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Abstract

Dialogue state tracking (DST) plays a key role
in task-oriented dialogue systems to monitor
the user’s goal. In general, there are two strate-
gies to track a dialogue state: predicting it
from scratch and updating it from previous
state. The scratch-based strategy obtains each
slot value by inquiring all the dialogue his-
tory, and the previous-based strategy relies on
the current turn dialogue to update the previ-
ous dialogue state. However, it is hard for the
scratch-based strategy to correctly track short-
dependency dialogue state because of noise;
meanwhile, the previous-based strategy is not
very useful for long-dependency dialogue state
tracking. Obviously, it plays different roles for
the context information of different granular-
ity to track different kinds of dialogue states.
Thus, in this paper, we will study and discuss
how the context information of different granu-
larity affects dialogue state tracking. First, we
explore how greatly different granularities af-
fect dialogue state tracking. Then, we further
discuss how to combine multiple granularities
for dialogue state tracking. Finally, we apply
the findings about context granularity to few-
shot learning scenario. Besides, we have pub-
licly released all codes.

1 Introduction

Currently, task-oriented dialogue systems have at-
tracted great attention in academia and industry
(Chen et al., 2017), which aim to assist the user
to complete certain tasks, such as buying prod-
ucts, booking a restaurant, etc. As a key compo-
nent of task-oriented dialogue system, dialogue
state tracking plays a important role in understand-
ing the natural language given by the user and
expressing it as a certain dialogue state (Rastogi
et al., 2017, 2018; Goel et al., 2018). The dialogue
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U: i am looking for a swimming pool in the south part of town .

S: i am sorry , there are no swimming pools .. . would you be interested in visiting a different attraction ?
U: how about a cinema instead ?

S: cineworld cinema in the south side is located at cambridge leisure park .
U: what s the postcode and enterance fee ?

S: ... can i help you with anything else ?
U: i am also looking for a restaurant that serve portuguese food in the south side of town .

S: nandos meets your criteria . would you like to book a table ?
U: yes . book for 7 people on saturday at 15:15 .

S: it will be reserved for 15 minutes . the reference number is x361i811 .
U: i also need to book a taxi to commute between the 2. i need to get to the restaurant by the booked time.
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Figure 1: Examples of dialogue state tracking with con-
text information of different granularity at the sixth turn
of a dialogue. Slot in a dialogue state refers to the
concatenation of a domain name and a slot name. In
the figure, (a) represents predicting the dialogue state
from scratch, where slots in three domains need to be
predicted and the challenge of encoding longer text is
faced; (b) indicates updating dialogue state from the
previous state, the slot taxi − departure cannot be
predicted due to the absence of corresponding dialogue
history content; (c) represents dialogue state tracking
with context information of granularity 4, which tracks
from the second turn and uses less dialogue history con-
tent (4 turns) to provide evidence for the prediction of
all slots.

state for each turn of a dialogue is typically pre-
sented as a series of slot value pairs that represent
information about the user’s goal up to the cur-
rent turn. For example, in Figure 1, the dialogue
state at turn 2 is {(attraction − type, cinema),
(attraction− area, south)}.

In general, there are two strategies to track a
dialogue state: predicting it from scratch and up-
dating it from previous state. The scratch-based
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strategy obtains each slot value in dialogue state
by inquiring all the dialogue history (Xu and Hu,
2018; Lei et al., 2018; Goel et al., 2019; Ren et al.,
2019; Wu et al., 2019; Shan et al., 2020; Zhang
et al., 2020), the advantage of this strategy is to
ensure the integrity of the dialogue information.
The previous-based strategy relies on the current
turn dialogue to update the previous dialogue state
(Mrkšić et al., 2017; Chao and Lane, 2019; Kim
et al., 2020; Heck et al., 2020; Zhu et al., 2020),
the main character of this strategy is to greatly im-
prove the efficiency of dialogue state prediction
and avoid the computational cost of encoding all
dialogue history.

However, both kinds of strategies above have
great defects because of their own characters. For
the scratch-based strategy, it is hard to correctly
track short-dependency dialogue state because of
the noise associated with encoding all dialogue his-
tory. For example, the dialogue history of turn 1
to 3 in Figure 1 (a) does not contribute to the pre-
diction of slot values in the restaurant domain.
For the previous-based strategy, it is difficult to
solve the problem of long-dependency dialogue
state tracking because it utilizes only limited dia-
logue information from the current turn dialogue
and the previous state. As in Figure 1 (b), the slot
taxi − departure cannot be predicted due to the
absence of corresponding dialogue history content.

Obviously, it plays different roles for the context
information of different granularity to track differ-
ent kinds of dialogue states. Intuitively, less context
information is needed for short-dependency dia-
logue state, while more context information must
be taken into account for long-dependency dialogue
state tracking. For example, the dialogue state in
Figure 1 (c) is tracked from turn 2, which utilizes
context information of granularity 4 (turn 3 to 6),
providing evidence for the prediction of all slots
while bringing as little noise as possible.

Thus, in this paper, we will study and discuss
how the context information of different granular-
ity affects dialogue state tracking. The contribution
of this paper is that it is, to the best of our knowl-
edge, the first detailed investigation of the impact
of context granularity in dialogue state tracking and
promotes the research on dialogue state tracking
strategy. Our investigation mainly focuses on three
points1:

1The code is released at https://github.com/
yangpuhai/Granularity-in-DST

• How greatly different granularities affect dia-
logue state tracking?

• How to combine multiple granularities for di-
alogue state tracking?

• Application of context information granularity
in few-shot learning scenario.

The rest of paper is organized as follows: The
relevant definitions and formulas in the dialogue
state tracking strategy are introduced in section 2.
Section 3 lists the detailed experimental settings.
Section 4 presents the survey report and results,
followed by conclusions in section 5.

2 Preliminary

To describe the dialogue state tracking strategy,
let’s introduce the formula definitions used in this
paper:

Dialogue Content: D = (T1, T2, ..., TN ) is de-
fined as the dialogue of length N , where Ti =
(Si, Ui) is the dialogue content of i-th turn, which
includes the system utterance Si and the user utter-
ance Ui.

Dialogue State: We define E = (B0, B1, B2,
..., BN ) as all dialogue states up to the N -th turn
of the dialogue, where Bi is the set of slot value
pairs representing the information provided by the
user up to the i-th turn. In particular, B0 is the
initial dialogue state which is an empty set.

Granularity: In dialogue state tracking, the num-
ber of dialogue turns spanning from a certain di-
alogue state Bm in the dialogue to the current
dialogue state Bn is called granularity, that is,
G = |(Tm+1, ..., Tn)|. For example, the granu-
larities of context information in (a), (b), and (c) in
Figure 1 are 6, 1, and 4, respectively.

Assuming that the dialogue state of the N -th
turn is currently required to be inferred, the dia-
logue state tracking under a certain granularity is
as follows:

BN = tracker((TN−G+1, ..., TN ), BN−G)

where G ∈ {1, 2, ..., N} is the granularity of con-
text information and tracker represents a dialogue
state tracking model.

In particular, if G = 1, then:

BN = tracker(TN , BN−1)

https://github.com/yangpuhai/Granularity-in-DST
https://github.com/yangpuhai/Granularity-in-DST
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Dataset # Domains # Slots Avg. turns
# Dialogues # Turns

train dev test train dev test
Sim-M 1 5 5.14 384 120 264 1,973 627 1,364
Sim-R 1 9 5.53 1,116 349 775 6,175 1,489 3,436

WOZ2.0 1 3 4.23 600 200 400 2,536 830 1,646
DSTC2 1 3 7.24 1,612 506 1,117 11,677 3,934 9,890

MultiWOZ2.1 5 30 6.53 8,420 1,000 999 54,984 7,371 7,368

Table 1: Data statistics of Sim-M, Sim-R, WOZ2.0, DSTC2 and MultiWOZ2.1. Avg. turns indicates the average
number of turns involved in the dialogue in the training data.

Models Open vocabulary Encoder Decoder Tracking strategy
SpanPtr (Xu and Hu, 2018) X RNN Extractive scratch-based
TRADE (Wu et al., 2019) X RNN Generative scratch-based

BERTDST (Chao and Lane, 2019) X BERT Extractive previous-based
SOMDST (Kim et al., 2020) X BERT Generative previous-based
SUMBT (Lee et al., 2019) × BERT Classification previous-based

Table 2: Statistics on the characteristics of the 5 baselines studied in the paper. In the decoder, the extractive
mode refers to the extraction of slot values directly from the dialogue context, the generative mode refers to the
vocabulary-dependent sequence decoding, and the classification mode is the slot value ontology-based classifica-
tion.

this case corresponds to the strategy of updating
from previous state. Therefore, the previous-based
strategy is a special case where context granularity
is minimal in dialogue state tracking.

If G = N , then:

BN = tracker((T1, ..., TN ), B0)

this case corresponds to the strategy of predicting
state from scratch. Similarly, the scratch-based
strategy is also a special case of dialogue state
tracking, with the context information of maximum
granularity. Since the size of the maximum granu-
larity N is different in different dialogues, so 0 is
used in the paper to refer to the maximum granu-
larity N , -1 to refer to granularity N − 1, and so
on.

3 Experimental Settings

In order to investigate how the context informa-
tion of different granularity affects dialogue state
tracking, we analyze the performance of several
different types of dialogue state tracking models
on different datasets. For a clearer illustration, the
detailed settings are introduced in this section.

3.1 Datasets

Our experiments were carried out on 5 datasets,
Sim-M (Shah et al., 2018), Sim-R (Shah et al.,

2018), WOZ2.0 (Wen et al., 2016), DSTC2 (Hen-
derson et al., 2014) and MultiWOZ2.1 (Eric et al.,
2019). The statistics for all datasets are shown in
Table 1.

Sim-M and Sim-R are multi-turn dialogue
datasets in the movie and restaurant domains, re-
spectively, which are specially designed to evaluate
the scalability of dialogue state tracking model. A
large number of unknown slot values are included
in their test set, so the generalization ability of the
model can be reflected more accurately.

WOZ2.0 and DSTC2 datasets are both collected
in the restaurant domain and have the same
three slots food, area, and price range. These
two datasets provide automatic speech recognition
(ASR) hypotheses of user utterances and can there-
fore be used to verify the robustness of the model
against ASR errors. As in previous works, we use
manuscript user utterance for training and top ASR
hypothesis for testing.

MultiWOZ2.1 is the corrected version of the
MultiWOZ (Budzianowski et al., 2018). Compared
to the four datasets above, MultiWOZ2.1 is a more
challenging and currently widely used benchmark
for multi-turn multi-domain dialogue state track-
ing, consisting of 7 domains, over 30 slots, and
over 4500 possible slot values. Following previous
works (Wu et al., 2019; Kim et al., 2020; Heck et al.,
2020; Zhu et al., 2020), we only use 5 domains
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(restaurant, train, hotel, taxi, attraction) that
contain a total of 30 slots.

3.2 Baselines
We use 5 different types of baselines whose charac-
teristics are shown in Table 2.

SpanPtr: This is the first model to extract slot
values directly from dialogue context without an
ontology, it encodes the whole dialogue history
with a bidirectional RNN and extracts slot value for
each slot by generating the start and end positions
in dialogue history (Xu and Hu, 2018).

TRADE: This model is the first to consider
knowledge transfer between domains in the multi-
domain dialogue state tracking task. It represents
a slot as a concatenation of domain name and slot
name, encodes all dialogue history using bidirec-
tional RNN, and finally decodes each slot value us-
ing a pointer-generator network (Wu et al., 2019).

BERTDST: This model decodes only the slot
values of the slots mentioned in the current turn of
dialogue, and then uses a rule-based update mecha-
nism to update from the previous state to the cur-
rent turn state. It uses BERT to encode the current
turn of dialogue and extracts slot values from the
dialogue as spans (Chao and Lane, 2019).

SOMDST: This model takes the dialogue state
as an explicit memory that can be selectively over-
written, and inputs it into BERT together with the
current turn dialogue. It then decomposes the pre-
diction for each slot value into operation prediction
and slot generation (Kim et al., 2020).

SUMBT: This model uses an ontology and is
trained and evaluated on the dialogue session level
instead of the dialogue turn level. BERT is used in
the model to encode turn level dialogues, and an
unidirectional RNN is used to capture session-level
representation (Lee et al., 2019).

3.3 Configurations and Metrics
Our deployments are based on the official imple-
mentation source code of SOMDST2 and SUMBT3,
in which SpanPtr, TRADE and BERTDST are re-
produced in this paper. BERT in all models uses
pre-trained BERT (Vaswani et al., 2017) (BERT-
Base, Uncased) which has 12 hidden layers of 768
units and 12 self-attention heads, while RNN uses

2https://github.com/clovaai/som-dst
3https://github.com/SKTBrain/SUMBT

GRU (Cho et al., 2014). We use adam (Kingma and
Ba, 2014) as the optimizer and use greedy decoding.
We customize the training epochs for all models,
and the training stopped early when the model’s
performance on development set failed to improve
for 15 consecutive epochs, and all the results were
averaged over the three runs with different random
seeds. The detailed setting of the hyperparameters
is given in Appendix A.

Since the length of the dialogue history is related
to the granularity, the input length of the model
needs to adapt to the granularity. Especially for
the model with BERT as the encoder, in order to
prevent the input from being truncated, we set the
max sequence length to exceed almost all the inputs
under different granularity. See Appendix A for
details on the max sequence length settings.

Following previous works (Xu and Hu, 2018;
Wu et al., 2019; Kim et al., 2020; Heck et al., 2020),
the joint accuracy (Joint acc) and slot accuracy
(Slot acc) are used for evaluation. The joint ac-
curacy is the accuracy that checks whether all the
predicted slot values in each turn are exactly the
same as the ground truth slot values. The slot accu-
racy is the average accuracy of slot value prediction
in all turns.

4 Experimental Analysis

This section presents our detailed investigation of
how the context information of different granular-
ity affects dialogue state tracking, focusing on the
impact of granularity on dialogue state tracking,
the combination of multiple granularities, and the
application of context granularity in few-shot learn-
ing scenario. For simplicity, in all experimental
results, the maximum granularity is expressed as 0,
the maximum granularity minus 1 is expressed as
-1, and so on.

4.1 How greatly different granularities affect
dialogue state tracking?

The first part of our investigation look at the validity
of the context granularity used by the current vari-
ous dialogue state tracking models and try to figure
out how different granularities affect dialogue state
tracking. The experimental results are shown in
Table 3.

It can be found that some dialogue state tracking
models do not take the appropriate granularity, and
their performance is greatly improved when they
are trained with the the context of appropriate gran-

https://github.com/clovaai/som-dst
https://github.com/SKTBrain/SUMBT
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Models TG IG
WOZ2.0 DSTC2 MultiWOZ2.1

Joint acc Slot acc Joint acc Slot acc Joint acc Slot acc

SpanPtr

0* 0* 0.4455 0.7475 0.6234 0.8461 0.4415 0.9570
-1 -1 0.5012 0.7786 0.5829 0.8251 0.3868 0.9495
-2 -2 0.5881 0.8121 0.4825 0.7728 0.3726 0.9499
-3 -3 0.6330 0.8350 0.4737 0.7628 0.3745 0.9507

TRADE

0* 0* 0.5808 0.8186 0.6493 0.8590 0.4420 0.9655
-1 -1 0.5194 0.7833 0.5013 0.7834 0.3963 0.9613
-2 -2 0.5680 0.8107 0.4185 0.7488 0.3528 0.9569
-3 -3 0.5292 0.7886 0.5171 0.7963 0.3564 0.9552

BERTDST

1* 1* 0.8194 0.9307 0.6395 0.8537 0.4140 0.9584
2 2 0.8220 0.9318 0.5830 0.8271 0.4586 0.9636
3 3 0.8190 0.9318 0.5614 0.8103 0.4772 0.9646
4 4 0.8256 0.9344 0.5666 0.8152 0.4917 0.9659

SOMDST

1* 1* 0.8540 0.9471 0.6975 0.8828 0.5029 0.9715
2 2 0.8274 0.9341 0.7022 0.8808 0.5179 0.9730
3 3 0.8280 0.9356 0.7121 0.8851 0.5128 0.9720
4 4 0.8620 0.9491 0.7176 0.8882 0.5085 0.9718

Table 3: Joint accuracy and slot accuracy on WOZ2.0, DSTC2 and MultiWOZ2.1 when the same granularities
are used in the training and inference phases. TG and IG are the training granularity and inference granularity,
respectively. * refers to the granularity originally used in the baseline.

ularity. For example, the joint accuracy of SpanPtr
with granularity -3 on WOZ2.0 improved by 42%,
while the joint accuracy of BERTDST with granu-
larity 4 on MultiWOZ2.1 improved by 19%. These
results suggest that there are significant differences
in dialogue state tracking at different granularities,
therefore, we should be careful to determine the
granularity to be used according to the characteris-
tics of the model and dataset.

By observing the experimental comparison re-
sults on different models and datasets in Table 3, it
can be found that:

• For different models, the model with gener-
ative decoding prefer larger granularity, be-
cause it requires more context information
to effectively learn vocabulary-based distribu-
tion. For example, TRADE and SOMDST
both perform better in larger granularity.
Meanwhile, the model with extractive decod-
ing is more dependent on the characteristics
of the dataset. Besides, in general, the model
with generative decoding has obvious advan-
tages over the model with extractive decoding.

• For different datasets, when the dataset in-
volves multiple domains and there are a large
number of long-dependency dialogue states,
context information of larger granularity can

(a) Joint accuracy on WOZ2.0 with IG=0

(c) Joint accuracy on DSTC2 with IG=0

(e) Joint accuracy on MultiWOZ2.1 with IG=0

(b) Joint accuracy on WOZ2.0 with IG=1

(d) Joint accuracy on DSTC2 with IG=1

(f) Joint accuracy on MultiWOZ2.1 with IG=1

Figure 2: Joint accuracy of baseline model when con-
text information with different granularity is used in
training and inference phases. IG is the inference gran-
ularity.

be used to more effectively capture the long-
dependency relationship in the data for dia-
logue state tracking, such as MultiWOZ2.1
dataset. For simpler single-domain datasets,
where a large number of short dependencies
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Models TG IG
WOZ2.0 DSTC2 MultiWOZ2.1

Joint acc Slot acc Joint acc Slot acc Joint acc Slot acc

SpanPtr
0* 0* 0.4455 0.7475 0.6234 0.8461 0.4415 0.9570

0, -1 0 0.4804 0.7428 0.6078 0.8371 0.4430 0.9565

TRADE
0* 0* 0.5808 0.8186 0.6493 0.8590 0.4420 0.9655

0, -1 0 0.6102 0.8357 0.6030 0.8413 0.4410 0.9655

BERTDST
1* 1* 0.8194 0.9307 0.6395 0.8537 0.4140 0.9584
1, 2 1 0.8331 0.9368 0.5824 0.8290 0.4229 0.9602

SOMDST
1* 1* 0.8540 0.9471 0.6975 0.8828 0.5029 0.9715
1, 2 1 0.8572 0.9479 0.7077 0.8866 0.5126 0.9723

SUMBT
1* 1* 0.9052 0.9665 0.6571 0.8664 0.4632 0.9655
1, 2 1 0.9089 0.9677 0.6739 0.8716 0.4725 0.9663

Table 4: Comparison of different baseline models on WOZ2.0, DSTC2 and MultiWOZ2.1 before and after apply-
ing multi-granularity combination. TG and IG are the training granularity and inference granularity, respectively.
* refers to the granularity originally used in the baseline.

(a) SpanPtr on WOZ2.0 with IG=0 (b) TRADE on WOZ2.0 with IG=0 (c) BERTDST on WOZ2.0 with IG=1 (d) SOMDST on WOZ2.0 with IG=1

(e) SpanPtr on DSTC2 with IG=0 (f) TRADE on DSTC2 with IG=0 (g) BERTDST on DSTC2 with IG=1 (h) SOMDST on DSTC2 with IG=1

(i) SpanPtr on MultiWOZ2.1 with IG=0 (j) TRADE on MultiWOZ2.1 with IG=0 (k) BERTDST on MultiWOZ2.1 with IG=1 (l) SOMDST on MultiWOZ2.1 with IG=1
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Figure 3: Joint accuracy of baseline model with different multi-granularity combinations is adopted in training
phase. IG is the inference granularity.

determine the effectiveness of small granular-
ity in dialogue state tracking. However, when
there are more turns of dialogue resulting in
less information in each turn, a larger gran-
ularity may be required to provide enough
information, for example, SpanPtr performs
best on the DSTC2 dataset at maximum gran-
ularity.

As can be seen from the above analysis, different
granularities have their own advantages in different
situations of dialogue, so it is natural to wonder
whether multiple granularities can be combined to
achieve better dialogue state tracking. Next, let’s

discuss the issue of multi-granularity combination.

4.2 How to combine multiple granularities
for dialogue state tracking?

Following the above analysis, here we mainly dis-
cuss how to combine multiple granularities in di-
alogue state tracking, mainly focusing on three
aspects: (1) The relationship between granularities,
(2) Performance of multi-granularity combination
and (3) Limitations of multi-granularity combina-
tion.

The relationship between granularities: First,
we use different granularities in the training and
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inference phases of dialogue state tracking to figure
out the relationship between different granularities,
as shown in Figure 2. It can be seen that when
we fix the granularity of context information in the
inference phase, the dialogue state tracking model
trained with other granularity still obtains the gener-
alization under this inference granularity. And even
some models learned at other granularity, such as
the BERTDST in Figure 2 (b) and (f), can perform
better. Meanwhile, it can also be found that as the
granularity gap increases, the context information
becomes more and more inconsistent, and eventu-
ally the ability of the model to generalize across
granularity is gradually reduced. Through these
phenomena, we can summarize as follows: The
knowledge learned by the dialogue state tracking
model in context information of different granular-
ity is transferable and the smaller the gap between
granularity can bring more knowledge transfer ef-
fect.

Performance of multi-granularity combination:
Then, we use the knowledge transfer between con-
text information of different granularity to improve
the baseline. In the specific experiment, we add the
most adjacent granularity to the training phase of
the model, that is, the context under two granulari-
ties is used for training, while the inference phase
remains unchanged, as shown in Table 4. It can
be observed that in most cases, the performance
of the baseline models is significantly enhanced,
suggesting that adding more granularity context
information to the training phase of the model can
indeed improve the generalization of the dialogue
state tracking model. Of course, in some cases,
multi-granularity combination results in a reduc-
tion in performance, such as SpanPtr, TRADE, and
BERTDST on DSTC2 dataset. The main reason for
this phenomenon should be the large deviation be-
tween the context information of different granular-
ity in the multi-granularity combination, as can be
seen from the large reduction of SpanPtr, TRADE,
and BERTDST on the DSTC2 dataset with other
granularity in Table 3.

Limitations of multi-granularity combination:
Given that multi-granularity combination can lead
to improved generalization performance, is it better
to have more context information of different gran-
ularity in training phase? To answer this question,
we gradually add more granularities to the train-
ing phase while keeping the inference granularity
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(b) Joint accuracy and improvement of TRADE on WOZ2.0 with IG=0
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(b) Joint accuracy and improvement of TRADE on WOZ2.0 with IG=0
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(c) Joint accuracy and improvement of BERTDST on WOZ2.0 with IG=1

0.5

0.6

0.7

0.8

0.9

100% 80% 60% 40% 20% 10%

A
cc

u
ra

cy

Scale of training data

1
1,2
1,2,3
1,2,3,4

-4

-2

0

2

4

6

8

100% 80% 60% 40% 20% 10%

Im
p

ro
ve

m
e

n
t 

ra
ti

o
 (

%
)

Scale of training data

1
1,2
1,2,3
1,2,3,4

(c) Joint accuracy and improvement of BERTDST on WOZ2.0 with IG=1
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(d) Joint accuracy and improvement of SOMDST on WOZ2.0 with IG=1
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(d) Joint accuracy and improvement of SOMDST on WOZ2.0 with IG=1
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(e) Joint accuracy and improvement of SUMBT on WOZ2.0 with IG=1
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(e) Joint accuracy and improvement of SUMBT on WOZ2.0 with IG=1
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Figure 4: Joint accuracy of baseline model and im-
provement ratio of multi-granularity combination un-
der different scales of training data. Items in different
colors represent different granularity combinations in
training phase, and IG is the inference granularity.

unchanged, the experimental results are shown in
Figure 3. It can be found that there is an upper limit
to the use of multi-granularity combination in the
training phase. Generally, adding the granularity
with the smallest gap can bring the best effect, after
that, with the increase of granularity number, the
performance will decline.

4.3 Application of context information
granularity in few-shot learning scenario

Considering the knowledge transfer between granu-
larity in multi-granularity combination, we explore
the application of multi-granularity combination in
few-shot learning scenario.

Figure 4 shows the joint accuracy of the model
with different multi-granularity combinations and
the percentage improvement relative to the base-
line model on the WOZ2.0 dataset with different
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Models TG IG
Sim-M Sim-R WOZ2.0 DSTC2 MultiWOZ2.1

10% 10% 10% 5% 5%

SpanPtr

0* 0* 0.1466 0.5147 0.1744 0.4523 0.2700
0, -1 0 0.1188 0.5631 0.2211 0.4640 0.2703

0, -1, -2 0 0.0985 0.5752 0.2165 0.4839 0.2765
0, -1, -2, -3 0 0.0872 0.5805 0.2313 0.4873 0.2762

TRADE

0* 0* 0.0780 0.6531 0.2047 0.5290 0.2531
0, -1 0 0.0880 0.6512 0.2153 0.5108 0.2400

0, -1, -2 0 0.0892 0.6612 0.2193 0.5173 0.2470
0, -1, -2, -3 0 0.0921 0.6569 0.2098 0.5101 0.2461

BERTDST

1* 1* 0.4814 0.7066 0.5800 0.4697 0.3414
1, 2 1 0.6219 0.7295 0.5770 0.5137 0.3491

1, 2, 3 1 0.5926 0.7376 0.6138 0.4712 0.3450
1, 2, 3, 4 1 0.6075 0.7241 0.6136 0.4929 0.3377

SOMDST

1* 1* 0.2708 0.4700 0.5140 0.3967 0.3596
1, 2 1 0.2754 0.5101 0.5563 0.5151 0.3706

1, 2, 3 1 0.2549 0.5166 0.5662 0.5307 0.3613
1, 2, 3, 4 1 0.2104 0.5142 0.5330 0.5238 0.3572

SUMBT

1* 1* 0.0982 0.6526 0.4581 0.4689 0.2964
1, 2 1 0.0980 0.6546 0.4690 0.5493 0.3535

1, 2, 3 1 0.0980 0.6390 0.4848 0.5265 0.3696
1, 2, 3, 4 1 0.0968 0.6464 0.4708 0.5611 0.3637

Table 5: Joint accuracy of baseline models in few-shot learning before and after applying multi-granularity com-
bination in training phase. TG and IG are the training granularity and inference granularity, respectively. * refers
to the granularity originally used in the baseline. 10% and 5% refer to the scale of the training data.

training data scales. It can be found that under
different scales of training data, multi-granularity
combination can achieve better performance com-
pared with single-granularity in most cases. More-
over, it can be seen from (a), (d) and (e) that the
advantages of multi-granularity combination are
gradually expanding with the decrease of the scale
of training dataset. Therefore, the performance of
multi-granularity combination in few-shot learning
is worth exploring.

We conduct detailed experiments on all the 5
datasets in the paper to fully explore the poten-
tial of multi-granularity combination in few-shot
learning, as shown in Table 5. It can be found that
multi-granularity combination has a very signifi-
cant effect in few-shot learning, and in some cases
can even achieve a relative improvement of more
than 10%, such as SpanPtr on Sim-R and WOZ2.0,
BERTDST on Sim-M, SOMDST on WOZ2.0 and
DSTC2. Meanwhile, in few-shot learning, the up-
per limit of multi-granularity combination can be
higher, and better performance can be achieved
when more granularities are added in the training
phase.

The above experimental results of multi-
granularity combination in few-shot learning show
that, there is indeed knowledge transfer between
different granularity contexts, and the model can
obtain more adequate modeling of dialogue by
learning context dialogues of different granularity.

5 Conclusion

In the paper, we analyze the defects of two existing
traditional dialogue state tracking strategies when
dealing with context of different granularity and
make a comprehensive study on how the context in-
formation of different granularity affects dialogue
state tracking. Extensive experimental results and
analysis show that: (1) Different granularities have
their own advantages in different situations of dia-
logue state tracking; (2) The multi-granularity com-
bination can effectively improve the dialogue state
tracking; (3) The application of multi-granularity
combination in few-shot learning can bring sig-
nificant effects. In future work, dynamic context
granularity can be used in training and inference to
further improve dialogue state tracking.
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6 Ethical Consideration

This work may contribute to the development of
conversational systems. In the narrow sense, this
work focuses on dialogue state tracking in task-
oriented dialogue system, hoping to improve the
ability of conversational AI to understand human
natural language. If so, these improvements could
have a positive impact on the research and applica-
tion of conversational AI, which could help humans
to complete goals more effectively in a more intel-
ligent way of communication. However, we never
forget the other side of the coin. The agent substitu-
tion of conversational AI may affect the humanized
communication and may lead to human-machine
conflict problems, which need to be considered
more broadly in the field of conversational AI.
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Appendices
A Settings

Hyperparameters SpanPtr TRADE BERTDST SOMDST SUMBT

Batch size 32 32 16 16 4
Training epochs 100 100 200 200 300

Early stop evaluation Joint acc Joint acc Joint acc Joint acc Loss
Decoder teacher forcing - 0.5 - 0.5 -

Dropout 0.1 0.1 0.1 0.1 -
Word dropout 0.1 0.1 0.1 0.1 -

RNN hidden size 400 400 768 768 300

Learning rate 1e-4 1e-3
Enc: 4e-5 Enc: 4e-5

5e-5
Dec: 1e-4 Dec: 1e-4

Warmup proportion - - 0.1 0.1 0.1

Table 6: The detailed setting of hyperparameters. word dropout means to randomly replace the input tokens with
the special [UNK] with a certain probability.

Models TG Sim-M Sim-R WOZ2.0 DSTC2 MultiWOZ2.1

SpanPtr - - - - - -
TRADE - - - - - -

BERTDST

1 70 70 100 60 100
2 90 120 150 80 150
3 120 150 170 110 210
4 150 180 200 140 260

SOMDST

1 120 120 120 70 320
2 150 150 150 100 360
3 180 190 190 130 410
4 200 220 220 160 460

SUMBT

1 60 70 100 50 100
2 90 120 120 70 150
3 120 140 140 100 210
4 130 160 160 120 260

Table 7: The setting of the max sequence length of BERT in encoders of different models. To minimize truncation
of the input, the max sequence length exceeds the length of almost all input sequences in the dataset. SpanPtr and
TRADE use GRU as encoders. TG is the training granularity.


