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Abstract

Multimodal pre-training models, such as
LXMERT, have achieved excellent results in
downstream tasks. However, current pre-
trained models require large amounts of train-
ing data and have huge model sizes, which
make them difficult to apply in low-resource
situations. How to obtain similar or even bet-
ter performance than a larger model under the
premise of less pre-training data and smaller
model size has become an important problem.
In this paper, we propose a new Multi-stage
Pre-training (MSP) method, which uses infor-
mation at different granularities from word,
phrase to sentence in both texts and images
to pre-train the model in stages. We also de-
sign several different pre-training tasks suit-
able for the information granularity in dif-
ferent stage in order to efficiently capture
the diverse knowledge from a limited corpus.
We take a Simplified LXMERT (LXMERT-
S), which has only 45.9% parameters of the
original LXMERT model and 11.76% of the
original pre-training data as the testbed of our
MSP method. Experimental results show that
our method achieves comparable performance
to the original LXMERT model in all down-
stream tasks, and even outperforms the origi-
nal model in Image-Text Retrieval task.

1 Introduction

Self-attention based Transformer (Vaswani et al.,
2017) effectively overcomes the problem of RNN
being difficult to run in parallel, and greatly pro-
motes the development of large-scale pre-training
models. The pre-training language models, such
as BERT (Devlin et al., 2019), have achieved
excellent performance in many natural language
processing tasks. With their big success, re-
searchers have also developed pre-training mod-
els on multimodal tasks. A series of multimodal
pre-training models have been proposed, such as

ViLBERT (Lu et al., 2019), LXMERT (Tan and
Bansal, 2019), UNITER (Chen et al., 2019) etc.,
and have achieved excellent results in language-
vision multimodal tasks.

However, the current pre-training models are
normally with large-scale parameters, require huge
pre-training data and have very high demands on
computational resources. For example, the GPT
model (Radford et al., 2018) has 110 Million pa-
rameters, GPT-2 (Radford et al., 2019) has 1.5 Bil-
lion parameters, and GPT-3 (Brown et al., 2020)
has a staggering 175 Billion parameters. The same
is true for multimodal pre-trained models. For ex-
ample, LXMERT (Tan and Bansal, 2019) has 183.5
Million parameters and requires 816 TitanX GPU
hours for training on 9.18 Million text-image pairs.
The sizes of these models are too huge for them to
be deployed in many real-world scenarios. There-
fore, the study of lightweight pre-training models,
which can achieve similar performances to large-
scale models with smaller parameter scales and
training costs, is significantly valuable.

There are some types of work on developing
lightweight pre-trained models, including the de-
sign of the model structure, quantization, pruning
and distillation. For example, ALBERT (Lan et al.,
2020) is a lightweight model through structural
design such as parameter sharing and parameter
decomposition, and achieves better performance
than original models; Q8BERT (Zafrir et al., 2019)
compresses the model to 1/4 of the original model
but with no more than 1% performance loss by
quantizing 32bit floating point into 8bit; (Michel
et al., 2019) used BERT weight pruning to com-
press the model and found that removing a large
number of attention heads would not have a major
impact on the model performance; TinyBERT (Jiao
et al., 2020) reduced the model size by 7.5 times
but with no more than 4% performance loss by
designing a teacher-student distillation model.
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All above works are on language pre-training
models, and most of them concern scales of model
parameters. There are few works on cutting
training data and light weighing multimodal pre-
training model. In fact, compared with language
model, multimodal pre-training models should deal
with data from both language and visual modal,
which demand larger amounts of data and more
computational resources. Meanwhile, collections
of training data are more difficult. Taking for exam-
ple the size of text-image pairs used for multimodal
pre-training, the frequently used MS COCO (Lin
et al., 2014) is a high quality dataset with only
0.82M pairs, while LAIT (Qi et al., 2020) is al-
ready a big data with 10M pairs but with average
quality. Therefore, it is significantly valuable to de-
velop lightweight multimodal pre-training models
which can make use of limited data efficiently.

Existing research on curriculum learning (Ben-
gio et al., 2009) has shown that imitating the pro-
cess of human learning by gradually increasing
the difficulty of a task from simple to complex in
stages helps to make better use of different types
of data and effectively improve the performance
of learning. Many models (Qi et al., 2020) use as
much as data available but few works have been
done on how to arrange the tasks for better mak-
ing use of limited data. We therefore borrow the
idea of curriculum learning on training pre-training
models. We construct a pre-training process which
makes use of data from smaller units to bigger units
in stages, and design appropriate pre-training tasks
for each corresponding stage.

Specifically, we propose a new Multi-stage Pre-
training (MSP) method. The first pre-training stage
is on the token units, where the text input is the
category labels of the objects in the images, and
the image input is the object features. An Image
Features Random Shuffle (IFRS) is designed as
a pre-training task for this stage. IFRS randomly
shuffles the object features, and the model predicts
the original object order based on the text infor-
mation. The second stage focuses on phrase units.
Phrase-level descriptions of the image are input on
the text side and image features are input on the
image side. A Topic of Image and Text for Phrase
(TITP) task is designed for it. The third stage is
sentence-based pre-training. Sentence-level cap-
tions are input on the text side, and image features
are input on the image side. A Topic of Image and
Text for Sentence (TITS) task is designed for it. We

take a Simplified LXMERT (LXMERT-S) which
has fewer parameters and less pre-training data as
the testbed of our MSP method. Experimental re-
sults show that our method achieves comparable
performance to the original LXMERT model in
downstream tasks.

The main contributions of our work are as fol-
lows: (1) We propose a new MSP method that
allows the model to learn different granularities of
text-image correspondence information at different
stages; (2) For each stage, we design pre-training
tasks suitable for that stage, IFRS task for token-
based pre-training, TITP task for phrase-based pre-
training, and TITS task for sentence-based pre-
training; (3) With less pre-trained data (11.76%),
fewer model parameters (45.9%), less resource con-
sumption (25%) and less training time (46.57%),
the performances of downstream tasks are compa-
rable to or even exceed that of the original model.

2 Related Works

Multimodal Pre-training Models Multimodal
pre-training models are mainly divided into two
categories: single-stream models and two-stream
models. Single-stream models such as B2T2 (Al-
berti et al., 2019), OSCAR (Li et al., 2020), etc.,
fuse image and text information at the beginning
of the input; two-stream models such as ViL-
BERT (Lu et al., 2019), LXMERT(Tan and Bansal,
2019), etc., encode the image and text informa-
tion alone first and then fuse them later. Gener-
ally two-stream models will have more parame-
ters than single-stream models, but whether the
single-stream model or the two-stream model has
better performance or is related to the specific
tasks require more rigorous experimental proof.
We conduct follow-up experiments based on the
two-stream model LXMERT by removing the cod-
ing layer of the individual modalities and keeping
only the fusion coding layer, so that the simplified
LXMERT model is more like the single-stream
model.

Multimodal Pre-training Data There are sev-
eral different considerations on making use of
data. VisualBERT (Li et al., 2019) believes that
pre-training on the target dataset can improve the
performance of the model, so VisualBERT first
pre-trains on COCO Caption and then continues
pre-training on the target dataset (e.g. VQA). Im-
ageBERT (Qi et al., 2020), on the other hand, is
trained on the out-of-domain LAIT dataset and
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Figure 1: Overview of our proposed MSP method, including three stages from token, phrase to sentence-based
pre-training, with appropriate pre-training tasks for each stage of pre-training.

then on the in-domain datasets, such as Concep-
tual Captions(CC) (Sharma et al., 2018) and SBU
Captions (Ordonez et al., 2011). It can be said
the dataset that is most similar to the downstream
task is used for training at last, and the general
data is used firstly. Clearly, this way of using data
is directly related to the downstream tasks. Dif-
ferent downstream tasks might lead to different
order of data usage. In this paper, we design a
staged pre-training from word-level to phrase-level
to sentence-level, which is related to the size of
information units. We also design suitable pre-
training tasks for different phases to fully exploit
the text-image information correspondence of dif-
ferent units in each phase, which has consistent
effectiveness for different downstream tasks.

Multimodal Pre-training Tasks The mostly
employed language pre-training task is Masked
Language Modeling (MLM) (Chen et al., 2019),
where tokens are masked with a probability and
those masked tokens are predicted by the model.
Masked Region Feature Regression (MRFR) (Chen
et al., 2019), which is similar to the MLM task, is
a popular image pre-training task. Masked Ob-
ject Classification (MOC) (Qi et al., 2020) task
can be regarded as a multimodal pre-training task,
which is to predict the category label of each
masked object feature. Another popular multi-
modal pre-training task called Image-Text Match-
ing (ITM) (Chen et al., 2019) is similar to the Next
Sentence Prediction (NSP) task in BERT (Devlin
et al., 2019), where an image corresponding to a
text is randomly replaced with a probability of 50%,
and the task is to discriminate whether the image
matches the text. The existing pre-training tasks for
multimodal data are limited. We design new pre-
training tasks with the aim of making full use of the
existing training dataset at different granularities.

3 Method

The overall structure of our MSP method is shown
in Figure 1. The pre-training process is divided
into three stages based on different granularities
of text-image correspondence from token, phrase
to sentence. We design corresponding pre-training
tasks for the three stages.

We perform the above three-stage pre-training
on a simplified model of LXMERT (LXMERT-S).
The simplified process of the LXMERT model is
shown in Figure 2. The Cross-Modality Encoder of
LXMERT-S is identical to the LXMERT. We obtain
the Simplified LXMERT (LXMERT-S) by remov-
ing the Object-Relationship Encoder and Language
Encoder. The image features and text features are
directly input to the Cross-Modality Encoder in the
LXMERT-S.

By removing the single modal coding layer in
LXMERT, the 12-layer LXMERT is simplified to
a 5-layer LXMERT-S. The amounts of parameters
in simplified LXMERT-S are only 45.9% of the
original model, and the whole experiment can be
completed on a single GPU. The three-stage pre-
training method is also fully applicable to other
pre-training models.

3.1 Stage 1: Word-based Pre-training
The first stage of pre-training focuses on learning
the correspondence between text token units and
image objects to help the model mine fine-grained
information. To this end, we design the appropriate
pre-training tasks and corresponding dataset for
this phase of pre-training.

Pre-training Tasks We design an Image Fea-
tures Random Shuffle (IFRS) pre-training task
to enhance the pre-training of the token layer,
based on the existing Masked Language Model-
ing (MLM) (Chen et al., 2019), Masked Region
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Figure 2: Overview of the simplified process
of LXMERT. We obtained a Simplified LXMERT
(LXMERT-S) by removing the Object-Relationship En-
coder and Language Encoder in the dotted box and
keeping only the Cross-Modality Encoder.

Feature Regression (MRFR) (Chen et al., 2019)
and Masked Object Classification (MOC) (Qi et al.,
2020).

Image Features Random Shuffle (IFRS): Given a
set of image regions R={r1, r2, r3. . . rm}, which
are obtained by adding a fully-connected (FC) layer
to the regions of interest (ROIs) and projecting
them to the hidden size, a feature triplet is three
consecutive features in R, e.g. tj=(ri, ri+1, ri+2).
A shuffle on a triplet is to randomly change the
order of features in the triplet with a probabil-
ity of 5%. For example, the triplet tj is shuffled
as t

[S]
j = (ri+1, ri+2, ri) = (r

[S]
i , r

[S]
i+1, r

[S]
i+2).The

shuffled triplet t[S]j is used as input for the net-
work, and the corresponding output is converted
to the dimensionality of ROIs to obtain hθ(t

[S]
j )=

(hθ(r
[S]
i ), hθ(r

[S]
i+1), hθ(r

[S]
i+2)). The ROIs extracted

by Faster-RCNN corresponding to the original tj
is fθ(tj)=(fθ(ri), fθ(ri+1), fθ(ri+2)),We use the
L2 loss to calculate the distance between the net-
work output hθ(t

[S]
j ) and fθ(tj) as in the following

equation.

L = E(W,R)∼D

k=K∑
k=0

i=k′+2∑
i=k′

||hθ(r
[S]
i

)−fθ(ri)||
2
2 (1)

Where K is the number of shuffled triples.
Other pre-training tasks: We add the existing

MLM, MRFR and MOC tasks to the token-based
pre-training. MLM masks the token-level category
labels of objects with a certain probability P, and
the model predicts the masked category label based
on the corresponding object feature on the image
side. MRFR masks the object features, and the
model predicts the original object-level features

based on the text-side category label and informa-
tion around the object. MOC predicts the category
and attribute labels of the masked object features.

Training Data We extract training data for IFRS
task from caption-image pairs directly. For each
image, 36 object features and their corresponding
36 category labels are provided by Faster-RCNN.
These category labels have been unified with the
text vocabulary, so they are all included in the text
vocabulary. During training, the image side inputs
the image features in sequence, and the text side in-
puts the category labels in the corresponding order.
In the IFRS task, when the image side is shuffled,
the order of the text side remains unchanged.

3.2 Stage 2: Phrase-based Pre-training

The previous stage explores the correspondence
between the image objects and their category. This
stage mines the correspondence between the im-
age object and the phrase describing of the ob-
ject. Since the phrase description usually contains
richer information about the attributes of the object,
such as ”green old car”, building a pre-training task
based on the correspondence between the phrase
and the object allows the model to obtain rich in-
formation about the attributes.

Pre-training Tasks We define a Topic of Image
and Text for Phrase (TITP) pre-training task that
more directly supports phrase-based information
mining.

Topic of Image and Text for Phrase (TITP):
Given a token sequence of image phrase-level de-
scription W = {w1, w2, w3. . . wn}, object feature
sequence R = {r1, r2, r3. . . rm}, and correspon-
dent category label sequence L={l1, l2, l3. . . lm}
extracted by Faster-RCNN. Let topic set is topic=
W∩L = {p1, p2. . . pq}, and label set Y =
{y1, y2. . . yv}, where v is the size of the vocabu-
lary. If yi∈topic, then yi is 1, otherwise yi is 0. We
add a FC layer to the multimodal representation to
get sθ(W,R), predict the correct topic from the vo-
cabulary size v categories, and use BCELoss to cal-
culate the gap between the model output sθ(W,R)
and the label Y.

L=E(W,R)∼D [1/v

v−1∑
i=0

(yilogsθ(W,R)+(1−yi)log(1−sθ(W,R))

(2)

Other pre-training tasks: We add MLM, MRFR
and MOC tasks to the phrase-based pre-training.
MLM masks the attribute or category information
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of the phrase with a certain probability P, and the
model predicts the masked information based on
the corresponding object features. MRFR masks
the object features of the image, and the model pre-
dicts the original object based on the phrase-level
description on the text side and the surrounding
object information, and MOC predicts the category
and attribute of the object being masked based on
the surrounding image features and the phrase-level
description on the text side.

Training Data: We obtain the corresponding
training data based on the Visual Genome (VG) (Kr-
ishna et al., 2017) dataset, which contains a large
number of phrases. We eliminate the phrases con-
taining verbs. The remaining phrases are concate-
nated with commas to obtain a phrase-level descrip-
tion of the image. During training, the spliced VG
phrase is used as input on the text side and 36 ob-
ject features extracted by Faster-RCNN are input
on the image side.

3.3 Stage 3: Sentence-based Pre-training
On the basis of the above token and phrase train-
ing, this stage uses the overall sentence-image cor-
respondence relationship for pre-training to mine
larger unit text-image related information.

Pre-training Tasks we design two sentence-
level pre-training tasks, Image-Text Matching
Based on Hard Sample (ITM HS) and Topic of
Image and Text for Sentence (TITS) described as
follows.

Image-Text Matching Based on Hard Sample
(ITM HS): The purpose of this task is to reduce the
noise brought to the model when the text-image
pair does not match. We retrieve the top M most
similar images for each image from difficult sam-
ples file1 as the hard sample set. In the ITM HS
task, each image is replaced with a randomly se-
lected hard sample with probability of 50% if the
hard sample sets is not empty. If the set of cur-
rent sample is empty, an image in the training
set is randomly selected. Let the token sequence
W ={w1, w2, w3. . . wn} and the image feature se-
quence R = {r1, r2, r3. . . rm}, the label y∈{0, 1}
indicates whether the input image-text pair matches
each other. We apply the FC layer on top of the
multimodal representation to get sθ(T,R), which
is the matching score of the image and text.

L=E(W,R)∼D[ylogsθ(W,R)+(1−y)log(1−sθ(W,R))] (3)

1The difficult sample comes from the difficult sample file
in ViLBERT’s Image-Text Retrieval task.

Topic of Image and Text for Sentence (TITS):
The purpose of this task is to jointly predict
the content described by both image and sen-
tence information. Given a token sequence W =
{w1, w2, w3. . . wn}, an image feature sequence
R= {r1, r2, r3. . . rm}, category labels for object
features L = {l1, l2, l3. . . lm}, topic = W∩L =
{p1, p2. . . pq}, and label Y ={y1, y2. . . yv}, where
v is the size of the vocabulary. If yi∈topic, then
yi is 1, otherwise yi is 0. We apply the FC layer
on top of the multimodal representation, convert its
dimension to the vocabulary size v to get sθ(W,R),
and use BCELoss to calculate the gap between the
model output sθ(W,R) and the label Y.

L=E(W,R)∼D [1/v

k=K∑
k=0

(yilogsθ(W,R)+(1−yi)log(1−sθ(W,R)))

(4)

Other pre-training tasks: We add the existing
MLM, MRFR and MOC tasks to the sentence-
based pre-training. MLM masks the information
in the sentence and the model predicts the masked
information based on the all information on the
image side. MRFR masks the object features of the
image and the model predicts the original object
based on the overall information at the sentence
level on the text side and the surrounding object in-
formation. MOC predicts the category and attribute
of the masked object based on the image features
and the text-side sentence-level description.

Training Data In this stage, the image and its
corresponding caption are directly used as input,
the sentence level information caption is input on
the text side, and the 36 object features provided
by Faster-RCNN are input on the image side.

4 Experiments

4.1 Pre-training Dataset

In this paper, the model is pre-trained using the
COCO dataset and part of the VG dataset, and
only 1.08M text-image pairs are used, where
0.12M image-text pairs are used in token-based
pre-training stage, 0.34M image-text pairs are used
in phrase-based pre-training stage, and 0.62M
image-text pairs are used in the sentence-based
pre-training stage. All datasets we used are also
used in initial LXMERT. Table 1 gives a compari-
son of the pre-training data, model parameters2 and

2We exclude the parameters of the word embedding and
pre-training task and only count the number of parameters in
the Transform part.
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model parameter
training data

resource consumption
text-image pairs text corpus

VL-BERT 134.8M 3.3M
Wikipedia
BooksCorpus

16 V100 GPUs

Unified VLP - 3.3M - 8 V100 GPUs
ViLBERT 218.9M 3.3M - 8 TitanX GPUs
LXMERT 183.5M 9.18M - 4 TitanX GPUs
VisualBERT 85.05M 1.28M - -
ours 84.3M 1.08M - 1 TitanX GPUs

Table 1: Comparison of parameter size, training data and resource consumption between the model in this paper
and some pre-trained models.

computational resources with other models.

4.2 Downstream Tasks and Data Sets

Visual Question Answering (VQA): There are
multiple datasets for VQA. We use three com-
mon used datasets: VQA V2.0 (Goyal et al.,
2017), GQA (Hudson and Manning, 2019), and
NLVR2 (Suhr et al., 2019). Accuracy is used as to
measure model performance.

Cross-modal Retrieval task: We choose
Flickr30K (Young et al., 2014) dataset as the re-
trieval task data, and evaluate the performance of
the model in Image Retrieval (IR), Text Retrieval
(TR), Zero Shot Image Retrieval (ZS-IR), and Zero
Shot Text Retrieval (ZS-TR) respectively, and the
performance metric is the matching score of text
and image pairs. Zero shot is to evaluate the per-
formance of the pre-trained model directly on the
test set without fine-tuning, and is used to evalu-
ate the effect of the pre-trained model. Therefore
ZS-IR and ZS-TR are directly loaded with model
parameters to perform IR and TR tasks without
fine-tuning.

In the fine-tuning stage, the multimodal repre-
sentation of the model is passed through a FC layer
as a joint representation of image and text to solve
downstream tasks. For VQA tasks, we linearize
the multimodal representation into the answer cat-
egory dimension through the FC layer to predict
the answer of each question. For the Image-Text
Retrieval (Young et al., 2014) task, we randomly
replace the image or text, construct three negative
examples for an image-text pair, including two ran-
dom negative examples and a hard sample, and use
BCELoss to calculate the difference between the
matching score and the text-image matching label .

4.3 Baselines

We compare our model with both single-stream
multimodal pre-training models including Unified
VLP (Zhou et al., 2020), VisualBERT (Li et al.,
2019) and VL-BERT (Su et al., 2020) and two-
stream models including ViLBERT (Lu et al., 2019)
and LXMERT (Tan and Bansal, 2019).

Unified VLP Unified VLP uses a 12 layers
of shared multi-layer transformer network for
both encoding and decoding, which differs from
many existing methods where the encoder and
decoder are implemented using separate models.
It conducts pre-training on the Conceptual Cap-
tions(CC) (Sharma et al., 2018) which has around
3.3 million image-text pairs, and requires 150 hours
of training on the 8x V100 GPUS. Unified VLP
includes only the MLM task when processing the
comprehension tasks.

VisualBERT VisualBERT contains 12 layers of
transformer with 85.05M parameters. It first pre-
trains on COCO Caption (Lin et al., 2014) with
MLM and ITM tasks and then continues pre-
training on the target dataset with MLM task. The
pre-training data sizes for VisuaBERT on the VQA
V2.0 task are shown in Table 1. For different down-
stream tasks, the second stage of pre-training needs
to be re-trained.

VL-BERT VL-BERT contains 12 layers of trans-
former with 134.8M parameters. It pre-trains
on both visual-linguistic and text-only datasets.
Samples are randomly drawn from both CC
and BooksCorpus (Zhu et al., 2015) & English
Wikipedia (at a ratio of 1:1) in each mini-batch.
VL-BERT considers ITM to be harmful to down-
stream tasks and therefore only includes MLM and
MOC tasks.
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model
VQA V2.0 GQA NLVR2

test-dev test-std test-dev test-std val test-p
Unified VLP 70.5 70.7 - - - -
ViLBERT 70.55 70.92 - - - -
VisualBERT 70.8 71 - - 67.4 67
VL-BERT 71.16 - - - - -
LXMERT 72.42 72.54 59.8 60.33 74.9 74.5
ours 71.1(98.18%) 71.18(98.13%) 58.7(98.16%) 59.12(97.99%) 74.03(98.84%) 74.72(↑ 0.22%)

Table 2: LXMERT-S results on VQA V2.0, GQA and NLVR2.

model
IR(zero-shot) TR(zero-shot) IR TR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
ViLBERT 31.86 61.12 72.8 - - - 58.2 84.9 91.52 - - -
LXMERT 24 47.38 58.22 23.6 51.5 61.3 - - - - - -
ours 42.42 68.7 77.92 49 75 81.8 57.9(99.4%) 83(97.8%) 88.7(97.0%) 64.6 87.5 90.4

Table 3: LXMERT-S results on Image-Text Retrieval task.

ViLBERT ViLBERT extends the popular BERT
architecture to a multi-modal two-stream model,
processing both visual and textual inputs in sep-
arate streams that interact through co-attentional
transformer layers. It trains on CC with MLM,
MOC and ITM tasks.

LXMERT LXMERT has a large-scale Trans-
former model that consists of three encoders
and a large-scale pre-training data, including MS
COCO, Visual Genome, VQA v2.0, GQA and VG-
QA (Zhu et al., 2016). The pre-training requires
8.5 days on the 4x TitanX GPUS. It also has many
pre-training tasks, including MLM, MRFR, MOC,
ITM and Image Question Answering (QA) (Tan
and Bansal, 2019), and has achieved good results
in downstream tasks, especially VQA tasks.

4.4 Implementation Details

Our Transformer backbone is the same as
LXMERT, where each Transformer block has 768
hidden units and 12 attention heads. Image fea-
tures are extracted by Faster-RCNN (Ren et al.,
2015) model (with ResNet-101 (He et al., 2016)
backbone) trained on Visual Genome (VG).

During pre-training, our model is trained for
about 95 hours on 1 TitanX GPU, and takes
Adam (Kingma and Ba, 2015) as the optimizer
with a learning rate of 1e-5. We train the token-
based model for 10 epochs with a batch size of 64,
phrase-based model for 20 epochs with a batch size
of 128 and sentence-based model for 20 epochs
with a batch size of 128.

During Fine-tuning, the learning rate of all down-
stream tasks is 5e-5, and the batch size is 32. We
fine-tune 6 epochs for VQA V2.0, 5 epochs for
GQA, and 8 epochs for NLVR2 and Image-Text
Retrieval tasks.

For hard samples in ITM HS task, we retrieve
the top 100 most similar images from difficult
samples file. For the masking strategies, we ran-
domly mask 15% tokens, 15% object features.
The codes of our models are available at https:
//github.com/lttsmn/LXMERT-S.

4.5 Experimental Results

Table 2 gives the results of the model on the three
VQA datasets, and Table 3 gives the results of
the model on the Flickr30K Image-Text Retrieval
dataset.

It can be seen from both Table 2 and 3 that
the pre-training model proposed in this paper has
achieved comparable performances with the ex-
isting large models under the condition of less
training data, fewer parameters and less comput-
ing resource occupation. In some cases, our small
model even outperforms the big one. For exam-
ple, NLVR2 task is 0.22 higher than LXMERT on
Test-P, and ZS-IR is 18.42 higher than LXMERT in
R@1 under the premise that the model parameters
are reduced by 54.1% and the training data set is
reduced by 88.24%.

4.6 Ablation Study

Table 4 gives results of LXMERT-S on different
tasks with different pre-training setting. The first

https://github.com/lttsmn/LXMERT-S
https://github.com/lttsmn/LXMERT-S
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Stage(s)
count

Stage(s)
used

Tasks used VQA
test dev

GQA
test dev

NLVR2
test-p

IR
avg

ZS-IR
avg

TR
avg

ZS-TR
avg

None vanilla None 68.1 55.71 51.07 55.27 - 58.07 -

Single
S

MLM MRFR MOC TITS
ITM HS 70.25 57.66 70.23 73.86 54.64 78.3 59.73

- ITM HS 69.87 57.48 70.98 71.46 51.79 75.6 53.33
- ITM HS - TITS 69.79 57.47 70.73 70.17 49.38 74.1 50.3

T + P + S MLM MRFR MOC ITM 70.1 57.58 72.24 74.31 59.31 77.87 63.33

Two

T → S
MLM MRFR MOC TITS
ITM HS IFRS 70.71 58.39 73.85 75.68 61.53 80.27 65.47

- IFRS 70.54 58.4 73.93 76.08 60.5 80.6 65.03

P → S
MLM MRFR MOC TITS
ITM HS TITP 70.58 57.96 72.96 74.81 57.66 79.5 61.13

- TITP 70.52 58.17 71.18 75.49 59.28 80.4 62.73

Three

T → P → S
MLM MRFR MOC TITS
ITM HS IFRS TITP 71.1 58.7 74.72 76.55 63.01 80.83 68.6

- TITP 71.01 58.3 74.48 76.07 63.07 80.96 67.77

S → P → T MLM MRFR MOC TITS
ITM HS IFRS TITP 69.43 57.98 56.75 71.03 - 74.87 -

P → T → S MLM MRFR MOC TITS
ITM HS IFRS TITP 70.92 58.05 73.62 76.69 61.29 81.63 67

Table 4: Use VQA, GQA, NLVR2, Image-Text Retrieval (Flickr30k) downstream tasks to evaluate the MSP
method and pre-training tasks. Image-Text Retrieval uses the average value of R@1, R@5, R@10.

column gives the number of stage(s) in pre-training.
The second column gives the stage(s) used, where S
for sentence stage, P for phrase stage, and T for to-
ken stage, T→S means there are two stages includ-
ing token-based pre-training first and then sentence-
based pre-training. T→P→S means there are
three stages including token-based pre-training first
and then phrase-based pre-training and sentence-
based pre-training last. T+P+S means to train all
stages together. The third column gives the pre-
training tasks used in the pre-training. We first
give all the pre-training tasks used in the train-
ing stages used, then verify the validity of the pre-
training tasks by removing a task based on all the
pre-training tasks, “-” indicates that a pre-training
task is removed.

From Table 4, we can find: (1) With the orderly
increase of the training phase, the performance of
the model on downstream tasks is gradually im-
proving; (2) The training granularity from small to
large is the most effective training sequence; (3)
The pre-training tasks we propose for each stage
of pre-training can improve the performance of
the model on downstream tasks, such as TITP im-
proves VQA performance by 0.09, GQA perfor-
mance by 0.4, NLVR2 performance by 0.24, IR
performance by 0.48, and ZS-TR by 0.83.

0.0
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Question: Is the horse on a path?      Answer: yes
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 t: tan
  w:white

  g: gray
  b: blue

Question: What color are blankets on this bed?      Answer:white

w

 n: no
  y: yes
  z: zebra

  4: 4
 

Figure 3: VQA examples. We show the distribution
of answers with top 3 scores at different pre-training
stages.

top1:a young man sitting on a rock above a
body of water, fishing rod in hand  (yes,
score=0.9956)

 

top1:a person with a backpack stands on
a rocky bank beside a body of water  (no,
score=0.9989)

 
top1:a young man sitting on a rock above
a body of water, fishing rod in hand   (yes,
score=0.9899)

 
top1:an old women in pink and wearing hat is
squeezing her eyes while looking at
something  (yes,score=0.9843)

 

top1:one man in a hooded sweatshirt picking
up articles of clothing while a woman in a blue
shirt looks on (no,score=0.9982)

  
top1:a young man sitting on a rock above a
body of water, fishing rod in hand  (no,
score=0.9899)

  

S

T->S

T->P->S

S

T->S

T->P->S

Figure 4: Image-Text Retrieval examples. We show the
distribution of caption with top 1 score at different pre-
training stages.

5 Qualitative Analysis

We visualize the impact of different pre-training
stages on VQA and Image-Text Retrieval task by
showing the answers probability distribution. For
each example in Figure 3, the left side is the input
image of the model, and the right side is the prob-
ability distribution of the top3 scoring answers in
different pre-training stages.

For Image-text Retrieval task, we select the top
1 caption for visualization. For each sample in
Figure 4, the left side is the input image and the
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right side is the highest scoring caption predicted
by the model.

From both Figure 3 and 4, we can find: (1)
Token-based pre-training (S vs T→S) helps the
model to learn object information in the images.
For example, in the left sample in Figure 3 and
4, the model improves its performance on down-
stream tasks by adding token-based pre-training
that makes the model focus on object informa-
tion such as horses, man and rocks in the images;
(2) Phrase-based pre-training (T→S vs T→P→S)
helps the model to learn information about the at-
tributes of the objects. As shown in right-hand im-
age in Figure 3 and 4, the model pays attention to
attribute information, i.e. blanket is white, clothes
are pink, etc.

6 Conclusion

In this paper, inspired by the idea of curriculum
learning, we propose a MSP method, which uses
information at different granularities from word,
phrase to sentence in both texts and images to
pre-train a model in stages, we also design pre-
training tasks suitable for each stage of pre-training,
IFRS task for word-based pre-training, TITP task
for phrase-based pretraining, and TITS task for
sentence-based pretraining. Experimental results
on several VQA datasets as well as one cross-modal
retrieval dataset show that our method achieves
similar or even better performance than a larger
model in terms of accuracy in all downstream tasks
under the premise that the model parameters are
reduced by 54.1% and the training data set is re-
duced by 88.24%. In future work, we will add
the above training method to other simplified pre-
trained models to further explore the effectiveness
of MSP method.
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