
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2688–2699

August 1–6, 2021. ©2021 Association for Computational Linguistics

2688

Neural Bi-Lexicalized PCFG Induction

Songlin Yang♣, Yanpeng Zhao♦, Kewei Tu♣˚

♣School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
University of Chinese Academy of Sciences

♦ILCC, University of Edinburgh
{yangsl,tukw}@shanghaitech.edu.cn

yannzhao.ed@gmail.com

Abstract

Neural lexicalized PCFGs (L-PCFGs) (Zhu
et al., 2020) have been shown effective in
grammar induction. However, to reduce com-
putational complexity, they make a strong in-
dependence assumption on the generation of
the child word and thus bilexical dependen-
cies are ignored. In this paper, we propose
an approach to parameterize L-PCFGs with-
out making implausible independence assump-
tions. Our approach directly models bilexi-
cal dependencies and meanwhile reduces both
learning and representation complexities of L-
PCFGs. Experimental results on the English
WSJ dataset confirm the effectiveness of our
approach in improving both running speed and
unsupervised parsing performance.

1 Introduction

Probabilistic context-free grammars (PCFGs) has
been an important probabilistic approach to syntac-
tic analysis (Lari and Young, 1990; Jelinek et al.,
1992). They assign a probability to each of the
parses admitted by CFGs and rank them by the plau-
sibility in such a way that the ambiguity of CFGs
can be ameliorated. Still, due to the strong indepen-
dence assumption of CFGs, vanilla PCFGs (Char-
niak, 1996) are far from adequate for highly am-
biguous text.

A common premise for tackling the issue is to
incorporate lexical information and weaken the in-
dependence assumption. There have been many ap-
proaches proposed under the premise (Magerman,
1995; Collins, 1997; Johnson, 1998; Klein and
Manning, 2003). Among them lexicalized PCFGs
(L-PCFGs) are a relatively straightforward formal-
ism (Collins, 2003). L-PCFGs extend PCFGs by
associating a word, i.e., the lexical head, with each
grammar symbol. They can thus exploit lexical

˚Corresponding Author

information to disambiguate parsing decisions and
are much more expressive than vanilla PCFGs.
However, they suffer from representation and in-
ference complexities. For representation, the ad-
dition of lexical information greatly increases the
number of parameters to be estimated and exac-
erbates the data sparsity problem during learning,
so the expectation-maximisation (EM) based esti-
mation of L-PCFGs has to rely on sophisticated
smoothing techniques and factorizations (Collins,
2003). As for inference, the CYK algorithm for
L-PCFGs has a Opl5|G|q complexity, where l is
the sentence length and |G| is the grammar con-
stant. Although Eisner and Satta (1999) manage to
reduce the complexity to Opl4|G|q, inference with
L-PCFGs is still relatively slow, making them less
popular nowadays.

Recently, Zhu et al. (2020) combine the ideas of
factorizing the binary rule probabilities (Collins,
2003) and neural parameterization (Kim et al.,
2019) and propose neural L-PCFGs (NL-PCFGs),
achieving good results in both unsupervised depen-
dency and constituency parsing. Neural parame-
terization is the key to success, which facilitates
informed smoothing (Kim et al., 2019), reduces
the number of learnable parameters for large gram-
mars (Chiu and Rush, 2020; Yang et al., 2021)
and facilitates advanced gradient-based optimiza-
tion techniques instead of using the traditional EM
algorithm (Eisner, 2016). However, Zhu et al.
(2020) oversimplify the binary rules to decrease
the complexity of the inside/CYK algorithm in
learning (i.e., estimating the marginal sentence log-
likelihood) and inference. Specifically, they make a
strong independence assumption on the generation
of the child word such that it is only dependent on
the nonterminal symbol. Bilexical dependencies,
which have been shown useful in unsupervised de-
pendency parsing (Han et al., 2017; Yang et al.,
2020), are thus ignored.

2689

To model bilexical dependencies and meanwhile
reduce complexities, we draw inspiration from the
canonical polyadic decomposition (CPD) (Kolda
and Bader, 2009) and propose a latent-variable
based neural parameterization of L-PCFGs. Co-
hen et al. (2013); Yang et al. (2021) have used CPD
to decrease the complexities of PCFGs, and our
work can be seen as an extension of their work
to L-PCFGs. We further adopt the unfold-refold
transformation technique (Eisner and Blatz, 2007)
to decrease complexities. By using this technique,
we show that the time complexity of the inside al-
gorithm implemented by Zhu et al. (2020) can be
improved from cubic to quadratic in the number of
nonterminals m. The inside algorithm of our pro-
posed method has a linear complexity in m after
combining CPD and unfold-refold.

We evaluate our model on the benchmarking
Wall Street Journey (WSJ) dataset. Our model
surpasses the strong baseline NL-PCFG (Zhu et al.,
2020) by 2.9% mean F1 and 1.3% mean UUAS
under CYK decoding. When using the Minimal
Bayes-Risk (MBR) decoding, our model performs
even better. We provide an efficient implementation
of our proposed model at https://github.com/
sustcsonglin/TN-PCFG.

2 Background

2.1 Lexicalized CFGs

We first introduce the formalization of CFGs. A
CFG is defined as a 5-tuple G “ pS,N ,P,Σ,Rq
where S is the start symbol, N is a finite set of non-
terminal symbols, P is a finite set of preterminal
symbols,1 Σ is a finite set of terminal symbols, and
R is a set of rules in the following form:

S Ñ A A P N
AÑ BC, A P N , B,C P N Y P
T Ñ w, T P P, w P Σ

N ,P and Σ are mutually disjoint. We will use
‘nonterminals’ to indicate N Y P when it is clear
from the context.

Lexicalized CFGs (L-CFGs) (Collins, 2003) ex-
tend CFGs by associating a word with each of the

1An alternative definition of CFGs does not distinguish
nonterminals N (constituent labels) from preterminals P (part-
of-speech tags) and treats both as nonterminals.

nonterminals:

S Ñ Arwps A P N
Arwps Ñ BrwpsCrwqs, A P N ;B,C P N Y P
Arwps Ñ CrwqsBrwps, A P N ;B,C P N Y P
T rwps Ñ wp, T P P

where wp, wq P Σ are the headwords of the con-
stituents spanned by the associated grammar sym-
bols, and p, q are the word positions in the sen-
tence. We refer to A, a parent nonterminal an-
notated by the headword wp, as head-parent. In
binary rules, we refer to a child nonterminal as
head-child if it inherits the headword of the head-
parent (e.g., Brwps) and as non-head-child other-
wise (e.g., Crwqs). A head-child appears as either
the left child or the right child. We denote the
head direction by D P tð,ñu, where ð means
head-child appears as the left child.

2.2 Grammar induction with lexicalized
probabilistic CFGs

Lexicalized probabilistic CFGs (L-PCFGs) extend
L-CFGs by assigning each production rule r “
A Ñ γ a scalar πr such that it forms a valid cate-
gorical probability distribution given the left hand
side A. Note that preterminal rules always have a
probability of 1 because they define a deterministic
generating process.

Grammar induction with L-PCFGs follows the
same way of grammar induction with PCFGs. As
with PCFGs, we maximize the log-likelihood of
each observed sentence w “ w1, . . . , wl:

log ppwq “ log
ÿ

tPTGL pwq

pptq , (1)

where pptq “
ś

rPt πr and TGL
pwq consists of

all possible lexicalized parse trees of the sentence
w under an L-PCFG GL. We can compute the
marginal ppwq of the sentence by using the in-
side algorithm in polynomial time. The core re-
cursion of the inside algorithm is formalized in
Equation 3. It recursively computes the probability
sA,p
i,j of a head-parentArwps spanning the substring
wi, . . . , wj´1 (p P ri, j ´ 1s). Term A1 and A2 in
Equation 3 cover the cases of the head-child as the
left child and the right child respectively.

2.3 Challenges of L-PCFG induction
The major difference between L-PCFGs from
vanilla PCFGs is that they use word-annotated non-
terminals, so the nonterminal number of L-PCFGs

https://github.com/sustcsonglin/TN-PCFG
https://github.com/sustcsonglin/TN-PCFG

2690

Figure 1: (a) The original parameterization of L-PCFGs. (b) The parameterization of Zhu et al. (2020): Wq

is independent with B,D,A,Wp given C. (c) Our proposed parameterization. We slightly abuse the Bayesian
network notation by grouping variables. In the standard notation, there would be arcs from the parent variables to
each grouped variable as well as arcs between the grouped variables.

is up to |Σ| times the number of nonterminals in
PCFGs. As the grammar size is largely determined
by the number of binary rules and increases ap-
proximately in cubic of the nonterminal number,
representing L-PCFGs has a high space complexity
Opm3|Σ|2q (m is the nonterminal number). Specif-
ically, it requires an order-6 probability tensor for
binary rules with each dimension representing A,
B, C, wp, wq, and head direction D, respectively.
With so many rules, L-PCFGs are very prone to the
data sparsity problem in rule probability estimation.
Collins (2003) suggests factorizing the binary rule
probabilities according to specific independence
assumptions, but his approach still relies on com-
plicated smoothing techniques to be effective.

The addition of lexical heads also scales up the
computational complexity of the inside algorithm
by a factor Opl2q and brings it up to Opl5m3q. Eis-
ner and Satta (1999) point out that, by changing
the order of summations in Term A1 (A2) of Equa-
tion 3, one can cache and reuse Term B1 (B2) in
Equation 4 and reduce the computational complex-
ity to Opl4m2` l3m3q. This is an example applica-
tion of unfold-refold as noted by Eisner and Blatz
(2007). However, the complexity is still cubic inm,
making it expensive to increase the total number of
nonterminals.

2.4 Neural L-PCFGs
Zhu et al. (2020) apply neural parameterization to
tackle the data sparsity issue and to reduce the total
learnable parameters of L-PCFGs. Considering
the head-child as the left child (similarly for the
other case), they further factorize the binary rule
probability as:

ppArwps Ñ BrwpsCrwqsq

“ ppB,ð, C|A,wpqppwq|Cq . (2)

Bayesian networks representing the original
probability and the factorization are illustrated in

Figure 1 (a) and (b). With the factorized binary rule
probability in Equation 2, Term A1 in Equation 3
can be rewritten as Equation 5. Zhu et al. (2020)
implement the inside algorithm by caching Term
C1-1 in Equation 6, resulting in a time complexity
Opl4m3` l3mq, which is cubic in m. We note that,
we can use unfold-refold to further cache Term C1-
2 in Equation 6 and reduce the time complexity
of the inside algorithm to Opl4m2 ` l3m` l2m2q,
which is quadratic in m.

Although the factorization of Equation 2 reduces
the space and time complexity of the inside algo-
rithm of L-PCFG, it is based on the independence
assumption that the generation of wq is indepen-
dent of A, B, D and wp given the non-head-child
C. This assumption can be violated in many sce-
narios and hence reduces the expressiveness of the
grammar. For example, suppose C is Noun, then
even if we know B is Verb, we still need to know
D to determine if wq is an object or a subject of
the verb, and then need to know the actual verb wp

to pick a likely noun as wq.

3 Factorization with latent variable

Our main goal is to find a parameterization that re-
moves the implausible independence assumptions
of Zhu et al. (2020) while decreases the complexi-
ties of the original L-PCFGs.

To reduce the representation complexity, we
draw inspiration from the canonical polyadic de-
composition (CPD). CPD factorizes an n-th order
tensor into n two-dimensional matrices. Each ma-
trix consists of two dimensions: one dimension
comes from the original n-th order tensor and the
other dimension is shared by all the nmatrices. The
shared dimension can be marginalized to recover
the original n-th order tensor. From a probabilistic
perspective, the shared dimension can be regarded
as a latent-variable. In the spirit of CPD, we intro-
duce a latent-variable H to decompose the order-6

2691

sA,p
i,j “

j´1
ÿ

k“p`1

j´1
ÿ

q“k

ÿ

B,C

sB,p
i,k ¨ s

C,q
k,j ¨ ppArwps Ñ BrwpsCrwqsq

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Term A1

`

p
ÿ

k“i`1

k´1
ÿ

q“i

ÿ

B,C

sB,q
i,k ¨ s

C,p
k,j ¨ ppArwps Ñ BrwqsCrwpsq

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Term A2

(3)

“

j´1
ÿ

k“p`1

ÿ

B

sB,p
i,k

j´1
ÿ

q“k

ÿ

C

sC,q
k,j ¨ ppArwps Ñ BrwpsCrwqsq

looooooooooooooooooooooooomooooooooooooooooooooooooon

Term B1

`

p
ÿ

k“i`1

ÿ

C

sC,p
k2,j

k´1
ÿ

q“i

ÿ

B

sB,q
i,k ¨ ppArwps Ñ BrwqsCrwpsq

looooooooooooooooooooooooomooooooooooooooooooooooooon

Term B2

(4)

Term A1 “
j´1
ÿ

k“p`1

j´1
ÿ

q“k

ÿ

B,C

sB,p
i,k ¨ s

C,q
k,j ¨ ppB,ð, C|A,wpq ¨ ppwq|Cq

looooooooooooooooomooooooooooooooooon

factorization of ppArwpsÑBrwpsCrwqsq

(5)

“

j´1
ÿ

k“p`1

ÿ

B

sB,p
i,k

ÿ

C

ppB,ð, C|A,wpq

j´1
ÿ

q“k

sC,q
k,j ¨ ppwq|Cq

loooooooooomoooooooooon

Term C1-1
looooooooooooooooooooooooomooooooooooooooooooooooooon

Term C1-2

(6)

Term A1 “
j´1
ÿ

k“p`1

j´1
ÿ

q“k

ÿ

B,C

sB,p
i,k ¨ s

C,q
k,j ¨

ÿ

H

ppH|A,wpqppB|HqppC,ð |Hqppwq|Hq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

factorization of ppArwpsÑBrwpsCrwqsq

(7)

“
ÿ

H

ppH|A,wpq

j´1
ÿ

k“p`1

ÿ

B

sB,p
i,k ppB|Hq

loooooooomoooooooon

Term D1-1

j´1
ÿ

q“k

ÿ

C

sC,q
k,j ppC ð |Hqppwq|Hq

looooooooooooooooooomooooooooooooooooooon

Term D1-2

(8)

Table 1: Recursive formulas of the inside algorithm for Eisner and Satta (1999) (Equation 4), Zhu et al. (2020)
(Equation 5- 6), and our formalism (Equation 7- 8), respectively. sA,p

i,j indicates the probability of a head nontermi-
nal Arwps spanning the substring wi, . . . , wj´1, where p is the position of the headword in the sentence.

probability tensor ppB,C,D,wq|A,wpq. Instead
of fully decomposing the tensor, we empirically
find that binding some of the variables leads to bet-
ter results. Our best factorization is as follows (also
illustrated by a Bayesian network in Figure 1 (c)):

ppB,C,Wq, D|A,Wpq “ (9)
ÿ

H

ppH|A,WpqppB|HqppC,D|HqppWq|Hq .

According to d-separation (Pearl, 1988), when
A and wp are given, B, C, wq, and D are interde-
pendent due to the existence of H . In other words,
our factorization does not make any independence
assumption beyond the original binary rule. The
domain size of H is analogous to the tensor rank
in CPD and thus influences the expressiveness of
our proposed model.

Based on our factorization approach, the binary

rule probability is factorized as

ppArwps Ñ BrwpsCrwqsq “ (10)
ÿ

H

ppH|A,wpqppB|HqppC ð |Hqppwq|Hq ,

and

ppArwps Ñ BrwqsCrwpsq “ (11)
ÿ

H

ppH|A,wpqppC|HqppB ñ |Hqppwq|Hq .

We also follow Zhu et al. (2020) and factorize the
start rule as follows.

ppS Ñ Arwpsq “ ppA|Sqppwp|Aq . (12)

Computational complexity: Considering the
head-child as the left child (similarly for the other
case), we apply Equation 10 in Term A1 of Equa-
tion 3 and obtain Equation 7. Rearranging the
summations in Equation 7 gives Equation 8, where
Term D1-1 and D1-2 can be cached and reused,
which also uses the unfold-refold technique. The fi-
nal time complexity of the inside computation with

2692

our factorization approach is Opl4dH ` l2mdHq
(dH is the domain size of the latent variable H),
which is linear in m.

Choices of factorization: If we follow the intu-
ition of CPD, then we shall assume that B, C, D,
andwq are all independent conditioned onH . How-
ever, properly relaxing this strong assumption by
binding some variables could benefit our model.
Though there are many different choices of binding
the variables, some bindings can be easily ruled
out. For instance, binding B and C inhibits us
from caching Term D1-1 and Term D1-2 in Equa-
tion 7 and thus we cannot implement the inside
algorithm efficiently; binding C and wq leads to
a high computational complexity because we will
have to compute a high-dimensional (m|Σ|) cate-
gorical distribution. In Section 6.3, we make an
ablation study on the impact of different choices of
factorizations.

Neural parameterizations: We follow Kim
et al. (2019) and Zhu et al. (2020) and define the
following neural parameterization:

ppA|Sq “
exppuJSf1pwAqq

ř

A1PN exppuJSf1pwA1qq
,

ppw|Aq “
exppuJAf2pwwqq

ř

w1PΣ exppuJAf2pww1qq
,

ppB|Hq “
exppuJHwBq

ř

B1PNYP exppuJHwB1q
,

ppw|Hq “
exppuJHf2pwwqq

ř

w1PΣ exppuJHf2pww1qq
,

ppC ð |Hq “
exppuJHwCðq

ř

C1PM exppuJHwC1q
,

ppC ñ |Hq “
exppuJHwCñq

ř

C1PM exppuJHwC1q
,

ppH|A,wq “
exppuJHf4prwA;wwsqq

ř

H 1PH exppuJH 1f4prwA;wwsqq
,

where H “ tH1, . . . ,HdHu, M “ pN YPqˆtð
,ñu, u and w are nonterminal embeddings and
word embeddings respectively, and f1p¨q, f2p¨q,
f3p¨q, f4p¨q are neural networks with residual lay-
ers (He et al., 2016) (Full parameterization is shown
in Appendix.).

4 Experimental setup

4.1 Dataset
We conduct experiments on the Wall Street Journal
(WSJ) corpus of the Penn Treebank (Marcus et al.,

1994). We use the same preprocessing pipeline as
in Kim et al. (2019). Specifically, punctuation is
removed from all data splits and the top 10,000
frequent words in the training data are used as the
vocabulary. For dependency grammar induction,
we follow (Zhu et al., 2020) to use the Stanford
typed dependency representation (de Marneffe and
Manning, 2008).

4.2 Hyperparameters
We optimize our model using the Adam optimizer
with β1 “ 0.75, β2 “ 0.999, and learning rate
0.001. All parameters are initialized with Xavier
uniform initialization. We set the dimension of all
embeddings to 256 and the ratio of the nonterminal
number to the preterminal number to 1:2. Our
best model uses 15 nonterminals, 30 preterminals,
and dH “ 300. We use grid search to tune the
nonterminal number (from 5 to 30) and domain
size dH of the latent H (from 50 to 500).

4.3 Evaluation
We run each model four times with different ran-
dom seeds and for ten epochs. We train our models
on training sentences of length ď 40 with batch
size 8 and test them on the whole testing set. For
each run, we perform early stopping and select the
best model according to the perplexity of the devel-
opment set. We use two different parsing methods:
the variant of CYK algorithm (Eisner and Satta,
1999) and Minimum Bayes-Risk (MBR) decoding
(Smith and Eisner, 2006). 2 For constituent gram-
mar induction, we report the means and standard
deviations of sentence-level F1 scores.3 For de-
pendency grammar induction, we report unlabeled
directed attachment score (UDAS) and unlabeled
undirected attachment score (UUAS).

5 Main result

We present our main results in Table 2. Our model
is referred to as Neural Bi-Lexicalized PCFGs
(NBL-PCFGs). We mainly compare our approach
against recent PCFG-based models: neural PCFG
(N-PCFG) and compound PCFG (C-PCFG) (Kim
et al., 2019), tensor decomposition based neural

2In MBR decoding, we use automatic differentiation (Eis-
ner, 2016; Rush, 2020) to estimate the marginals of spans
and arcs, and then use the CYK and Eisner algorithms for
constituency and dependency parsing, respectively.

3Following Kim et al. (2019), we remove all trivial spans
(single-word spans and sentence-level spans). Sentence-level
means that we compute F1 for each sentence and then average
over all sentences.

2693

PCFG (TN-PCFG) (Yang et al., 2021) and neural
L-PCFG (NL-PCFG) (Zhu et al., 2020). We report
both official result of Zhu et al. (2020) and our
reimplementation.

We do not use the compound trick (Kim et al.,
2019) in our implementations of lexicalized PCFGs
because we empirically find that using it results in
unstable training and does not necessarily bring
performance improvements.

We draw three key observations: (1) Our model
achieves the best F1 and UUAS scores under both
CYK and MBR decoding. It is also comparable
to the official NL-PCFG in the UDAS score. (2)
When we remove the compound parameterization
from NL-PCFG, its F1 score drops slightly while its
UDAS and UUAS scores drop dramatically. It im-
plies that compound parameterization is the key to
achieve excellent dependency grammar induction
performance in NL-PCFG. (3) The MBR decoding
outperforms CYK decoding.

Regarding UDAS, our model significantly out-
performs NL-PCFGs in UDASs if compound pa-
rameterization is not used (37.1 vs. 23.8 with CYK
decoding), showing that explicitly modeling bilexi-
cal relationship is helpful in dependency grammar
induction. However, when compound parameteri-
zation is used, the UDAS of NL-PCFGs is greatly
improved, slightly surpassing that of our model.
We believe this is because compound parameteriza-
tion greatly weakens the independence assumption
of NL-PCFGs (i.e., the child word is dependent on
C only) by leaking bilexical information via the
global sentence embedding. On the other hand,
NBL-PCFGs are already expressive enough and
thus compound parameterization brings no further
increase of their expressiveness but makes learning
more difficult.

6 Analysis

In the following experiments, we report results
using MBR decoding by default. We also use
dH “ 300 by default unless otherwise specified.

6.1 Influence of the domain size of H

dH (the domain size of H) influences the expres-
siveness of our model. Figure 2a illustrates per-
plexities and F1 scores with the increase of dH and
a fixed nonterminal number of 10 (plots of UDAS
and UUAS can be found in Appendix). We can
see that when dH is small, the model has a high
perplexity and a low F1 score, indicating the lim-

Model
WSJ

F1 UDAS UUAS

Official results

N-PCFG‹ 50.8
C-PCFG‹ 55.2
NL-PCFG‹ 55.3 39.7 53.3
TN-PCFG: 57.7

Our results

NL-PCFG‹ 53.3˘2.1 23.8˘1.1 47.4˘1.0

NL-PCFG: 57.4˘1.4 25.3˘1.3 47.2˘0.7

NBL-PCFG‹ 58.2˘1.5 37.1˘2.8 54.6˘1.3

NBL-PCFG: 60.4˘1.6 39.1˘2.8 56.1˘1.3

For reference

S-DIORA 57.6
StructFormer 54.0 46.2 61.6

Oracle Trees 84.3

Table 2: Unlabeled sentence-level F1 scores, unlabeled
directed attachment scores and unlabeled undirected
attachment scores on the WSJ test data. : indicates
using MBR decoding. ‹ indicates using CYK decod-
ing. Recall that the official result of Zhu et al. (2020)
uses compound parameterization while our reimple-
mentation removes the compound parameterization. S-
DIORA: Drozdov et al. (2020). StructFormer: Shen
et al. (2020).

ited expressiveness of NBL-PCFGs. When dH is
larger than 300, the perplexity becomes plateaued
and the F1 score starts to decrease possibly because
of overfitting.

6.2 Influence of nonterminal number

Figure 2b illustrates perplexities and F1 scores with
the increase of the nonterminal number and fixed
dH “ 300 (plots of UDAS and UUAS can be found
in Appendix). We observe that increasing the non-
terminal number has only a minor influence on
NBL-PCFGs. We speculate that it is because the
number of word-annotated nonterminals (m|Σ|) is
already sufficiently large even if m is small. On
the other hand, the nonterminal number has a big
influence on NL-PCFGs. This is most likely be-
cause NL-PCFGs make the independence assump-
tion that the generation of wq is solely determined
by the non-head-child C and thus require more
nonterminals so that C has the capacity of convey-
ing information from A,B,D and wp. Using more
nonterminals (ą 30) seems to be helpful for NL-

2694

F1 UDAS UUAS Perplexity

D-C 60.4 39.1 56.1 161.9
D-alone 57.2 32.8 54.1 164.8
D-wq 47.7 45.7 58.6 176.8
D-B 47.8 36.9 54.0 169.6

Table 3: Binding the head direction D with different
variables.

PCFGs, but would be computationally too expen-
sive due to the quadratically increased complexity
in the number of nonterminals.

6.3 Influence of different variable bindings

Table 3 presents the results of our models with the
following bindings:

• D-alone: D is generated alone.

• D-wq: D is generated with wq.

• D-B: D is generated with head-child B.

• D-C: D is generated with non-head-child C.

Clearly, binding D and C (the default setting
for NBL-PCFG) results in the lowest perplexity
and the highest F1 score. Binding D and wq has
a surprisingly good performance in unsupervised
dependency parsing.

We find that how to bind the head direction has
a huge impact on the unsupervised parsing perfor-
mance and we give the following intuition. Usually
given a headword and its type, the children gener-
ated in each direction would be different. So, D is
intuitively more related to wq and C than to B. On
the other hand, B is dependent more on the head-
word instead. In Table 3 we can see that (D-B)
has a lower UDAS score than (D-C) and (D-wq),
which is consistent with this intuition. Notably, in
Zhu et al. (2020), their Factorization III has a signif-
icantly lower UDAS than the default model (35.5
vs. 25.9), and the only difference is whether the
generation of C is dependent on the head direction.
This is also consistent with our intuition.

6.4 Qualitative analysis

We analyze the parsing performance of different
PCFG extensions by breaking down their recall
numbers by constituent labels (see Table 4). NPs
and VPs cover most of the gold constituents in WSJ
test set. TN-PCFGs have the best performance
in predicting NPs and NBL-PCFGs have better
performance in predicting other labels on average.

We further analyze the quality of our induced
trees. Our model prefers to predict left-headed con-
stituents (i.e., constituents headed by the leftmost
word). VPs are usually left-headed in English, so
our model has a much higher recall on VPs and cor-
rectly predicts their headwords. SBARs often start
with which and that and PPs often start with prepo-
sitions such as of and for. Our model often relies
on these words to predict the correct constituents
and hence erroneously predicts these words as the
headwords, which hurts the dependency accuracy.
For NPs, we find our model often makes mistakes
in predicting adjective-noun phrases. For example,
the correct parse of a rough market is (a (rough
market)), but our model predicts ((a rough) market)
instead.

7 Discussion on dependency annotation
schemes

What should be regarded as the headwords is still
debatable in linguistics, especially for those around
function words (Zwicky, 1993). For example, in
phrase the company, some linguists argue that the
should be the headword (Abney, 1972). These
disagreements are reflected in the dependency an-
notation schemes. Researchers have found that
different dependency annotation schemes result in
very different evaluation scores of unsupervised de-
pendency parsing (Noji, 2016; Shen et al., 2020).

In our experiments, we use the Stanford Depen-
dencies annotation scheme in order to compare
with NL-PCFGs. Stanford Dependencies prefers
to select content words as headwords. However,
as we discussed in previous sections, our model
prefers to select function words (e.g., of, which,
for) as headwords for SBARs or PPs.This explains
why our model can outperform all the baselines on
constituency parsing but not on dependency pars-
ing (as judged by Stanford Dependencies) at the
same time. Table 3 shows that there is a trade-off
between the F1 score and UDAS, which suggests
that adapting our model to Stanford Dependencies
would hurt its ability to identify constituents.

8 Speed comparison

In practice, the forward and backward pass of the
inside algorithm consumes the majority of the run-
ning time in training a N(B)L-PCFG. The existing
implementation by Zhu et al. (2020)4 does not em-
ploy efficient parallization and has a cubic time

4https://github.com/neulab/neural-lpcfg

2695

100 200 300 400 500
size of |H|

52

54

56

58

60

62
F1

 (%
)

160

170

180

190

200

210

Pe
rp

le
xi

ty

F1
Perplexity

(a)

5 10 15 20 25 30
The number of nonterminals

45

50

55

60

65

70

F1
 (%

)

160

180

200

220

240

260

280

Pe
rp

le
xi

ty

F1 of NL-PCFGs
F1 of NBL-PCFGs
Perplexity of NL-PCFGs
Perplexity of NBL-PCFGs

(b)

Figure 2: The change of F1 scores, perplexities with the change of |H| and nonterminal number.

N-PCFG: C-PCFG: TN-PCFG: NL-PCFG NBL-PCFG

NP 72.3% 73.6% 75.4% 74.0% 66.2%
VP 28.1% 45.0% 48.4% 44.3% 61.1%
PP 73.0% 71.4% 67.0% 68.4% 77.7%
SBAR 53.6% 54.8% 50.3% 49.4% 63.8%
ADJP 40.8% 44.3% 53.6% 55.5% 59.7%
ADVP 43.8% 61.6% 59.5% 57.1% 59.1%

Perplexity 254.3 196.3 207.3 181.2 161.9

Table 4: Recall on six frequent constituent labels and
perplexities of the WSJ test data. : means that the re-
sults are reported by Yang et al. (2021)

complexity in the number of nonterminals. We
provide an efficient reimplementation (we follow
Zhang et al. (2020) to batchify) of the inside algo-
rithm based on Equation 6. We refer to an imple-
mentation which caches Term C1-1 as re-impl-1
and refer to an implementation which caches Term
C1-2 as re-impl-2.

10 20 30 40 50 60 70
Sentence length

0

2

4

6

8

10

12

14

16

Ti
me
:
(s
)

NBL-PCFG
NL-PCFG
re-impl-1
re-impl-2

(a)

10 20 30 40 50 60 70
The number of nonterminals

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
me
:
(s
)

NBL-PCFG
NL-PCFG
re-impl-1
re-impl-2

(b)

Figure 3: Total time in performing the inside algorithm
and automatic differentiation with different sentence
lengths and nonterminal numbers.

We measure the time based on a single forward
and backward pass of the inside algorithm with
batch size 1 on a single Titan V GPU. Figure 3a
illustrates the time with the increase of the sentence
length and a fixed nonterminal number of 10. The
original implementation of NL-PCFG by Zhu et al.
(2020) takes much more time when sentences are
long. For example, when sentence length is 40, it
needs 6.80s, while our fast implementation takes
0.43s and our NBL-PCFG takes only 0.30s. Figure
3b illustrates the time with the increase of the non-

terminal number m and a fixed sentence length of
30. The original implementation runs out of 12GB
memory when m “ 30. re-impl-2 is faster than
re-impl-1 when increasing m as it has a better time
complexity in m (quadratic for re-impl-2, cubic for
re-impl-1). Our NBL-PCFGs have a linear com-
plexity in m, and as we can see in the figure, our
NBL-PCFGs are much faster when m is large.

9 Related Work

Unsupervised parsing has a long history but has
regained great attention in recent years. In unsu-
pervised dependency parsing, most methods are
based on Dependency Model with Valence (DMV)
(Klein and Manning, 2004). Neurally parameter-
ized DMVs have obtained state-of-the-art perfor-
mance (Jiang et al., 2016; Han et al., 2017, 2019;
Yang et al., 2020). However, they rely on gold POS
tags and sophisticated initializations (e.g. K&M
initialization or initialization with the parsing result
of another unsupervised model). Noji et al. (2016)
propose a left-corner parsing-based DMV model to
limit the stack depth of center-embedding, which is
insensitive to initialization but needs gold POS tags.
He et al. (2018) propose a latent-variable based
DMV model, which does not need gold POS tags
but requires good initialization and high-quality
induced POS tags. See Han et al. (2020) for a
survey of unsupervised dependency parsing. Com-
pared to these methods, our method does not re-
quire gold/induced POS tags or sophisticated ini-
tializations, though its performance lags behind
some of these previous methods.

Recent unsupervised constituency parsers can
be roughly categorized into the following groups:
(1) PCFG-based methods. Depth-bounded PCFGs
(Jin et al., 2018a,b) limit the stack depth of center-
embedding. Neurally parameterized PCFGs (Jin

2696

et al., 2019; Kim et al., 2019; Zhu et al., 2020; Yang
et al., 2021) use neural networks to produce gram-
mar rule probabilities. (2) Deep Inside-Outside
Recursive Auto-encoder (DIORA) based methods
(Drozdov et al., 2019a,b, 2020; Hong et al., 2020;
Sahay et al., 2021). They use neural networks to
mimic the inside-outside algorithm and they are
trained with masked language model objectives.
(3) Syntactic distance-based methods (Shen et al.,
2018, 2019, 2020). They encode hidden syntac-
tic trees into syntactic distances and inject them
into language models. (4) Probing based methods
(Kim et al., 2020; Li et al., 2020). They extract
phrase-structure trees based on the attention distri-
butions of large pre-trained language models. In
addition to these methods, Cao et al. (2020) use
constituency tests and Shi et al. (2021) make use
of naturally-occurring bracketings such as hyper-
links on webpages to train parsers. Multimodal
information such as images (Shi et al., 2019; Zhao
and Titov, 2020; Jin and Schuler, 2020) and videos
(Zhang et al., 2021) have also been exploited for
unsupervised constituency parsing.

We are only aware of a few previous studies in
unsupervised joint dependency and constituency
parsing. Klein and Manning (2004) propose a joint
DMV and CCM (Klein and Manning, 2002) model.
Shen et al. (2020) propose a transformer-based
method, in which they define syntactic distances to
guild attentions of transformers. Zhu et al. (2020)
propose neural L-PCFGs for unsupervised joint
parsing.

10 Conclusion

We have presented a new formalism of lexicalized
PCFGs. Our formalism relies on the canonical
polyadic decomposition to factorize the probabil-
ity tensor of binary rules. The factorization re-
duces the space and time complexity of lexicalized
PCFGs while keeping the independence assump-
tions encoded in the original binary rules intact.
We further parameterize our model by using neu-
ral networks and present an efficient implementa-
tion of our model. On the English WSJ test data,
our model achieves the lowest perplexity, outper-
forms all the existing extensions of PCFGs in con-
stituency grammar induction, and is comparable to
strong baselines in dependency grammar induction.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments. This work was supported by
the National Natural Science Foundation of China
(61976139).

References
Steven P. Abney. 1972. The english noun phrase in its

sentential aspect.

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Unsu-
pervised parsing via constituency tests. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4798–4808, Online. Association for Computational
Linguistics.

Eugene Charniak. 1996. Tree-bank grammars. Techni-
cal report, USA.

Justin Chiu and Alexander Rush. 2020. Scaling hid-
den Markov language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1341–1349,
Online. Association for Computational Linguistics.

Shay B. Cohen, Giorgio Satta, and Michael Collins.
2013. Approximate PCFG parsing using tensor de-
composition. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 487–496, Atlanta, Geor-
gia. Association for Computational Linguistics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In 35th Annual Meet-
ing of the Association for Computational Linguis-
tics and 8th Conference of the European Chapter
of the Association for Computational Linguistics,
pages 16–23, Madrid, Spain. Association for Com-
putational Linguistics.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29(4):589–637.

Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen,
Tim O’Gorman, Mohit Iyyer, and Andrew McCal-
lum. 2020. Unsupervised parsing with S-DIORA:
Single tree encoding for deep inside-outside recur-
sive autoencoders. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4832–4845, Online. As-
sociation for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mo-
hit Iyyer, and Andrew McCallum. 2019a. Unsuper-
vised latent tree induction with deep inside-outside
recursive auto-encoders. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short

https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.389
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://www.aclweb.org/anthology/N13-1052
https://www.aclweb.org/anthology/N13-1052
https://doi.org/10.3115/976909.979620
https://doi.org/10.3115/976909.979620
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/2020.emnlp-main.392
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116

2697

Papers), pages 1129–1141, Minneapolis, Minnesota.
Association for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019b. Unsuper-
vised latent tree induction with deep inside-outside
recursive auto-encoders. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1129–1141, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Asso-
ciation for Computational Linguistics.

Jason Eisner and John Blatz. 2007. Program transfor-
mations for optimization of parsing algorithms and
other weighted logic programs. In Proceedings of
FG 2006: The 11th Conference on Formal Gram-
mar, pages 45–85. CSLI Publications.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics, pages 457–464, College Park, Maryland,
USA. Association for Computational Linguistics.

Wenjuan Han, Yong Jiang, Hwee Tou Ng, and Kewei
Tu. 2020. A survey of unsupervised dependency
parsing. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
2522–2533, Barcelona, Spain (Online). Interna-
tional Committee on Computational Linguistics.

Wenjuan Han, Yong Jiang, and Kewei Tu. 2017. De-
pendency grammar induction with neural lexicaliza-
tion and big training data. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1683–1688, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Wenjuan Han, Yong Jiang, and Kewei Tu. 2019. En-
hancing unsupervised generative dependency parser
with contextual information. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5315–5325, Florence,
Italy. Association for Computational Linguistics.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2018. Unsupervised learning of syn-
tactic structure with invertible neural projections.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1292–1302, Brussels, Belgium. Association
for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778.
IEEE Computer Society.

Ruyue Hong, Jiong Cai, and Kewei Tu. 2020. Deep
inside-outside recursive autoencoder with all-span
objective. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics,
pages 3610–3615, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

F. Jelinek, J. D. Lafferty, and R. L. Mercer. 1992. Basic
methods of probabilistic context free grammars. In
Speech Recognition and Understanding, pages 345–
360, Berlin, Heidelberg. Springer Berlin Heidelberg.

Yong Jiang, Wenjuan Han, and Kewei Tu. 2016. Un-
supervised neural dependency parsing. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 763–771,
Austin, Texas. Association for Computational Lin-
guistics.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller,
William Schuler, and Lane Schwartz. 2018a. Depth-
bounding is effective: Improvements and evaluation
of unsupervised PCFG induction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2721–2731, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller,
William Schuler, and Lane Schwartz. 2018b. Un-
supervised grammar induction with depth-bounded
PCFG. Transactions of the Association for Compu-
tational Linguistics, 6:211–224.

Lifeng Jin, Finale Doshi-Velez, Timothy Miller, Lane
Schwartz, and William Schuler. 2019. Unsuper-
vised learning of PCFGs with normalizing flow.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2442–2452, Florence, Italy. Association for Compu-
tational Linguistics.

Lifeng Jin and William Schuler. 2020. Grounded
PCFG induction with images. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 396–408, Suzhou, China.
Association for Computational Linguistics.

Mark Johnson. 1998. PCFG models of linguistic
tree representations. Computational Linguistics,
24(4):613–632.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/N19-1116
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
http://cs.jhu.edu/~jason/papers/#eisner-blatz-2007
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://www.aclweb.org/anthology/2020.coling-main.227
https://www.aclweb.org/anthology/2020.coling-main.227
https://doi.org/10.18653/v1/D17-1176
https://doi.org/10.18653/v1/D17-1176
https://doi.org/10.18653/v1/D17-1176
https://doi.org/10.18653/v1/P19-1526
https://doi.org/10.18653/v1/P19-1526
https://doi.org/10.18653/v1/P19-1526
https://doi.org/10.18653/v1/D18-1160
https://doi.org/10.18653/v1/D18-1160
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://www.aclweb.org/anthology/2020.coling-main.322
https://www.aclweb.org/anthology/2020.coling-main.322
https://www.aclweb.org/anthology/2020.coling-main.322
https://doi.org/10.18653/v1/D16-1073
https://doi.org/10.18653/v1/D16-1073
https://doi.org/10.18653/v1/D18-1292
https://doi.org/10.18653/v1/D18-1292
https://doi.org/10.18653/v1/D18-1292
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.1162/tacl_a_00016
https://doi.org/10.18653/v1/P19-1234
https://doi.org/10.18653/v1/P19-1234
https://www.aclweb.org/anthology/2020.aacl-main.42
https://www.aclweb.org/anthology/2020.aacl-main.42
https://www.aclweb.org/anthology/J98-4004
https://www.aclweb.org/anthology/J98-4004
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB

2698

Yoon Kim, Chris Dyer, and Alexander Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 478–485,
Barcelona, Spain.

Dan Klein and Christopher D. Manning. 2002. A
generative constituent-context model for improved
grammar induction. In Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics, pages 128–135, Philadelphia, Pennsyl-
vania, USA. Association for Computational Linguis-
tics.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan.
Association for Computational Linguistics.

Tamara G. Kolda and Brett W. Bader. 2009. Ten-
sor decompositions and applications. SIAM Review,
51(3):455–500.

Karim Lari and Steve J Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language,
4(1):35–56.

Bowen Li, Taeuk Kim, Reinald Kim Amplayo, and
Frank Keller. 2020. Heads-up! unsupervised con-
stituency parsing via self-attention heads. In Pro-
ceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing, pages 409–424,
Suzhou, China. Association for Computational Lin-
guistics.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. In 33rd Annual Meeting of the
Association for Computational Linguistics, pages
276–283, Cambridge, Massachusetts, USA. Associ-
ation for Computational Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating predicate ar-
gument structure. In Human Language Technology:
Proceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies rep-
resentation. In Coling 2008: Proceedings of the
workshop on Cross-Framework and Cross-Domain

Parser Evaluation, pages 1–8, Manchester, UK. Col-
ing 2008 Organizing Committee.

Hiroshi Noji. 2016. Left-corner methods for syntac-
tic modeling with universal structural constraints.
CoRR, abs/1608.00293.

Hiroshi Noji, Yusuke Miyao, and Mark Johnson. 2016.
Using left-corner parsing to encode universal struc-
tural constraints in grammar induction. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 33–43,
Austin, Texas. Association for Computational Lin-
guistics.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Alexander Rush. 2020. Torch-struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–
342, Online. Association for Computational Linguis-
tics.

Atul Sahay, Anshul Nasery, Ayush Maheshwari,
Ganesh Ramakrishnan, and Rishabh Iyer. 2021.
Rule augmented unsupervised constituency parsing.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron C. Courville. 2018. Neural language model-
ing by jointly learning syntax and lexicon. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. Open-
Review.net.

Yikang Shen, Shawn Tan, Seyedarian Hosseini,
Zhouhan Lin, Alessandro Sordoni, and Aaron C.
Courville. 2019. Ordered memory. CoRR,
abs/1910.13466.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2020. Structformer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen
Livescu. 2019. Visually grounded neural syntax ac-
quisition. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1842–1861, Florence, Italy. Association for
Computational Linguistics.

Tianze Shi, Ozan İrsoy, Igor Malioutov, and Lillian Lee.
2021. Learning syntax from naturally-occurring
bracketings. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 2941–2949, Online. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1073083.1073106
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/07070111X
https://www.aclweb.org/anthology/2020.aacl-main.43
https://www.aclweb.org/anthology/2020.aacl-main.43
https://doi.org/10.3115/981658.981695
https://doi.org/10.3115/981658.981695
https://www.aclweb.org/anthology/H94-1020
https://www.aclweb.org/anthology/H94-1020
https://www.aclweb.org/anthology/W08-1301
https://www.aclweb.org/anthology/W08-1301
http://arxiv.org/abs/1608.00293
http://arxiv.org/abs/1608.00293
https://doi.org/10.18653/v1/D16-1004
https://doi.org/10.18653/v1/D16-1004
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
http://arxiv.org/abs/2105.10193
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
http://arxiv.org/abs/1910.13466
http://arxiv.org/abs/2012.00857
http://arxiv.org/abs/2012.00857
http://arxiv.org/abs/2012.00857
https://doi.org/10.18653/v1/P19-1180
https://doi.org/10.18653/v1/P19-1180
https://www.aclweb.org/anthology/2021.naacl-main.234
https://www.aclweb.org/anthology/2021.naacl-main.234

2699

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Proceed-
ings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 787–794, Sydney, Australia.
Association for Computational Linguistics.

Songlin Yang, Yong Jiang, Wenjuan Han, and Kewei
Tu. 2020. Second-order unsupervised neural depen-
dency parsing. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 3911–3924, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021.
PCFGs can do better: Inducing probabilistic context-
free grammars with many symbols. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1487–1498,
Online. Association for Computational Linguistics.

Songyang Zhang, Linfeng Song, Lifeng Jin, Kun Xu,
Dong Yu, and Jiebo Luo. 2021. Video-aided unsu-
pervised grammar induction. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1513–1524, On-
line. Association for Computational Linguistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020.
Fast and accurate neural CRF constituency parsing.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI
2020, pages 4046–4053. ijcai.org.

Yanpeng Zhao and Ivan Titov. 2020. Visually
grounded compound PCFGs. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4369–4379,
Online. Association for Computational Linguistics.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.
The return of lexical dependencies: Neural lexical-
ized PCFGs. Transactions of the Association for
Computational Linguistics, 8:647–661.

A. Zwicky. 1993. Heads in grammatical theory: Heads,
bases and functors.

A Full Parameterization

We give the full parameterizations of the following
probability distributions.

ppA|Sq “
exppuJSh1pwAqq

ř

A1PN exppuJSh1pwA1qq
,

ppw|Aq “
exppuJAh2pwwqq

ř

w1PΣ exppuJAh2pww1qq
,

ppw|Hq “
exppuJHh3pwwqq

ř

w1PΣ exppuJHh3pww1qq
,

ppH|A,wq “
exppuJHfprwA;wwsqq

ř

H 1PH exppuJh1fprwA;wwsqq
,

100 200 300 400 500
size of |H|

30

32

34

36

38

40

42

44

U
D

A
S

(%
)

51

52

53

54

55

56

57

58

59

U
U

A
S

(%
)

UDAS
UUAS

Figure 4: Influence of dH on UUAS and UDAS.

5 10 15 20 25 30
The numnber of nonterminals

15

20

25

30

35

40

U
D

A
S

(%
)

42

44

46

48

50

52

54

56

58

U
U

A
S

(%
)

UDAS of NL-PCFGs
UDAS of NBL-PCFGs
UUAS of NL-PCFGs
UUAS of NBL-PCFGs

Figure 5: Influence of the number of nonterminals on
UUAS and UDAS.

hipxq “ gi,1 pgi,2 pWixqq

gi,jpyq “ ReLU pVi,j ReLU pUi,jyqq ` y

fprx,ysq “ h4pReLUpWrx; ysq ` yq

B Influence of the domain size of H and
the number of nonterminals

Figure 4 illustrates the change of UUAS and UDAS
with the increase of dH . We find similar tendencies
compared to the change of F1 scores and perplexi-
ties with the increase of dH . dH “ 300 performs
best. Figure 5 illustrates the change of UUAS and
UDAS when increasing the number of nontermi-
nals. We can see that NL-PCFGs benefit from using
more nonterminals while NBL-PCFGs have a bet-
ter performance when the number of nonterminals
is relatively small.

https://www.aclweb.org/anthology/P06-2101
https://www.aclweb.org/anthology/P06-2101
https://www.aclweb.org/anthology/2020.coling-main.347
https://www.aclweb.org/anthology/2020.coling-main.347
https://www.aclweb.org/anthology/2021.naacl-main.117
https://www.aclweb.org/anthology/2021.naacl-main.117
https://www.aclweb.org/anthology/2021.naacl-main.119
https://www.aclweb.org/anthology/2021.naacl-main.119
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/2020.emnlp-main.354
https://doi.org/10.18653/v1/2020.emnlp-main.354
https://doi.org/10.1162/tacl_a_00337
https://doi.org/10.1162/tacl_a_00337

