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Abstract
Encoder pre-training is promising in end-to-
end Speech Translation (ST), given the fact
that speech-to-translation data is scarce. But
ST encoders are not simple instances of Au-
tomatic Speech Recognition (ASR) or Ma-
chine Translation (MT) encoders. For exam-
ple, we find that ASR encoders lack the global
context representation, which is necessary for
translation, whereas MT encoders are not de-
signed to deal with long but locally attentive
acoustic sequences. In this work, we pro-
pose a Stacked Acoustic-and-Textual Encoding
(SATE) method for speech translation. Our en-
coder begins with processing the acoustic se-
quence as usual, but later behaves more like
an MT encoder for a global representation of
the input sequence. In this way, it is straight-
forward to incorporate the pre-trained models
into the system. Also, we develop an adaptor
module to alleviate the representation incon-
sistency between the pre-trained ASR encoder
and MT encoder, and develop a multi-teacher
knowledge distillation method to preserve the
pre-training knowledge. Experimental results
on the LibriSpeech En-Fr and MuST-C En-
De ST tasks show that our method achieves
state-of-the-art BLEU scores of 18.3 and 25.2.
To our knowledge, we are the first to develop
an end-to-end ST system that achieves compa-
rable or even better BLEU performance than
the cascaded ST counterpart when large-scale
ASR and MT data is available1.

1 Introduction

End-to-end Speech Translation (E2E ST) has be-
come popular recently for its ability to free design-
ers from cascading different systems and shorten

∗Corresponding author
1The source code is available at https://github.com/xuchen

neu/SATE

Setting Model BLEU

Restricted
Cascaded 23.3

E2E+Pre-training 23.1

Unrestricted
Cascaded 28.1

E2E+Pre-training 25.6

Table 1: BLEU scores [%] of a cascaded ST model and
an end-to-end ST model with pre-training on the MuST-
C En-De corpus. Restricted = training is restricted to
the ST data, and Unrestricted = additional training data
is allowed for ASR and MT.

the pipeline of translation (Duong et al., 2016; Be-
rard et al., 2016; Weiss et al., 2017). Promising
results on small-scale tasks are generally favor-
able. However, speech-to-translation paired data is
scarce. Researchers typically use pre-trained Au-
tomatic Speech Recognition (ASR) and Machine
Translation (MT) models to boost ST systems (Be-
rard et al., 2018). For example, one can initialize
the ST encoder using a large-scale ASR model
(Bansal et al., 2019). But we note that, despite
significant development effort, our end-to-end ST
system with pre-trained models was not able to
outperform the cascaded ST counterpart when the
ASR and MT data size was orders of magnitude
larger than that of ST (see Table 1).

In this paper, we explore reasons why pre-
training has been challenging in ST, and how pre-
trained ASR and MT models might be used to-
gether to improve ST. We find that the ST encoder
plays both roles of acoustic encoding and textual
encoding. This makes it problematic to view an
ST encoder as either an individual ASR encoder or
an individual MT encoder. More specifically, there
are two problems.

https://github.com/xuchenneu/SATE
https://github.com/xuchenneu/SATE
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• Modeling deficiency: the MT encoder tries to
capture long-distance dependency structures
of language, but the ASR encoder focuses
more on local dependencies in the input se-
quence. Since the ST encoder is initialized
by the pre-trained ASR encoder (Berard et al.,
2018), it fails to model large contexts in the
utterance. But a large scope of representa-
tion learning is necessary for translation (Yang
et al., 2018).

• Representation inconsistency: on the decoder
side of ST, the MT decoder is in general used
to initialize the model. The assumption here
is that the upstream component is an MT-like
encoder, whereas the ST encoder actually be-
haves more like an ASR encoder.

We address these problems by marrying the
world of ASR encoding with the world of MT
encoding. We propose a Stacked Acoustic-and-
Textual Encoding (SATE) method to cascade the
ASR encoder and the MT encoder. It first reads
and processes the sequence of acoustic features
as a usual ASR encoder. Then an adaptor mod-
ule passes the acoustic encoding output to an MT
encoder with two principles: informative and adap-
tive. In this way, pre-trained ASR and MT encoders
can work for what we would originally design them,
and the incorporation of pre-trained models into ST
is more straightforward. In addition, we develop
a multi-teacher knowledge distillation method to
robustly train the ST encoder and preserve the pre-
trained knowledge during fine-tuning (Yang et al.,
2020).

We test our method in a Transformer-based end-
to-end ST system. Experimental results on the Lib-
riSpeech En-Fr and MuST-C En-De speech transla-
tion benchmarks show that it achieves the state-
of-the-art performance of 18.3 and 25.2 BLEU
points. Under a more challenging setup, where the
large-scale ASR and MT data is available, SATE
achieves comparable or even better performance
than the cascaded ST counterpart. We believe that
we are the first to present an end-to-end system that
can beat the strong cascaded system in unrestricted
speech translation tasks.

2 Related Work

Speech translation aims at learning models that can
predict, given some speech in the source language,
the translation into the target language. The earliest

of these models were cascaded: they treated ST
as a pipeline of running an ASR system and an
MT system sequentially (Ney, 1999; Mathias and
Byrne, 2006; Schultz et al., 2004). This allows
the use of off-the-shelf models, and was (and is)
popular in practical ST systems. However, these
systems were sensitive to the errors introduced by
different component systems and the high latency
of the long pipeline.

As another stream in the ST area, end-to-end
methods have been promising recently (Berard
et al., 2016; Weiss et al., 2017; Berard et al., 2018).
The rise of end-to-end ST can be traced back to the
success of deep neural models (Duong et al., 2016).
But, unlike other well-defined tasks in deep learn-
ing, annotated speech-to-translation data is scarce,
which prevents well-trained ST models. A simple
solution to this issue is data augmentation (Pino
et al., 2019, 2020). This method is model-free
but generating large-scale synthetic data is time
consuming. As an alternative, researchers used
multi-task learning (MTL) to robustly train the ST
model so that it could benefit from additional guide
signals (Weiss et al., 2017; Anastasopoulos and
Chiang, 2018; Berard et al., 2018; Sperber et al.,
2019; Dong et al., 2021). Generally, MTL requires
a careful design of the loss functions and more
complicated architectures.

In a similar way, more recent work pre-trains
different components of the ST system, and consol-
idates them into one. For example, one can initial-
ize the encoder with an ASR model, and initialize
the decoder with the target-language side of an MT
model (Berard et al., 2018; Bansal et al., 2019;
Stoian et al., 2020). More sophisticated methods
include better training and fine-tuning (Wang et al.,
2020a,b), the shrink mechanism (Liu et al., 2020),
the adversarial regularizer (Alinejad and Sarkar,
2020), and etc. Although pre-trained models have
quickly become dominant in many NLP tasks, they
are still found to underperform the cascaded model
in ST. This motivates us to explore the reasons why
this happens and methods to solve the problems
accordingly.

3 Why is ST Encoding Difficult?

Following previous work in end-to-end models (Be-
rard et al., 2016; Weiss et al., 2017), we envision
an encoding-decoding process in which an input se-
quence is encoded into a representation vector, and
the vector is then decoded into an output sequence.
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Figure 1: (a) Localness in each layer of the ST, ASR, and MT encoders, (b) the impact of CTC position on
localness, and (c) the impact of CTC position on performance of ST and ASR models.

In such a scenario, all end-to-end ST, ASR and MT
systems can be viewed as instances of the same
architecture. Then, components of these systems
can be pre-trained and re-used across them.

An underlying assumption here is that the ST en-
coder is doing something quite similar to what the
MT (or ASR) encoder is doing. However, Sperber
et al. (2018) find that the ASR model benefits from
a small attention window, which is inconsistent
with the MT model (Yang et al., 2018). To ver-
ify this, we compare the behavior of ST, ASR and
MT encoders. We choose Transformer as the base
architecture (Vaswani et al., 2017) and run experi-
ments on the MuST-C En-De corpus. We report the
results on the MuST-C En-De tst-COMMON test
data. For stronger systems, we use Connectionist
Temporal Classification (CTC) (Graves et al., 2006)
as the auxiliary loss on the encoders when we train
the ASR and ST systems (Watanabe et al., 2017;
Karita et al., 2019; Bahar et al., 2019). The CTC
loss forces the encoders to learn alignments be-
tween speech and transcription. It is necessary for
the state-of-the-art performance (Watanabe et al.,
2018).

Here we define the localness of a word as the
sum of the attention weights to the surrounding
words (or features) within a fixed small window2.
The window size is 10% of the sequence length.
Figure 1(a) shows the localness of the attention
weights for different layers of the encoders. We
see that the ST and ASR encoders prefer local at-
tention which indicates a kind of short-distance
dependencies in processing acoustics feature se-
quences. Whereas the MT encoder generates a

2Here we treat the attention weight of Transformer as a
distribution over all positions.

more global distribution of attention weights for
word sequences, especially when we stack more
layers. This result arises a new question: Is local
attention sufficient for speech translation?

Then, we design another experiment to examine
if the high localness in attention weights of the
ASR and ST encoders is due to the bias imposed
by CTC. In Figure 1(b), we use the CTC loss in the
intermediate layer and show the average localness
of the layers above or below CTC. The CTC loss
demonstrates strong preference for locally attentive
models. The upper-level layers act more like an
MT encoder, that is, the layers with no CTC loss
generates more global distributions. Taking this
further, Figure 1(c) demonstrates a slightly higher
BLEU score when we free more upper-level layers
from the guide of CTC. Meanwhile, the word error
rate (WER) increases because only lower parts of
the model are learned in a standard manner of ASR.

Now we have some hints: the ST encoder is not
a simple substitution of the ASR encoder or the
MT encoder. Rather, they are complementary to
each other, that is, we need the ASR encoder to
deal with the acoustic input, and the MT encoder
to generate the representation vector that can work
better with the decoder.

4 The Method

In speech translation, we want the encoder to rep-
resent the input speech to some sort of decoder-
friendly representations. We also want the encoder
to be “natural” for pre-training. In the following,
we describe, Stacked Acoustics-and-Textual Encod-
ing (SATE), a new ST encoding method to meet
these requirements, and improvements of it.
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Figure 2: The overall architecture of stacked acoustic-
and-textual encoding.

4.1 Stacked Acoustic-and-Textual Encoding
Unlike previous work, the SATE method does not
rely on a single encoder to receive the signal from
both the CTC loss and the feedback of the decoder.
Instead, it is composed of two encoders: the first
does exactly the same thing as the ASR encoder
(call it acoustic encoder), and the other generates
a higher-level globally-attentive representation on
top of the acoustic encoder (call it textual encoder).

See Figure 2 for the architecture of SATE. The
acoustic encoder is trained by CTC in addition
to the supervision signal from the translation loss.
Let (x, ys, yt) be an ST training sample, where x
is the input feature sequence of the speech, ys is
the transcription of x, and yt is the translation in
the target language. We define the output of the
acoustic encoder as:

hs = Es(x) (1)

where Es(·) is the encoding function. Then, we
add a Softmax layer on hs to predict the CTC label
path π = (π1, · · · , πT ), where T is the length of
the input sequence. The probability of path P(π|hs)
is the product of the probability P(πt|hst ) at every
time t based on conditionally independent assump-
tion:

P(π|hs) ≈
T∏
t

P(πt|hst ) (2)

CTC works by summing over the probability of
all possible alignment paths Φ(ys) between x and
ys , as follows:

PCTC(ys|hs) =
∑

π∈Φ(ys)

P(π|hs) (3)

Then, the CTC loss is defined as:

LCTC = − log PCTC(ys|hs; θCTC) (4)

where θCTC is the model parameters of the acoustic
encoder and the CTC output layer.

The acoustic encoder is followed by an adaptor.
It receives hs and P (π|hs), and produces a new
representation required by the textual encoder. Let
A(·, ·) be the adaptor module. Its output is defined
as:

ĥs = A(hs,P(π|hs)) (5)

We leave the design of the adaptor to Section 4.2.
Furthermore, we stack the textual encoder on the
adaptor. The output ht is defined as:

ht = Et(ĥs) (6)

where Et(·) is the textual encoder. ht is fed into
the decoder for computing the translation probabil-
ity PTrans(y

t|ht), as in standard MT systems. We
define the translation loss as:

LTrans = − log PTrans(y
t|ht; θST) (7)

where θST is all model parameters except for the
CTC output layer.

Finally, we interpolate LCTC and LTrans (with
coefficient α) for the loss of the entire model:

L = α · LCTC + (1− α) · LTrans (8)

Since the textual encoder works for the decoder
only, it is trained as an MT encoder. In this way,
the acoustic and textual encoders can do what we
would originally expect them to do: the acoustic
encoder deals with the acoustic input (i.e., ASR en-
coding), and the textual encoder generates a repre-
sentation for translation (i.e., MT encoding). Also,
SATE is friendly to pre-training. One can simply
use an ASR encoder as the acoustic encoder, and
use an MT encoder as the textual encoder. Note
that SATE is in general a cascaded model, in re-
sponse to the pioneering work in ST (Ney, 1999). It
can be seen as cascading the ASR and MT systems
in an end-to-end fashion.

4.2 The Adaptor
Now we turn to the design of the adaptor. Note that
the pre-trained MT encoder assumes that the input
is a word embedding sequence. Simply stacking
the MT encoder and the ASR encoder obviously
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does not work well. For this reason, the adaptor fits
the output of the ASR encoder (i.e., the acoustic
encoder) to what an MT encoder would like to see.
We follow two principles in designing the adaptor:
adaptive and informative.

We need an adaptive representation to make the
input of the textual encoder similar to that of the
MT encoder. To this end, we generate the soft con-
textual representation that shares the same latent
space with the embedding layer of the MT encoder.

As shown in Eq. (2), the CTC output P(πt|hst )
indicates the alignment probability over the vocab-
ulary at time t. Instead of replacing the representa-
tion by the embedding of the most-likely token (Liu
et al., 2020), we employ a soft token which is the
expectation of the embedding over the distribution
from CTC. Let W e be the embedding matrix of the
textual encoder, we define the soft representation
hssoft as:

hssoft = P(π|hs) ·W e (9)

Also, an informative representation should con-
tain information in the original input (Peters et al.,
2018). The output acoustic representation of the
ASR encoder generally involves paralinguistic in-
formation, such as emotion, accent, and emphasis.
They are not expressed in the form of text explicitly
but might be helpful for translation. For example,
the generation of the declarative or exclamatory
sentences depends on the emotions of the speakers.

We introduce a single-layer neural network to
learn to map the acoustic representation to the la-
tent space of the textual encoder, which preserves
the acoustic information:

hsmap = ReLU(Wmap · hs + bmap) (10)

whereWmap and bmap are the trainable parameters.
The final output of the adaptor is defined to be:

A(hs, P (π|hs)) = λ · hsmap +

(1− λ) · hssoft (11)

where λ is the weight of hsmap and set to 0.5 by
default. Figure 3 shows the architecture of the
adaptor.

Note that, in the adaptor, we do not change the
sequence length for textual encoding because such
a way is simple for implementation and shows satis-
factory results in our experiments. Although there
is a length inconsistency issue, the sequence repre-
sentation of the speech should be similar with the
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Figure 3: The architecture of the adaptor.

correspond transcription. Shrinking the sequence
simply results in information incompleteness. We
will investigate this issue in the future.

4.3 Multi-teacher Knowledge Distillation

Another improvement here is that we develop
a multi-teacher knowledge distillation (MTKD)
method to preserve the pre-trained knowledge dur-
ing fine-tuning (Hinton et al., 2015).

The ST model mimics the teacher distribution
by minimizing the cross-entropy loss between the
teacher and student (Liu et al., 2019). For a training
sample (x, ys, yt), we define two loss functions:

LKD CTC = −
T∑

m=1

|V |∑
k=1

Q(πm = vk|x; θASR)

× log P(πm = vk|x; θCTC) (12)

LKD Trans = −
|yt|∑
n=1

|V |∑
k=1

Q(ytn = vk|ys; θMT)

× log P(ytn = vk|x; θST) (13)

where vk is the word indexed by k and V is the
vocabulary shared among the ST, ASR, and MT
models. Q(·|·) is the teacher distribution and P(·|·)
is the student distribution. θASR, θCTC, θMT and
θST are the model parameters.

We can rewrite Eq. (8) to obtain a new loss:

L = α ·
(
β · LCTC + (1− β) · LKD CTC

)
+(1− α) ·(
γ · LTrans + (1− γ) · LKD Trans

)
(14)

where both β and γ are the hyper-parameters that
balance the preference between the teacher distri-
bution and the ground truth.
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5 Experiments

5.1 Datasets and Preprocessing

We consider restricted and unrestricted settings
on speech translation tasks. We run experiments
on the LibriSpeech English-French (En-Fr) (Ko-
cabiyikoglu et al., 2018) and MuST-C English-
German (En-De) (Gangi et al., 2019) corpora,
which correspond to the low-resource and high-
resource datasets respectively. Available ASR and
MT data is only from the ST data under the re-
stricted setting. For comparison in practical scenar-
ios, the unrestricted setting allows the additional
data for ASR and MT models.

LibriSpeech En-Fr Followed previous work, we
use the clean speech translation training set of 100
hours, including 45K utterances and doubled trans-
lations of Google Translate. We select the model
on the dev set (1,071 utterances) and report results
on the test set (2,048 utterances).

MuST-C En-De MuST-C is a multilingual speech
translation corpus extracted from the TED talks.
We run the experiments on the English-German
speech translation dataset of 400 hours speech with
230K utterances. We select the model on the dev
set (1,408 utterances) and report results on the tst-
COMMON set (2,641 utterances).

Unrestricted Setting We use the additional ASR
and MT data for pre-training. The 960 hours Lib-
riSpeech ASR corpus is used for the English ASR
model. We extract 10M sentences pairs from the
WMT14 English-French and 18M sentence pairs
from the Opensubtitle20183 English-German trans-
lation datasets.

Preprocessing Followed the preprocessing recipes
of ESPnet (Inaguma et al., 2020), we remove the
utterances of more than 3,000 frames and augment
speech data by speed perturbation with factors of
0.9, 1.0, and 1.1. The 80-channel log-mel filterbank
coefficients with 3-dimensional pitch features are
extracted for speech data. We use the lower-cased
transcriptions without punctuations. The text is
tokenized using the scripts of Moses (Koehn et al.,
2007). We learn Byte-Pair Encoding (Sennrich
et al., 2016) subword segmentation with 10,000
merge operations based on a shared source and
target vocabulary for all datasets.

3http://opus.nlpl.eu/OpenSubtitles-v2018.php

5.2 Model Settings
All experiments are implemented based on the ES-
Pnet toolkit4. We use the Adam optimizer with
β1 = 0.9, β2 = 0.997 and adopt the default learn-
ing schedule in ESPnet. We apply dropout with
a rate of 0.1 and label smoothing εls = 0.1 for
regularization.

For reducing the computational cost, the input
speech features are processed by two convolutional
layers, which have a stride of 2 × 2 and down-
sample the sequence by a factor of 4 (Weiss et al.,
2017). The encoder consists of 12 layers for both
the ASR and vanilla ST models, and 6 layers for
the MT model. The encoder of SATE includes an
acoustic encoder of 12 layers and a textual encoder
of 6 layers. The decoder consists of 6 layers for
all models. The weight of CTC objective α for
multitask learning is set to 0.3 for all ASR and ST
models. The coefficients β and γ are set to 0.5 in
Eq. (14) for the MTKD method.

Under the restricted setting, we employ the
Transformer architecture, where each layer com-
prises 256 hidden units, 4 attention heads, and 2048
feed-forward size. For the unrestricted setting, we
use the superior architecture Conformer (Gulati
et al., 2020) on the ASR and ST tasks and widen
the model by increasing the hidden size to 512 and
attention heads to 8. The ASR5 and MT models
pre-train with the additional data and fine-tune the
model parameters with the task-specific data.

During inference, we average the model parame-
ters on the best 5 checkpoints based on the perfor-
mance of the development set. We use beam search
with a beam size of 4 for all models. Different
from previous work, we report the case-sensitive
SacreBLEU6 (Post, 2018) for future standardiza-
tion comparison across papers.

5.3 Results
Results on MuST-C En-De Table 2 summaries
the experimental results on the MuST-C En-De
task. Under the restricted setting, the cascaded
ST model translates the output of the ASR model,
which degrades the performance compared with the
MT model that translates from the reference tran-
scription. The performance of the E2E ST baseline
with pre-training is only slightly lower than the cas-
caded counterpart. SATE outperforms the baseline

4https://github.com/espnet/espnet
5We use the pre-trained ASR model offered by ESPnet.
6BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a

+version.1.4.14
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Method Restricted Unrestricted

ESPnet MT∗ 27.63 -
ESPnet Cascaded∗ 23.65 -
MT 26.9 31.1
Cascaded ST 23.3 28.1

ESPnet E2E ST∗ 22.33 -
E2E ST 22.1 23.6

+Pre-training 23.1 25.6

SATE 23.3 23.6
+Pre-training 24.1 27.3

+MTKD 24.7 27.9
+SpecAug 25.2 28.1

Table 2: BLEU scores [%] on the test set of MuST-C
En-De corpus. ∗: results reported in the ESPnet toolkit.

model significantly. This demonstrates the superi-
ority of stacked acoustic and textual encoding for
the speech translation task. Incorporating the pre-
trained ASR and MT models into SATE releases
the encoding burden of the model and achieves
a remarkable improvement. The MTKD method
provides a strong supervised signal and forces the
model to preserve the pre-trained knowledge. Fur-
thermore, we utilize the SpecAugment (Park et al.,
2019) which is applied in the input speech features
for better generalization and robustness7. It yields a
remarkable improvement of 1.9 BLEU points over
the cascaded baseline and achieves a new state-of-
the-art performance.

Under the unrestricted setting, the large-scale
ASR and MT data is available, whereas the ST data
is scarce. This leads to the cascaded method outper-
forms the vanilla E2E method with a huge margin
of 4.5 BLEU points. The pre-training only slightly
closes the gap due to the modeling deficiency and
representation inconsistency. SATE incorporates
the pre-trained models fully, which achieves a sig-
nificant improvement of 3.7 BLEU points. With
the MTKD and SpecAugment methods, we achieve
a comparable performance of 28.1 BLEU points.
To our knowledge, we are the first to develop an
end-to-end ST system that achieves comparable
performance with the cascaded counterpart when
large-scale ASR and MT data is available.
Results on LibriSpeech En-Fr Table 3 sum-
maries the experimental results on the LibriSpeech
En-Fr task. Different from the MuST-C corpus,

7It is a fair comparison because the ASR model in the
cascaded ST system also trains with the SpecAugment.

Method Restricted Unrestricted

ESPnet MT∗ 18.09 -
ESPnet Cascaded∗ 16.96 -
MT 17.5 21.3
Cascaded ST 16.3 20.6

ESPnet E2E ST∗ 16.22 -
E2E ST 16.7 17.7

+Pre-training 17.1 20.0

SATE 17.6 18.1
+Pre-training 17.4 20.8

+MTKD 17.7 20.8
+SpecAug 18.3 20.8

Table 3: BLEU scores [%] on the test set of Lib-
riSpeech En-Fr corpus. ∗: results reported in the ES-
Pnet toolkit.

it is of small magnitude with clean speech data.
This results in that the performance of the vanilla
E2E baseline is even better than the cascaded coun-
terpart under the restricted setting. Furthermore,
pre-training helps the model achieve an improve-
ment of 0.8 BLEU points over the cascaded base-
line. More interestingly, SATE without pre-training
outperforms the above methods significantly, even
achieves a slight improvement than the MT model.
A possible reason is that the diverse acoustic rep-
resentation is fed to the textual encoder, which
improves the robustness of the model. This demon-
strates the superiority of our method.

Combining our proposed methods yields a sub-
stantial improvement of 2.0 BLEU points over the
cascaded baseline. It is a new state-of-the-art result
of 18.3 BLEU points. Also, we outperform the
cascaded counterpart by 0.2 BLEU points on the
unrestricted task.

6 Analysis

6.1 Model Performance vs. Speedup

In Table 4, we summarize the performance and
inference speedup based on the real time factor
(RTF). The vanilla E2E ST model yields an infer-
ence speedup of 1.91× than the cascaded coun-
terpart and demonstrates the low latency of the
end-to-end methods. We increase the encoder lay-
ers for comparison with SATE under the similar
model parameters. However, there is a remarkable
gap of 0.5 or 0.6 BLEU points, with or without
pre-training.
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Method BLEU RTF/Speedup

Cascaded ST 23.3 0.0286/1.00×

E2E ST 22.1
0.0150/1.91×

+Pre-training 23.1

E2E ST (Enc 18) 22.8
0.0155/1.85×

+Pre-training 23.5

SATE 23.3
0.0169/1.69×+Pre-training 24.1

+All 25.2

Table 4: BLEU scores [%] and speedup on the test
set (2641 utterances) of the MuST-C En-De corpus un-
der the restricted setting. We evaluate the RTF on the
NVIDIA V100 GPU with a batch size of 4 for all mod-
els.

Pre-trained Module MuST-C LibriSpeech

All 27.3 20.8
-ASR Enc 24.7 19.9
-MT 25.1 19.4
-MT Enc 25.7 20.7
-MT Dec 25.3 19.9

Table 5: Effects of the pre-trained modules on BLEU
scores [%] under the unrestricted setting. We only re-
move one pre-trained module in each experiment.

Our method not only improves the performance
of 1.9 BLEU points but also reaches up to 1.69×
speedup than the cascaded baseline. This encour-
ages the application of the end-to-end ST model in
practical scenarios.

6.2 Effects of Pre-trained Modules
The effects of the pre-trained modules are shown
in Table 5. The model performance drops signifi-
cantly without the pre-trained ASR encoder, espe-
cially on the MuST-C corpus that contains noisy
speech. The model parameters of pre-trained MT
model are updated for adapting the output represen-
tation of the random initialized acoustic encoder.
This results in the catastrophic forgetting problem
(Goodfellow et al., 2015). The effect of the pre-
trained MT model is more remarkable on the Lib-
riSpeech corpus due to the modeling burden on
the translation. The benefit of the pre-trained MT
decoder is larger than the MT encoder. This is con-
trary to the previous conclusions that the MT en-
coder helps the performance significantly (Li et al.,
2020). A possible reason is that the pre-trained

Design MuST-C LibriSpeech

None 25.7 21.7
Soft 25.7 21.9
Mapping 26.0 21.8
Fusion 26.4 21.9

Table 6: BLEU scores [%] of different adaptor setups
on the development set under the unrestricted setting.
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Figure 4: The localness of the vanilla E2E ST model
and SATE model with pre-training.

ASR encoder provides a rich representation and
acts as part of the MT encoder, this leads to lower
performance degradation when the textual encoder
trains from scratch.

Each pre-trained module has a great effect on the
final performance. With the complete integration of
the pre-trained modules, the model parameters are
updated slightly, which preserves the pre-trained
knowledge.

6.3 Effects of The Adaptor
We show the effects of the adaptor in Table 6. The
straight connection which omits the representation
inconsistency issue results in the lower benefit of
pre-training. Although the soft representation aims
at generating the adaptive representation, there is
no obvious improvement on the MuST-C corpus.
A possible reason is that the noisy speech inputs
produce the misalignment probabilities, which dis-
turbs the textual encoding. The mapping method
achieves a slight improvement by transforming the
acoustic representation to the textual representa-
tion. Fusing the soft and mapping representation
enriches the information and avoids the represen-
tation inconsistency issue, which achieves the best
performances.

6.4 Impact on Localness
We show the encoder localness of the vanilla E2E
ST model and SATE model with pre-training in
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Figure 4. As mentioned above, the vanilla ST
model inherits the preference of ASR, which fo-
cuses on short-distance dependencies. SATE ini-
tializes with the pre-trained ASR and MT encoders,
which stacks acoustic and textual encoding. The
complementary behaviors of the pre-trained mod-
els benefit the translation, that is, the lower layers
act like an ASR encoder while the upper layers
capture global representation like an MT encoder.

7 Conclusion

In this paper, we investigate the difficulty of speech
translation and shed light on the reasons why pre-
training has been challenging in ST. This inspires
us to propose a Stacked Acoustic-and-Textual En-
coding method, which is straightforward to incor-
porate the pre-trained models into ST. We also
introduce an adaptor module and a multi-teacher
knowledge distillation method for bridging the gap
between pre-training and fine-tuning.

Results on the LibriSpeech and MuST-C corpora
demonstrate the superiority of our method. Fur-
thermore, we achieve comparable or even better
performance than the cascaded counterpart when
large-scale ASR and MT data is available.
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