LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local
and Non-Local Relations

Ruisheng Cao!, Lu Chen'?*, Zhi Chen', Yanbin Zhao,
Su Zhu? and Kai Yu'?**
IX-LANCE Lab, Department of Computer Science and Engineering
MoE Key Lab of Artificial Intelligence, Al Institute, Shanghai Jiao Tong University
Shanghai Jiao Tong University, Shanghai, China
2State Key Lab of Media Convergence Production Technology and Systems, Beijing, China
3AlISpeech Co., Ltd., Suzhou, China
{211314, chenlusz,kai.yu}@sjtu.edu.cn

Abstract

This work aims to tackle the challenging het-
erogeneous graph encoding problem in the
text-to-SQL task. Previous methods are typi-
cally node-centric and merely utilize different
weight matrices to parameterize edge types,
which 1) ignore the rich semantics embed-
ded in the topological structure of edges,
and 2) fail to distinguish local and non-
local relations for each node. To this end,
we propose a Line Graph Enhanced Text-to-
SQL (LGESQL) model to mine the underlying
relational features without constructing meta-
paths. By virtue of the line graph, messages
propagate more efficiently through not only
connections between nodes, but also the topol-
ogy of directed edges. Furthermore, both lo-
cal and non-local relations are integrated dis-
tinctively during the graph iteration. We also
design an auxiliary task called graph pruning
to improve the discriminative capability of the
encoder. Our framework achieves state-of-the-
art results (62.8% with GLOVE, 72.0% with
ELECTRA) on the cross-domain text-to-SQL
benchmark Spider at the time of writing.

1 Introduction

The text-to-SQL task (Zhong et al., 2017; Xu et al.,
2017) aims to convert a natural language question
into a SQL query, given the corresponding database
schema. It has been widely studied in both aca-
demic and industrial communities to build natural
language interfaces to databases (NLIDB, Androut-
sopoulos et al., 1995).

One daunting problem is how to jointly encode
the question words and database schema items (in-
cluding tables and columns), as well as various
relations among these heterogeneous inputs. Typ-
ically, previous literature utilizes a node-centric
graph neural network (GNN, Scarselli et al., 2008)

*The corresponding authors are Lu Chen and Kai Yu.

exact match belong to
© question node O O O

O table node distance +1 partial match
O column node O O O
has has foreign ke; belong to
—r> relation r O O ey, O O

(a) Some empirically useful meta-paths

Non-local

(b) Local and non-local neighbours should be treated differently

Figure 1: Two limitations if edge features are retrieved
from a fixed-size embedding matrix: (a) fail to discover
useful meta-paths, and (b) unable to differentiate local
and non-local neighbors.

to aggregate information from neighboring nodes.
GNNSQL (Bogin et al., 2019a) adopts a relational
graph convolution network (RGCN, Schlichtkrull
et al., 2018) to take into account different edge
types between schema items, such as T-HAS-C
relationship !, primary key and foreign key con-
straints. However, these edge features are directly
retrieved from a fixed-size parameter matrix and
may suffer from the drawback: unaware of con-
textualized information, especially the structural
topology of edges. Meta-path is defined as a com-
posite relation linking two objects, which can be
used to capture multi-hop semantics. For example,
in Figure 1(a), relation Q-EXACTMATCH-C and
C-BELONGSTO-T can form a 2-hop meta-path in-
dicating that some table ¢ has one column exactly
mentioned in the question.

Although RATSQL (Wang et al., 2020a) in-
troduces some useful meta-paths such as C-
SAMETABLE-C, it treats all relations, either 1-hop

"For abbreviation, Q represents QUESTION node, while T
and C represent TABLE and COLUMN nodes.

2541

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2541-2555
August 1-6, 2021. ©2021 Association for Computational Linguistics



or multi-hop, in the same manner (relative posi-
tion embedding, Shaw et al., 2018) in a complete
graph. Without distinguishing local and non-local
neighbors, see Figure 1(b), each node will attend
to all the other nodes equally, which may lead to
the notorious over-smoothing problem (Chen et al.,
2020a). Besides, meta-paths are currently con-
structed by domain experts or explored by breadth-
first search (Kong et al., 2012). Unfortunately, the
number of possible meta-paths increases exponen-
tially with the path length, and selecting the most
important subset among them is an NP-complete
problem (Lao and Cohen, 2010).

To address the above limitations, we pro-
pose a Line Graph Enhanced Text-to-SQL
model (LGESQL), which explicitly considers the
topological structure of edges. According to the
definition of a line graph (Gross and Yellen, 2005),
we firstly construct an edge-centric graph from the
original node-centric graph. These two graphs cap-
ture the structural topology of nodes and edges,
respectively. Iteratively, each node in either graph
gathers information from its neighborhood and in-
corporates edge features from the dual graph to
update its representation. As for the node-centric
graph, we combine both local and non-local edge
features into the computation. Local edge features
denote 1-hop relations and are dynamically pro-
vided by node embeddings in the line graph, while
non-local edge features are directly extracted from
a parameter matrix. This distinction encourages
the model to pay more attention to local edge fea-
tures while maintaining information from multi-
hop neighbors. Additionally, we propose an aux-
iliary task called graph pruning. It introduces an
inductive bias that the heterogeneous graph encoder
of text-to-SQL should be intelligent to extract the
golden schema items related to the question from
the entire database schema graph.

Experimental results on benchmark Spider (Yu
et al.,, 2018b) demonstrate that our LGESQL
model promotes the exact set match accuracy to
62.8% (with GLOVE, Pennington et al. 2014) and
72.0% (with pretrained language model ELEC-
TRA, Clark et al. 2020). Our main contributions are
summarized as follows:

* We propose to model the 1-hop edge features
with a line graph in text-to-SQL. Both non-
local and local features are integrated during
the iteration process of node embeddings.

* We design an auxiliary task called graph prun-

ing, which aims to determine whether each
node in the database schema graph is relevant
to the given question.

* Empirical results on dataset Spider demon-
strate that our model is effective, and we
achieve state-of-the-art performances both
without and with pre-trained language models.

2 Preliminaries

Problem definition Given a natural language
question @ = (q1,q2," - ,q|g|) With length |Q|
and the corresponding database schema S =
T U C, the target is to generate a SQL query
y. The database schema S contains multiple
tables 7' = {ti,t2,---} and columns C' =
{ctll,cgl,--- ,c?,ct;,---}. Each table ¢; is de-
scribed by its name and is further composed of sev-
eral words (%;1,%;2,---). Similarly, we use word
phrase (c;il, c?é, -+ ) to represent column c;-i € ;.
Besides, each column cz? also has a type field czio to
constrain its cell values (e.g. TEXT and NUMBER).

The entire input node-centric heterogeneous
graph G™ = (V™ R™) consists of all three types of
nodes mentioned above, thatis V"' = QUT UC
with the number of nodes |V"| = |Q| + |T'| + |C],
where |T'| and |C| are the number of tables and
columns respectively.

Meta-path As shown in Figure 1(a), a meta-path
represents a path 7 LN T o4 Ti+1, where
the target vertex type of previous relation r;_;
equals to the source vertex type 7; of the current
relation r;. It describes a composite relation r =
r1 07y - - - o1 between nodes with type 71 and 7y 1.
In this work, 7; € {QUESTION,TABLE,COLUMN }.
Throughout our discussion, we use the term local
to denote relations with path length 1, while non-
local relations refer to meta-paths longer than 1.
The relational adjacency matrix 2™ contains both
local and non-local relations, see Appendix A for
enumeration.

Line Graph Each vertex v§,i = 1,2,--- ,|V*|
in the line graph G¢ = (V¢, R®) can be uniquely
mapped to a directed edge ], € R", or vy — v},
in the original node-centric graph G™ = (V"™, R").
Function f maps the source and target node index
tuple (s,t) into the “edge” index i = f(s,t) in
G*. The reverse mapping is f~!. In the line graph
G°, a directed edge rj; € R° exists from node v
to v, iff the target node of edge T}L,l(i) and the

2542



source node of edge r?,l(j) in G" are exactly the
same node. Actually, rf; captures the information
flow in meta-path fr}‘,l () © r}{l () We prevent back-
tracking cases where two reverse edges will not be
connected in G*, illustrated in Figure 2.

We only utilize local relations in R as the node
set V¢ to avoid creating too many nodes in the
line graph G°. Symmetrically, each edge in R°
can be uniquely identified by the node in V. For
example, in the upper right part of Figure 2, the
edge between nodes “el” and “e2” in the line graph
can be represented by the middle node with double
solid borderlines in the original graph.

el
el e2 S el 2
—
e? e?
original graph original graph

line graph line graph

el el e2 el el e?
c—0
a? e?

no back-tracking

original graph line graph original graph line graph

Figure 2: Construction of a line graph. For clarity, we
simplify the notation of edges.

3 Method

After constructing the line graph, we utilize the
classic encoder-decoder architecture (Sutskever
et al., 2014; Bahdanau et al., 2015) as the backbone
of our model. LGESQL consists of three parts: a
graph input module, a line graph enhanced hidden
module, and a graph output module (see Figure 3
for an overview). The first two modules aim to
map the input heterogeneous graph G" into node
embeddings X € RIV"X4 where d is the graph
hidden size. The graph output module retrieves and
transforms X into the target SQL query y.

3.1 Graph Input Module

This module aims to provide the initial embed-
dings for both nodes and edges. Initial local edge
features Z° € RIVI*4 and non-local edge fea-
tures Z,. € RUB™=IVEDxd gpe directly retrieved
from a parameter matrix. For nodes, we can ob-
tain their representations from either word vectors
GLOVE (Pennington et al., 2014) or a pre-trained
language model (PLM) such as BERT (Devlin et al.,
2019).

GLOVE Each word ¢; in the question ) or
schemaitem ¢; € T or czi € C can be initialized by
looking up the embedding dictionary without con-
sidering the context. Then, these vectors are passed
into three type-ware bidirectional LSTMs (BiL-
STM, Hochreiter and Schmidhuber, 1997) respec-
tively to attain contextual information. We con-
catenate the forward and backward hidden states
for each question word g; as the graph input xgi.
As for table ¢;, after feeding (¢;0, ti1, ti2, - - - ) into
the BILSTM (special type t;o = “table”, Vi), we
concatenate the last hidden states in both direc-
tions as the graph input x(t)i (similarly for column
czf'). These node representations are stacked to-
gether to form the initial node embeddings matrix
X0 ¢ R|V”|><d‘

PLM Firstly, we flatten all question words and
schema items into a sequence, where columns
belong to the same table are clustered together 2:
[CLS1qiga- - qio [SEP 1 tiotichhet chych - -

tgotgctfoc? cgzocg2 .-+ [SEP]. The type information
tio or c% is inserted before each schema item.
Since each word w is tokenized into sub-words,
we append a subword attentive pooling layer
after PLM to obtain word-level representations.
Concretely, given the output sequence of subword

features wi, wj, - - - ,wa‘ for each subword w; in

w, the word-level representation w is >

a; =softmax; tanh(w{ W,)v_,
w = E a;w;,
i

where v and W are trainable parameters. After
obtaining the word vectors, we also feed them into
three BiLSTMs according to the node types and
get the graph inputs X" for all nodes.

3.2 Line Graph Enhanced Hidden Module

It contains a stack of L dual relational graph atten-
tion network (Dual RGAT) layers. In each layer
I, two RGATs (Wang et al., 2020b) capture the
structure of the original graph and line graph, re-
spectively. Node embeddings in one graph play the
role of edge features in another graph. For example,
the edge features used in graph G" are provided by
the node embeddings in graph G°.

We use X! € RIV"IX4 to denote the input
node embedding matrix of graph G in the [-th

*We randomly shuffle the order of tables and columns in

different mini-batches to discourage over-fitting.
3Vectors throughout this paper are all row vectors.

2543



X L
Text-to-SQL Graph | \l l
Output Module [ Decoder ] [ Pruning zL
l FEN 1+1
.......................................... Xt If——J I z VA
N graph
Hidden Module [ Dual RGAT — X’H ﬂz’
g @,
1 T X! i Lt xi+1
Input Module X0 “%‘l“ 5 0 Ieiz;zlm il @-=30) FFN
i Q‘Ek T o original L—J\
- 0000 iyl
Type-ware H
(00009) [00000) (00000) Firgrm  Refation o © auestion node
Embeddings' ...................... > U U U U H Ztc
. O table node
[ Subword Attentive Pooling ] Word non-local relations l .
H H column nodae
Embe?i:iln S O
[ PLM ] & [] “edge” node

Figure 3: The overall model architecture. We use bidirectional edges in practice but only draw unidirectional edges
for better understanding. In the Dual RGAT module, we take the node with index 4 and the edge with label 4-5 as

the main focuses.

layer, [ € {0,1,---,L — 1}. As for each spe-
cific node v € V", we use Xé. Similarly, ma-
trix Z! € RIVI*? and vector 2! are used to denote
node embeddings in the line graph. Following RAT-
SQL (Wang et al., 2020a), we use multi-head scaled
dot-product (Vaswani et al., 2017) to calculate the
attention weights. For brevity, we formulate the en-

tire computation in one layer as two basic modules:

h. :RGATn(Xla [Zl§ Zic), G"),
Zl+1 :RGATe(Zl, le Ge),

where Z,,;. is the aforementioned non-local edge
features in the original graph G".

3.2.1 RGAT for the Original Graph

Given the node-centric graph G", the output repre-

sentation Xl+1 of the [-th layer is computed by
aﬂ =(Wy) (Wi + [ ()l
aji :softmaxj ozji/\/d/H ,
|| > W [,

h= lv;E/\/;"
%It =LayerNorm(x! 4+ %/W,,),
xiT1 =LayerNorm(x/™ + FEN(x.™1)),

where || represents vector concatenation, matrices
Wi Wh W e RH W, € R are train-
able parameters, H is the number of heads and
FFN(-) denotes a feedforward neural network. N/

represents the receptive field of node v;* and func-
tion ¢( ") returns a d-dim feature vector of rela-
tion 77, Operator [] first evenly splits the vector
into H parts and returns the h-th partition. Since
there are two genres of relations (local and non-
local), we design two schemes to integrate them:

Mixed Static and Dynamic Embeddings If 77,
is a local relation, ¢(r7;) returns the node embed—
ding Z! #(j,i) from the hne graph*. Otherwise, 9 (r )
directly retrieves the vector from the non-local em-
bedding matrix Z,,;., see Figure 4. The neighbor-
hood function N;* for node v}" returns the entire
node set V" and is shared across different heads.

static

Zyc provided by an
embedding matrix

”
N

dynamic

000000
00000 e
000000
00e00e

Z! provided by
the line graph

Figure 4: Mixed static and dynamic embeddings.

Multi-head Multi-view Concatenation An al-
ternative is to split the muli-head attention module
into two parts. In half of the heads, the neighbor-
hood function " of node v* only contains nodes
that are reachable within 1-hop. In this case, ¢ (r7;)
returns the layer-wise updated feature z* F04) from

“Function f maps the tuple of source and target node
indices in G into the corresponding node index in G°.

2544



Z'. In the other heads, each node has access to
both local and non-local neighbors, and ¥(-) al-
ways returns static entries in the embedding matrix
Zie UZO, see Figure 5 for illustration.

<' ..O'O ..© ®

local view
(half heads)

global view

© focus node (half heads)

QO 1-hop neighbours

— local relations v non-local relations

@ multi-hop neighbours

Figure 5: Multi-head multi-view concatenation.

In either scheme, the RGAT module treats local
and non-local relations differently and relatively
manipulates the local edge features more carefully.

3.2.2 RGAT for the Line Graph

Symmetrically, given edge-centric graph G¢, the
updated node representation zé“ from zé is calcu-
lated similarly with little modifications:

Bl =(25Uy + [o(r5)li ) (2, UR) T,
;‘i :softmaxj(B?i/\/d/H),

H
= || S LU+ o5,

h=1 vje-E/\/’ie
SI4+1 L gl
z; =LayerNorm(z; + z;U,),

7z =LayerNorm(z:™! + FFN(z/™)).

Here ¢(rj;) returns the feature vector of relation
7% in G*. Since we only consider local relations in
the line graph, N only includes 1-hop neighbous
and ¢(r{;) equals to the source node embedding in
X! of edge v¢. Attention that the relational feature
is added on the “query” side instead of the “key”
side when computing attention logits ~J’.‘i cause it is
irrelevant to the incoming edges. For example, in
Figure 3, the connecting nodes of two edge pairs
(1-4,4-5) and (2-4,4-5) are the same node with
index 4. UZ‘,UZ,UZ e R¥xd/H U, e R are
trainable parameters.

The output matrices of the final layer L are the
desired outputs of the encoder: X = X% Z = Z~.

3.3 Graph Output Module

This module includes two tasks: one decoder for
the main focus text-to-SQL and the other one to
perform an auxiliary task called graph pruning. We
use the subscript to denote the collection of node

embeddings with a specific type, e.g., X, is the
matrix of all question node embeddings.

3.3.1 Text-to-SQL Decoder

We adopt the grammar-based syntactic neural de-
coder (Yin and Neubig, 2017) to generate the ab-
stract syntax tree (AST) of the target query y in
depth-first-search order. The output at each decod-
ing timestep is either 1) an APPLYRULE action
that expands the current non-terminal node in the
partially generated AST, or 2) SELECTTABLE or
SELECTCOLUMN action that chooses one schema
item x4, from the encoded memory X, = X; UX,.
Mathematically, P(y[X) = [[; P(ajla<;, X),
where a; is the action at the j-th timestep. For
more implementation details, see Appendix B.

3.3.2 Graph Pruning

We hypothesize that a powerful encoder should
distinguish irrelevant schema items from golden
schema items used in the target query. In Figure 6,
the question-oriented schema sub-graph (above the
shadow region) can be easily extracted. The intent
c2 and the constraint ¢5 are usually explicitly men-
tioned in the question, identified by dot-product
attention mechanism or schema linking. The link-
ing nodes such as t1, ¢3, c4,t2 can be inferred by
the 1-hop connections of the schema graph to form
a connected component. To introduce this induc-
tive bias, we design an auxiliary task that aims to
classify each schema node s; € S =T U C based
on its relevance with the question and the sparse
structure of the schema graph.

select ¢2 from t1 join t2 on ¢3=c4 where c5=“value”

Figure 6: A delexicalized example of graph pruning.
Circles with dashed borderlines are irrelevant schema
items, thus labeled with 0.

Firstly, we compute the context vector X, from
the question node embeddings X, for each schema

2545



node s; via multi-head attention.
(x5, W?q) (qu ng>T
d/H

)

h _
74 =softmax;

H
x5, =( || nyﬁxqugv)wso,

h=1 j
where Wi W W e R>V/H and W,, €
R4 are network parameters. Then, a bi-
affine (Dozat and Manning, 2017) binary classifier
is used to determine whether the compressed con-
text vector X, and the schema node embedding
X, are correlated.

Biaffine(xy, x2) :XlUSXQT + [x1; X2 W + bs,
P (ys, |xs,, Xq) =0 (Biaffine(xs,, Xs,)).

The ground truth label 42, of a schema item is 1 iff
s; appears in the target SQL query. The training
object can be formulated as

ﬁgp = — Z[ygl log ng(ysi‘xsiv Xq)

+ (1= y3,) log(1 — PP (ys,[xs,, Xq))]-

This auxiliary task is combined with the main
text-to-SQL task in a multitasking way. Similar
ideas (Bogin et al., 2019b; Yu et al., 2020) and other
association schemes are discussed in Appendix C.

4 Experiments

In this section, we evaluate our LGESQL model in
different settings. Codes are public available °.

4.1 Experiment Setup

Dataset Spider (Yu et al., 2018b) is a large-
scale cross-domain zero-shot text-to-SQL bench-
mark ©. It contains 8659 training examples across
146 databases in total, and covers several domains
from other datasets such as Restaurants (Popescu
et al., 2003), GeoQuery (Zelle and Mooney, 1996),
Scholar (Iyer et al., 2017), Academic (Li and Ja-
gadish, 2014), Yelp and IMDB (Yaghmazadeh
et al., 2017) datasets. The detailed statistics are
shown in Table 1. We follow the common practice
to report the exact set match accuracy on the valida-
tion and test dataset. The test dataset contains 2147
samples with 40 unseen databases but is not public
available. We submit our model to the organizer of
the challenge for evaluation.
Shttps://github.com/rhythmcao/

text2sgl-lgesgl.git.

SLeaderboard of the challenge: https://yale-1ily.
github.io//spider.

Train Dev
# of samples 8659 1034
# of databases 146 20
Avg # of question nodes | 13.4 13.8
Avg # of table nodes 6.6 4.5

Avg # of column nodes 33.1 25.8
Avg # of nodes 53.1 44.1
Avg # of actions 16.3 15.4

Table 1: Statistics for dataset Spider. The action se-
quence is created with our designed grammar.

Implementations We preprocess the questions,
table names, and column names with toolkit
Stanza (Qi et al., 2020) for tokenization and lemma-
tization. Our model is implemented with Py-
torch (Paszke et al., 2019), and the original and line
graphs are constructed with library DGL (Wang
et al., 2019a). Within the encoder, we use
GLOVE (Pennington et al., 2014) word embeddings
with dimension 300 or pretrained language mod-
els (PLMs), BERT (Devlin et al., 2019) or ELEC-
TRA (Clark et al., 2020), to leverage contextual
information. With GLOVE, embeddings of the
most frequent 50 words in the training set are fixed
during training while the remaining will be fine-
tuned. The schema linking strategy is borrowed
from RATSQL (Wang et al., 2020a), which is also
our baseline system. During evaluation, we adopt
beam search decoding with beam size 5.

Hyper-parameters In the encoder, the GNN hid-
den size d is set to 256 for GLOVE and 512 for
PLMs. The number of GNN layers L is 8. In the
decoder, the dimension of hidden state, action em-
bedding and node type embedding are set to 512,
128 and 128 respectively. The recurrent dropout
rate (Gal and Ghahramani, 2016) is 0.2 for decoder
LSTM. The number of heads in multi-head atten-
tion is 8 and the dropout rate of features is set to
0.2 in both the encoder and decoder. Throughout
the experiments, we use AdamW (Loshchilov and
Hutter, 2019) optimizer with linear warmup sched-
uler. The warmup ratio of total training steps is
0.1. For GLOVE, the learning rate is 5e-4 and the
weight decay coefficient is 1e-4; For PLMs, we use
smaller leaning rate 2e-5 (base) or le-b (large),
and larger weight decay rate 0.1. The optimization
of the PLM encoder is carried out more carefully
with layer-wise learning rate decay coefficient 0.8.
Batch size is 20 and the maximum gradient norm
is 5. The number of training epochs is 100 for
GLOVE, and 200 for PLMs respectively.

2546


https://github.com/rhythmcao/text2sql-lgesql.git
https://github.com/rhythmcao/text2sql-lgesql.git
https://yale-lily.github.io//spider
https://yale-lily.github.io//spider

4.2 Main Results

Model | Dev  Test
Without PLM
GNN (Bogin et al., 2019a) 40.7 394
Global-GNN (Bogin et al., 2019b) 5277 474
EditSQL (Zhang et al., 2019b) 364 329
IRNet (Guo et al., 2019) 532 46.7
RATSQL (Wang et al., 2020a) 627 572
LGESQL 67.6 62.8
With PLM: BERT

IRNet (Guo et al., 2019) 53.2  46.7
GAZP (Zhong et al., 2020) 59.1 533
EditSQL (Zhang et al., 2019b) 57.6 534
BRIDGE (Lin et al., 2020) 70.0 65.0
BRIDGE + Ensemble 71.1 675
RATSQL (Wang et al., 2020a) 69.7 65.6
LGESQL 74.1 68.3

With Task Adaptive PLM
ShadowGNN (Chen et al., 2021) 723 66.1
RATSQL+STRUG (Deng et al., 2021) | 72.6  68.4
RATSQL+GRAPPA (Yuetal,, 2020) | 734 69.6
SmBoP (Rubin and Berant, 2021) 747  69.5
RATSQL+GAP (Shi et al., 2020) 71.8  69.7
DT-Fixup SQL-SP (Xu et al., 2021) 75.0 709
LGESQL+ELECTRA 751 720

Table 2: Comparison to previous methods.

The main results of the test set are provided in
Table 2. Our proposed line graph enhanced text-to-
SQL (LGESQL) model achieves state-of-the-art
results in all configurations at the time of writ-
ing. With word vectors GLOVE, the performance
increases from 57.2% to 62.8%, 5.6% absolute
improvements. With PLM bert-large-wwm,
LGESQL also surpasses all previous methods, in-
cluding the ensemble model, and attains 68.3%
accuracy. Recently, more advanced approaches all
leverage the benefits of larger PLMs, more task
adaptive data (text-table pairs), and tailored pre-
training tasks. For example, GAP (Shi et al., 2020)
designs some task adaptive self-supervised tasks
such as column prediction and column recovery to
better address the downstream joint encoding prob-
lem. We utilize electra-large for its compati-
bility with our model and achieves 72.0% accuracy.

Taking one step further, we compare more fine-
grained performances of our model to the baseline
system RATSQL (Wang et al., 2020a) classified
by the level of difficulty in Table 3. We observe
that LGESQL surpasses RATSQL across all sub-
divisions in both the validation and test datasets
regardless of the application of a PLM, especially
at the Medium and Extra Hard levels. This vali-
dates the superiority of our model by exploiting the
structural relations among edges in the line graph.

Medium Hard

RATSQL
Dev | 80.4 63.9 55.7 40.6 | 62.7
Test | 74.8 60.7 53.6 315 | 57.2
LGESQL
Dev | 86.3 69.5 61.5 41.0 | 67.6
Test | 80.9 68.1 54.0 37.5 | 62.8

RATSQL+PLM: bert-large-wwm
Dev | 86.4 73.6 62.1 429 | 69.7
Test | 83.0 71.3 58.3 384 | 65.6
LGESQL+PLM: bert-large—-wwm
Dev | 91.5 76.7 66.7 48.8 | 74.1
Test | 84.5 74.7 60.9 41.5 | 68.3

Split  Easy Extra All

Table 3: A detailed comparison to the reported results
in the original paper RATSQL (Wang et al., 2020a) ac-
cording to the level of difficulty.

4.3 Ablation Studies

In this section, we investigate the contribution of
each design choice. We report the average accuracy
on the validation dataset with 5 random seeds.

4.3.1 Different Components of LGESQL

Technique \ Dev Acc
Without Line Graph: RGATSQL
w/ SE 66.2
w/ MMC 66.2
w/o NLC 63.3
w/o GP 65.5
With Line Graph: LGESQL
w/ MSDE 67.3
w/ MMC 67.4
w/o NLC 65.3
w/o GP 66.2

Table 4: Ablation study of different modules. SE: static
embeddings; MMC: multi-head multi-view concatena-
tion; MSDE: mixed static and dynamic embeddings;
NLC: non-local relations; GP: graph pruning.

RGATSQL is our baseline system where the line
graph is not utilized. It can be viewed as a variant
of RATSQL with our tailored grammar-based de-
coder. From Table 4, we can discover that: 1) if
non-local relations or meta-paths are removed (w/o
NLC), the performance will decrease roughly by 2
points in LGESQL, while 3 points drop in RGAT-
SQL. However, our LGESQL with merely local
relations is still competitive. It consolidates our
motivation that by exploiting the structure among
edges, the line graph can capturing long-range re-
lations to some extent. 2) graph pruning task con-

2547



tributes more in LGESQL (+1.2%) than RGAT-
SQL (+0.7%) on account of the fact that local re-
lations are more critical to structural inference. 3)
Two strategies of combining local and non-local re-
lations introduced in § 3.2.1 (w/ MSDE or MMC)
are both beneficial to the eventual performances
of LGESQL (2.0% and 2.1% gains, respectively).
It corroborates the assumption that local and non-
local relations should be treated with distinction.
However, the performance remains unchanged in
RGATSQL, when merging a different view of the
graph (w/ MMC) into multi-head attention. This
may be caused by the over-smoothing problem of
a complete graph.

4.3.2 Pre-trained Language Models

PLM RGATSQL ‘ LGESQL
bert-base 70.5 71.4
electra-base 72.8 73.4
bert-large 72.3 73.5
grappa-large 73.1 74.0
electra-large 74.8 75.1

Table 5: Ablation study of different PLMs.

In this part, we analyze the effects of different
pre-trained language models in Table 5. From the
overall results, we can see that: 1) by involving
the line graph into computation, LGESQL outper-
forms the baseline model RGATSQL with different
PLMs, further demonstrating the effectiveness of
explicitly modeling edge features. 2) large se-
ries PLMs consistently perform better than base
models on account of their model capacity and
generalization capability to unseen domains. 3)
Task adaptive PLMs especially ELECTRA are su-
perior to vanilla BERT irrespective of the upper
GNN architecture. We hypothesize the reason is
that ELECTRA is pre-trained with a tailored binary
classification task, which aims to individually dis-
tinguish whether each input word is substituted
given the context. Essentially, this self-supervised
task is similar to our proposed graph pruning task,
which focuses on enhancing the discriminative ca-
pability of the encoder.

4.4 Case Studies

In Figure 7, we compare the SQL queries gener-
ated by our LGESQL model with those created
by the baseline model RGATSQL. We notice that

HARD: How many dog pets are raised by female students?

RGATSQL: SELECT COUNT(*) FROM student JOIN has_pet
JOIN pets WHERE student.sex = "val"

LGESQL: SELECT COUNT(*) FROM student JOIN has_pet JOIN
pets WHERE student.sex = "val" and pets.pettype = "val"

HARD: Count the number of United Airlines flights that arrive in Aberdeen.
RGATSQL: SELECT COUNT(*) FROM airlines JOIN airports WHERE

airlines.airline = "val" AND airlines.airline = "val"
LGESQL: SELECT COUNT(*) FROM airlines JOIN flights JOIN
airports WHERE airlines.airline = "val" AND
airports.city = "val"

EXTRA: Which template type code is used by most number of documents?

RGATSQL: SELECT template.template_type_code FROM
template GROUP BY template.template_type_code ORDER BY
COUNT(*) DESC LIMIT 1

LGESQL: SELECT template.template_type_code FROM template
JOIN documents GROUP BY template.template_type_code ORDER
BY COUNT(*) DESC LIMIT 1

MEDIUM: How many 'United Airlines’ flights depart from Airport '"AHD'?
RGATSQL: SELECT COUNT(*) FROM airlines JOIN flights

WHERE airlines.airline = "val" AND flights.source_airport
= "yal®

LGESQL: SELECT COUNT(*) FROM airlines JOIN flights JOIN
airports WHERE airlines.airline = "val" AND
airports.airport_name = "val"

Figure 7: Case study: the first three cases are positive
samples while the last one is negative. The input ques-
tion is represented by its level of difficulty. FROM con-
ditions are omitted here for brevity and cell values in
the SQL queries are replaced with placeholders “val”.

LGESQL performs better than the baseline system,
especially on examples that involve the JOIN oper-
ation of multiple tables. For instance, in the second
case where the connection of three tables are in-
cluded, RGATSQL fails to identify the existence
of table £1ights. Thus, it is unable to predict
the WHERE condition about the destination city and
does repeat work. In the third case, our LGESQL
still successfully constructs a connected schema
sub-graph by linking table “template” to “docu-
ments”. Sadly, the RGATSQL model neglects the
occurrence of “documents” again. However, in the
last case, our LGESQL is stupid to introduce an un-
necessary table “airports”. It ignores the situation
that table “flights” has one column “source_airport”
which already satisfies the requirement.

5 Related Work

Encoding Problem for Text-to-SQL To tackle
the joint encoding problem of the question and
database schema, Xu et al. (2017) proposes “col-
umn attention” strategy to gather information from
columns for each question word. TypeSQL (Yu
et al., 2018a) incorporates prior knowledge of col-
umn types and schema linking as additional input

2548



features. Bogin et al. (2019a) and Chen et al. (2021)
deal with the graph structure of database schema
via GNN. EditSQL (Zhang et al., 2019b) considers
“co-attention” between question words and database
schema nodes similar to the common practice in
text matching (Chen et al., 2017). BRIDGE (Lin
et al., 2020) further leverages the database content
to augment the column representation. The most
advanced method RATSQL (Wang et al., 2020a),
utilizes a complete relational graph attention neu-
ral network to handle various pre-defined relations.
In this work, we further consider both local and
non-local, dynamic and static edge features among
different types of nodes with a line graph.

Heterogeneous Graph Neural Network Apart
from the structural topology, a heterogeneous
graph (Shi et al., 2016) also contains multiple types
of nodes and edges. To address the heterogene-
ity of node attributes, Zhang et al. (2019a) de-
signs a type-based content encoder and Fu et al.
(2020) utilizes a type-specific linear transforma-
tion. For edges, relational graph convolution net-
work (RGCN, Schlichtkrull et al., 2018) and rela-
tional graph attention network (RGAT, Wang et al.,
2020b) have been proposed to parameterize differ-
ent relations. HAN (Wang et al., 2019b) converts
the original heterogeneous graph into multiple ho-
mogeneous graphs and applies a hierarchical atten-
tion mechanism to the meta-path-based sub-graphs.
Similar ideas have been adopted in dialogue state
tracking (Chen et al., 2020b, 2019a), dialogue pol-
icy learning (Chen et al., 2018) and text match-
ing (Chen et al., 2020c; Lyu et al., 2021) to handle
heterogeneous inputs. In another branch, Chen et al.
(2019b), Zhu et al. (2019) and Zhao et al. (2020)
construct the line graph of the original graph and
explicitly model the computation over edge fea-
tures. In this work, we borrow the idea of a line
graph and update both node and edge features via
iteration over dual graphs.

6 Conclusion

In this work, we utilize the line graph to update
the edge features in the heterogeneous graph for
the text-to-SQL task. Through the iteration over
the structural connections in the line graph, local
edges can incorporate multi-hop relational features
and capture significant meta-paths. By further inte-
grating non-local relations, the encoder can learn
from multiple views and attend to remote nodes
with shortcuts. In the future, we will investigate

more useful meta-paths and explore more effec-
tive methods to deal with different meta-path-based
neighbors.

Acknowledgments

We thank Tao Yu, Yusen Zhang and Bo Pang
for their careful assistance with the evaluation.
We also thank the anonymous reviewers for
their thoughtful comments. This work has been
supported by Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102),
No.SKLMCPTS2020003 Project and Startup Fund
for Youngman Research at SJTU (SFYR at SJITU).

References

Ion Androutsopoulos, Graeme D Ritchie, and Pe-
ter Thanisch. 1995. Natural language interfaces
to databases-an introduction. arXiv preprint cmp-
1g/9503016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019a.
Representing schema structure with graph neural
networks for text-to-SQL parsing. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4560-4565, Florence,
Italy. Association for Computational Linguistics.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Global reasoning over database structures for text-
to-SQL parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3659-3664, Hong Kong, China. As-
sociation for Computational Linguistics.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun. 2020a. Measuring and relieving the over-
smoothing problem for graph neural networks from
the topological view. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 3438-3445.

Lu Chen, Zhi Chen, Bowen Tan, Sishan Long, Milica
Gasic, and Kai Yu. 2019a. Agentgraph: Towards
universal dialogue management with structured deep
reinforcement learning. CoRR, abs/1905.11259.

Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan, and
Kai Yu. 2020b. Schema-guided multi-domain dia-
logue state tracking with graph attention neural net-
works. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 7521-7528.

2549


http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
http://arxiv.org/abs/1905.11259
http://arxiv.org/abs/1905.11259
http://arxiv.org/abs/1905.11259

Lu Chen, Bowen Tan, Sishan Long, and Kai Yu.
2018. Structured dialogue policy with graph neu-
ral networks. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics
(COLING), pages 1257—-1268.

Lu Chen, Yanbin Zhao, Boer Lyu, Lesheng Jin, Zhi
Chen, Su Zhu, and Kai Yu. 2020c. Neural graph
matching networks for Chinese short text matching.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
6152-6158, Online. Association for Computational
Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657-1668, Vancouver, Canada. Association
for Computational Linguistics.

Zhengdao Chen, Lisha Li, and Joan Bruna. 2019b. Su-
pervised community detection with line graph neural
networks. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Zhi Chen, Lu Chen, Yanbin Zhao, Ruisheng Cao, Zi-
han Xu, Su Zhu, and Kai Yu. 2021. ShadowGNN:
Graph projection neural network for text-to-SQL
parser. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5567-5577, Online. Association for
Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337-1350, Online. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King.
2020. Magnn: metapath aggregated graph neural
network for heterogeneous graph embedding. In
Proceedings of The Web Conference 2020, pages
2331-2341.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, pages 1019—
1027.

Jonathan L Gross and Jay Yellen. 2005. Graph theory
and its applications. CRC press.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4524-4535, Florence, Italy. Association for Compu-
tational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory.  Neural computation,
9(8):1735-1780.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963-973, Vancouver, Canada.
Association for Computational Linguistics.

Xiangnan Kong, Philip S Yu, Ying Ding, and David J
Wild. 2012. Meta path-based collective classifica-
tion in heterogeneous information networks. In Pro-
ceedings of the 21st ACM international conference

on Information and knowledge management, pages
1567-1571.

Ni Lao and William W Cohen. 2010. Relational re-
trieval using a combination of path-constrained ran-
dom walks. Machine learning, 81(1):53-67.

Fei Li and HV Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8:73-84.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870-4888, Online. Associa-
tion for Computational Linguistics.

2550


https://doi.org/10.18653/v1/2020.acl-main.547
https://doi.org/10.18653/v1/2020.acl-main.547
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://openreview.net/forum?id=H1g0Z3A9Fm
https://openreview.net/forum?id=H1g0Z3A9Fm
https://openreview.net/forum?id=H1g0Z3A9Fm
https://www.aclweb.org/anthology/2021.naacl-main.441
https://www.aclweb.org/anthology/2021.naacl-main.441
https://www.aclweb.org/anthology/2021.naacl-main.441
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://www.aclweb.org/anthology/2021.naacl-main.105
https://www.aclweb.org/anthology/2021.naacl-main.105
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438

Ilya Loshchilov and Frank Hutter. 2019. Decou-
pled weight decay regularization. 1In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Boer Lyu, Lu Chen, Su Zhu, and Kai Yu. 2021. Let:
Linguistic knowledge enhanced graph transformer
for chinese short text matching.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In Advances in Neural Informa-
tion Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 8024-8035.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, Doha,
Qatar. Association for Computational Linguistics.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces,
pages 149-157.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101-
108, Online. Association for Computational Linguis-
tics.

Ohad Rubin and Jonathan Berant. 2021. SmBoP:
Semi-autoregressive bottom-up semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 311-324, Online. Association for Computa-
tional Linguistics.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE transactions on
neural networks, 20(1):61-80.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593-607. Springer.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464—468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron C. Courville. 2019. Ordered neurons: Inte-
grating tree structures into recurrent neural networks.
In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and
S Yu Philip. 2016. A survey of heterogeneous in-
formation network analysis. IEEE Transactions on
Knowledge and Data Engineering, 29(1):17-317.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2020. Learn-
ing contextual representations for semantic pars-
ing with generation-augmented pre-training. CoRR,
abs/2012.10309.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104-3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 7567-7578, Online. Asso-
ciation for Computational Linguistics.

Daniel C Wang, Andrew W Appel, Jeffrey L Korn, and
Christopher S Serra. 1997. The zephyr abstract syn-
tax description language. In DSL, volume 97, pages
17-17.

Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan,
and Rui Wang. 2020b. Relational graph attention
network for aspect-based sentiment analysis. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3229—
3238, Online. Association for Computational Lin-
guistics.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Ling-
fan Yu, Yu Gai, Tianjun Xiao, Tong He, George
Karypis, Jinyang Li, and Zheng Zhang. 2019a. Deep

2551


https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2102.12671
http://arxiv.org/abs/2102.12671
http://arxiv.org/abs/2102.12671
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://www.aclweb.org/anthology/2021.naacl-main.29
https://www.aclweb.org/anthology/2021.naacl-main.29
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/N18-2074
https://openreview.net/forum?id=B1l6qiR5F7
https://openreview.net/forum?id=B1l6qiR5F7
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
http://arxiv.org/abs/2012.10309
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.295
https://doi.org/10.18653/v1/2020.acl-main.295

graph library: A graph-centric, highly-performant
package for graph neural networks. arXiv preprint
arXiv:1909.01315.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. 2019b. Heteroge-
neous graph attention network. In The World Wide
Web Conference, pages 2022-2032.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J. D. Prince, and Yanshuai Cao. 2021. Optimiz-
ing deeper transformers on small datasets.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning.  arXiv preprint
arXiv:1711.04436.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis from
natural language. Proceedings of the ACM on Pro-
gramming Languages, 1:1-26.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440-450, Vancouver, Canada.
Association for Computational Linguistics.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. TypeSQL: Knowledge-
based type-aware neural text-to-SQL generation. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 588-594, New
Orleans, Louisiana. Association for Computational
Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir R.
Radeyv, Richard Socher, and Caiming Xiong. 2020.
Grappa: Grammar-augmented pre-training for table
semantic parsing. CoRR, abs/2009.13845.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018b. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911-3921, Brussels, Belgium. Association for
Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence, pages 1050-1055.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram
Swami, and Nitesh V Chawla. 2019a. Heteroge-
neous graph neural network. In Proceedings of the

25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 793—
803.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019b. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5338-5349,
Hong Kong, China. Association for Computational
Linguistics.

Yanbin Zhao, Lu Chen, Zhi Chen, Ruisheng Cao,
Su Zhu, and Kai Yu. 2020. Line graph enhanced
AMR-to-text generation with mix-order graph at-
tention networks. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 732-741, Online. Association for
Computational Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6869—
6882, Online. Association for Computational Lin-
guistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017.  Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu,
and Bin Wang. 2019. Relation structure-aware het-
erogeneous graph neural network. In 2019 IEEE
International Conference on Data Mining (ICDM),
pages 1534-15309.

2552


http://arxiv.org/abs/2012.15355
http://arxiv.org/abs/2012.15355
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/N18-2093
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.acl-main.67
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.1109/ICDM.2019.00203
https://doi.org/10.1109/ICDM.2019.00203

A Local and Non-Local Relations

In this work, meta-paths with length 1 are local
relations, and other meta-paths are non-local re-
lations. Specifically, Table 6 provides the list of
all local relations according to the types of source
and target nodes. Notice that we preserve the NO-
MATCH relation because there is no overlapping
between the entire question and any schema item
in some cases. This relaxation will dramatically
increase the number of edges in the line graph. To
resolve it, we remove edges in the line graph that
the source and target nodes both represent relation
types of MATCH series. In other words, we prevent
information propagating between these bipartite
connections during the iteration of the line graph.

The checklist in Table 6 is only a subset of all
relations defined in RATSQL (Wang et al., 2020a).
For the remaining relations, we treat them as non-
local relations for a fair comparison to the baseline
system RATSQL.

B Details of Text-to-SQL Decoder
B.1 ASDL Grammar

The complete grammar used to translate the SQL
into a series of actions is provided in Figure 8.
Here are some criteria when we design the abstract
syntax description language (ASDL, Wang et al.,
1997) for the target SQL queries:

1. Keep the length of the action sequence short
to prevent the long-term forgetting problem
in the auto-regressive decoder. To achieve
this goal, we remove the optional operator
“?” defined in Wang et al. (1997) and extend
the number of constructors by enumeration.
For example, we expand all solutions of type
sgl_unit according to the existence of dif-
ferent clauses.

2. Hierarchically, group and re-use the same type
in a top-down manner for parameter shar-
ing. For example, we use the same type
col_unit when choosing columns in dif-
ferent clauses and create the type val_unit
such that both the SELECT clause and CON-
DITION clauses can refer to it.

3. When generating a list of items of the same
type, instead of emitting a special action RE-
DUCE as the symbol of termination (Yin and
Neubig, 2017), we enumerate all possible
number of occurrences in the training set (see

the constructors for type select and from
in Figure 8). Then, we generate each item
based on this quantitative limitation. Prelimi-
nary experimental results prove that thinking
in advance is better than a lazy decision.

Our grammar can cover 98.7% and 98.2% cases in
the training and validation dataset, respectively.

B.2 Decoder Architecture

Given the encoded memory X = [X,; Xy; X,] €
RIV"IXd where |V"| = |Q|+|T|+|C], the goal of
a text-to-SQL decoder is to produce a sequence of
actions which can construct the corresponding AST
of the target SQL query. In our experiments, we
utilize a single layer ordered neurons LSTM (ON-
LSTM, Shen et al., 2019) as the auto-regressive
decoder. Firstly, we initialize the decoder state hg
via attentive pooling over the memory X.

a; =softmax; tanh(xiWQ)vUT7
hg = Z A X,

i
hg :tanh(flowl),

where vy is a trainable row vector and Wy, W are
parameter matrices. Then, in the structured ON-
LSTM decoder, the hidden states at each timestep
J is updated as

my, hj = ON—LSTM([aj_l; apj ;hpj 3 nj],
m;1, hj_1),

where my; is the cell state of the j-th timestep, a;_1
is the embedding of the previous action, ay,; is the
embedding of parent action, hy, is the embedding
of parent hidden state, and n; denotes the type em-
bedding of the current frontier node ’. Given the
current decoder state h;, we adopt multi-head atten-
tion (8 heads) mechanism to calculate the context
vector flj over X. This context vector is concate-
nated with h; and passed into a 2-layer MLP with
tanh activation unit to obtain the attention vector
h#"*. The dimension of hj" is 512.

For APPLYRULE action, the probability distribu-
tion is computed by a softmax classification layer:

P(a; = APPLYRULE[R]|a<;,X) =
softmax z (hj" Wr).
"The frontier node is the current non-terminal node in the

partially generated AST to be expanded and we maintain an
embedding for each node type.

2553



Source x Target y Relation Description
Q Q DISTANCE+1 vy is the next word of x.
C C FOREIGNKEY  y is the foreign key of z.
HaAs The column y belongs to the table x.
T C PRIMARYKEY  The column y is the primary key of the table x.
NOMATCH No overlapping between x and y.
Q T PARTIALMATCH z is part of y, but the entire question does not contain y.
EXACTMATCH z is part of y, and y is a span of the entire question.
NOMATCH No overlapping between x and y.
PARTIALMATCH z is part of y, but the entire question does not contain y.
Q C EXACTMATCH z is part of y, and y is a span of the entire question.
VALUEMATCH  z is part of the candidate cell values of column .

Table 6: The checklist of all local relations used in our experiments. All relations above are asymmetric. For brevity,
we only show one direction, and the opposite can be easily inferred. Q/T/C stands for QUESTION/TABLE/COLUMN

node respectively.

For SELECTTABLE action, we directly copy the
table ¢; from the encoded memory Xj.

¢l =softmax; (hI" W7, ) (x;, W) T,

H
1
P(a; =SELECTTABLE[ti][a<;, X) = 7 >
h=1

To be consistent, we also apply the multi-head at-
tention mechanism here with H = 8 heads. The
calculation of SELECTCOLUMN action is similar
with different network parameters.

C Graph Pruning

Similar ideas have been proposed by Bogin et al.
(2019b) and Yu et al. (2020). Our proposed task
differs from their methods in two aspects:

Prediction target Yu et al. (2020) devises sev-
eral syntactic roles for schema items and performs
multi-class classification instead of binary discrim-
ination. Based on our assumption, the encoder is
responsible for the discrimination capability while
the decoder organizes different schema items and
components into a complete semantic frame. Thus,
we simplify the training target into binary labels.

Combination method Bogin et al. (2019b) uti-
lizes another RGCN to calculate the relevance score
for each schema item in Global-GNNSQL. This
score is incorporated into the encoder RGCN as a
soft input coefficient. Different from this cascaded
method, graph pruning is employed in a multitask-
ing manner. We have tried different approaches
to combine this auxiliary module with the primary

text-to-SQL model in our preliminary experiments,
such as:

1) Similar to Bogin et al. (2019b), we utilize a
separate graph encoder to conduct graph pruning
firstly, and use another refined graph encoder (the
same architecture, e.g., RGAT) to jointly encode
the pruned schema graph and the question. These
two encoders can share network parameters of only
the embeddings or more upper GNN layers. If they
share all 8 layers, the entire encoder will degener-
ate from the pipelined mode into our multitasking
fashion. Empirical results in Table 7 demonstrate
that when these two encoders share more layers,
the performance of the text-to-SQL model is better.

mode ‘ # layers shared ‘ dev acc
pipeline | 0 | 60.74
4 | ! | 61.63
multitasking | 8 | 6253

Table 7: Variation of performances when gradually in-
creasing the number of layers shared between the prun-
ing and the main encoders.

2) We can constrain the text-to-SQL decoder
to only attend and retrieve schema items from
the pruned encoded memory when calculating at-
tention vectors and select columns or tables. In
other words, the graph pruning module and the
text-to-SQL decoder are connected in a cascaded
way. Through pilot experiments, we observe the
flagrant training-inference inconsistency problem.
The text-to-SQL decoder is trained upon the golden

2554



primitive types: col id, tab_id
sql = Intersect(sql_unit, sql_unit) | Union(sql_unit, sql_unit) | Except(sql_unit, sql_unit) | Single(sql unit)

sql_unit = Complete(fiom, select, cond, group by, order by)
| NoWhere(from, select, group by, order by)
| NoGroupBy(fiom, select, cond, order by)
| NoOrderBy(fiom, select, cond, group by)
| OnlyWhere(firom, select, cond)
| OnlyGroupBy(from, select, group by)
| OnlyOrderBy(fiom, select, order by)
| Simple(fiom, select)

select = SelectOne(val_unit) | SelectTwo(val_unit, val_unit) | SelectThree(val unit, val unit, val_unit)

| SelectFour(val unit, val_unit, val_unit, val _unit) | SelectFive(val unit, val _unit, val_unit, val unit, val_unit)

from = FromSQL(sq/) | FromOneTable(tab id) | FromTwoTable(tab id, tab id) | FromThreeTable(tab id, tab id, tab id)
| FromFourTable(tab id, tab_id, tab id, tab id) | FromFiveTable(tab id, tab_id, tab id, tab id, tab id)
| FromSixTable(tab _id, tab_id, tab_id, tab_id, tab id, tab_id)

group by = OneNoHaving(co!/ unit) | TwoNoHaving(col unit, col _unit) | OneHaving(col unit, cond) | TwoHaving(col_unit, col _unit, cond)

order by = OneAsc(col_unit) | OneDesc(col unit) | OneAscLimit(col unit) | OneDescLimit(col_unit)
| TwoAsc(col_unit, col_unit) | TwoDesc(col_unit, col_unit) | TwoAscLimit(col_unit, col_unit) | TwoDescLimit(col_unit, col_unit)

cond = And(cond, cond) | Or(cond, cond)
| Between(val_unit) | Eq(val_unit) | Gt(val_unit) | Lt(val_unit) | Ge(val_unit) | Le(val_unit) | Neq(val unit) | Like(val unit) | NotLike(val unir)
| BetweenSQL(val_unit, sql) | GtSQL(val_unit, sql) | LtSQL(val_unit, sql) | GeSQL(val_unit, sql) | LeSQL(val_unit, sql)
| EqSQL(val_unit, sql) | NeqSQL(val_unit, sql) | InSQL(val_unit, sql) | NotInSQL(val_unit, sql)

val unit = Unary(col unit) | Minus(col unit, col_unit) | Plus(col _unit, col unit) | Times(col _unit, col unit) | Divide(col unit, col unit)

col_unit =None(col id) | Max(col_id) | Min(col id) | Count(col_id) | Sum(col id) | Avg(col_id)

Figure 8: The ASDL grammar for SQL in our implementation.

schema items, but it depends on the predicted op-
tions from the graph pruning module during eval-
uation. Even if we endeavor various sampling-
based methods (such as random sampling, sam-
pling from current module predictions, or sam-
pling from neighboring nodes of the golden schema
graph) to inject some noise during training, the per-
formance is merely competitive to that with multi-
tasking. Therefore, based on Occam’s Razor The-
orem, we only treat graph pruning as an auxiliary
output module.

2555



