represents cross-
attention.

5.3 The Superiority of the Seer Decoder

To use seer forcing to guide teacher forcing, it
should be ensured that the seer decoder can out-
perform the conventional decoder. To verify this,
we trained the two decoders together with the
loss L = Lt + Ls without knowledge distillation.
Then we evaluated their performance on the small
Chinese-English translation task as follows. Both
decoders are fed with ground truth words as context
at test so that they can inference in the same way as
at training, where the conventional decoder uses the
past ground truth as context and the seer decoder
employs the past and future ground truth words as
context in the past and future subdecoders.

Besides translation performance, we also check
the superiority of seer decoder in target language
modeling. We do this by dropping out cross-
attention so that the decoder can only generate
translation based on target language model. In
this way, the translation performance without cross-
attention can demonstrate the ability of the two
decoders in target language modeling.

We used the first reference of the test set as
ground truth and calculated BLEU scores only with
this reference. From the results in Table 3, we can
see that whether with or without cross-attention the
seer decoder can make super large improvements
over the conventional decoder consistently on all
the test sets. However, without cross-attention, the
BLEU scores of both decoders decrease dramati-
cally which means language model information is
not enough for the translation task. Therefore, we
can conclude the seer decoder acts much better in
target language modeling and cross-language pro-
jection and it is reasonable to use the seer decoder
as the guider.

5.4 The Distillation of Future Information

As the seer decoder achieves its superiority with the
help of future target information, we hope that the
conventional decoder can learn future information
from the seer decoder with knowledge distillation.

Accuracy Recall F1-Score
TRANSFORMER 47.23 40.91 43.84
Our Method 52.24 42.10 46.63

Table 4: Comparison on the predicted bag of words be-
tween the conventional decoders

To check this, we tested whether the hidden states
of the conventional decoder could derive more fu-
ture ground truth words after knowledge distilla-
tion. The underlying belief is that the future ground
information transferred from the seer decoder can
help the conventional decoder derive more future
ground truth words.

Assuming the hidden states generated by the
conventional decoder are St = [st1 ; ...; stI ]T , the
future words for each target position i can be pre-
dicted with the distribution

Pwi ∼ softmax(Wwsti) (7)

where Ww is the weight matrix. During training,
we can get the bag of ground truth words for po-
sition i as y∗i = {y∗i+1, ..., y

∗
I} and train Ww with

other parameters fixed by maximizing the likeli-
hood of y∗i as

Lw = −
K∑
k=1

Ik∑
i=1

∑
w∈y∗

i

log pwi(w) (8)

where K is the size of training sentences, Ik is the
length of the target sentence and log pwi(w) is the
probability of the word w in Equation 7.

At test, we select the top best Ibi words ac-
cording to Equation 7 as the bag of future words
bi for position i. As we cannot get the ground
truth, the size of bi is calculated approximately as
Ibi = max {2, (J − i)× 2} where J is the length
of source sentence. As we do not know the tar-
get length during prediction, it may occur that i is
greater than J and calculating Ibi in this way can
ensure bi contains 2 words at least.

We conducted experiments on Chinese-English
translation and used MT02 as the test set only
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Figure 3: The similarity of the past and future informa-
tion to the fused information

AVG ∆

Our Method 46.24
-FUTURE 45.38 -0.86

-PAST 45.42 -0.82

-KD 44.84 -1.40

TRANSFORMER 44.40 -1.84

Table 5: Ablation study on NIST CN→EN transla-
tion. -FUTURE : dropping the future subdecoder; -
PAST: dropping the past subdecoder; -KD: dropping
knowledge distillation.

with the first reference as ground truth. We cal-
culated the accuracy and recall by comparing each
bi against each y∗i . The results in Table 4 show the
conventional decoder in our method can achieve
higher accuracy and recall compared to the decoder
of Transformer. This means knowledge distillation
does transfer future information from the seer de-
coder to the conventional decoder.

5.5 The Contribution of Subdecoders

In the seer decoder of our method, the information
from the past and future subdecoders is fused (as
shown in Equation 1) to get the final cross-attention.
The intuition is that at the beginning stage, the past
subdecoder contains less information than the fu-
ture subdecoder, so the fused information should
rely more on the future subdecoder. As the transla-
tion gets longer, the information embodied in the
past subdecoder grows, and the fused information
should depend more on the past subdecoder. To
confirm this hypothesis, we calculate the cosine
similarity of the vectors in A given in Equation 1
with the corresponding weighted vectors of WpH

′
p

and WfH
′′
f .

We selected 205 sentences the length of which

Figure 4: The BLEU scores on sentence bins with dif-
ferent lengths.

ranges [15, 25], then calculated the cosine similar-
ities word by word. Then the similarities at the
same target position will be averaged and the chart
over all the target positions is given in Figure 3.
The figure confirms our conjecture that at first, the
fused information is highly related to the future
information, and over time the similarity to past in-
formation increases gradually while the similarity
to future information decreases faster.

5.6 Ablation Study

We have proven that in our method the past and
future information collaborate to achieve better
global planning. In this section, we will explore
the influence of past and future information by sep-
arately deleting the future and past subdecoders
from the seer decoder. In both cases, only the struc-
ture of the seer decoder changes and the whole
model is trained with knowledge distillation in the
same way. We also remove knowledge distillation
loss in which case the seer and conventional de-
coders only interact via the shared encoder and
only optimize their own cross-entropy losses dur-
ing training. The results are given in Table 5.

When we exclude future or past information, the
translation performance decreases dramatically at
almost the same extent, but they still have an ob-
vious gain compared to Transformer. This demon-
strates that both the past and future information
are necessary for global planning. It is interesting
that the translation performance still rise without
future subdecoder where there is no additional in-
formation fed compared to Transformer. The rea-
son may be the conventional and seer decoder can
restrict each other to avoid bad behaviors. When
knowledge distillation is dropped, the performance
decline greatly which means only communicating
via the encoder the conventional and seer decoders
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is not enough. Hence we need to introduce knowl-
edge distillation to reinforce the influence of the
seer decoder to the conventional decoder.

5.7 Performance with Sentence Length
As the translation is generated word by word, the
translation errors will be accumulated while the the
translation grows, which will influence the later pre-
diction. In our method, the conventional decoder
can learn future information from the seer decoder
and hence it should make better global planning
for the whole sequence. From this, we deduce that
our method performs better on long sentences than
Transformer.

We checked this on the NIST CN→EN trans-
lation task and split the sentences in all the test
sets into 8 bins according to their length. Then we
translated for each bin and tested the BLEU scores.
The results in Figure 4 show that our method can
achieve bigger improvements on longer sentences,
especially in the last three bins.

6 Conclusion

In order to help the NMT model to make good
global planning at inference, we propose to intro-
duce a seer decoder which embodies future ground
truth to guide the behaviors of the conventional de-
coder. To this end, we employ the method of knowl-
edge distillation to transfer future information from
the seer decoder to the conventional decoder. At
test, the conventional decoder can perform trans-
lation on its own as if it knew some future infor-
mation. The experiments indicate our method can
outperform strong baselines significantly on four
data sets. We are also the first to explore learning
mechanisms of knowledge distillation, adversar-
ial learning and L2 regularization and knowledge
distillation has proven to be the most effective one.
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