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Abstract

Intent classification is a major task in spoken
language understanding (SLU). Since most
models are built with pre-collected in-domain
(IND) training utterances, their ability to de-
tect unsupported out-of-domain (OOD) utter-
ances has a critical effect in practical use. Re-
cent works have shown that using extra data
and labels can improve the OOD detection per-
formance, yet it could be costly to collect such
data. This paper proposes to train a model
with only IND data while supporting both IND
intent classification and OOD detection. Our
method designs a novel domain-regularized
module (DRM) to reduce the overconfident
phenomenon of a vanilla classifier, achieving
a better generalization in both cases. Besides,
DRM can be used as a drop-in replacement
for the last layer in any neural network-based
intent classifier, providing a low-cost strategy
for a significant improvement. The evalua-
tion on four datasets shows that our method
built on BERT and RoBERTa models achieves
state-of-the-art performance against existing
approaches and the strong baselines we cre-
ated for the comparisons.

1 Introduction

Spoken language understanding (SLU) systems
play a crucial role in ubiquitous artificially intelli-
gent voice-enabled personal assistants (PA). SLU
needs to process a wide variety of user utterances
and carry out user’s intents, a.k.a. intent classifica-
tion. Many deep neural network-based SLU mod-
els have recently been proposed and have demon-
strated significant progress (Guo et al., 2014; Liu
and Lane, 2016; Zhang and Wang, 2016; Wang
et al., 2018; Goo et al., 2018; Chen et al., 2019)
in classification accuracy. These models usually
apply the closed-world assumption, in which the
SLU model is trained with predefined domains, and
the model expects to see the same data distribution

I don’t like Thriller in playlist

Playlist deleted

I am too cold

Oven turned on

Figure 1: Failure Examples of Unsupported Skills in
AI Voice Assistants. The user’s utterances are out of
the designed domains of the assistant.

during both training and testing. However, such
an assumption is not held in the practical use case
of PA systems, where the system is used under a
dynamic and open environment with personal ex-
pressions, new vocabulary, and unknown intents
that are out of the design scope.

To address the challenges in open-world settings,
previous works adopt varied strategies. Shen et al.
(2018a, 2019c) use a cold-start algorithm to gener-
ate additional training data to cover a larger variety
of utterances. This strategy relies on the software
developers to pre-build all possible skills. Shen
et al. (2019b,a) introduce a SkillBot that allows
users to build up their own skills. Recently, Ray
et al. (2018, 2019); Shen et al. (2018b, 2019d) en-
ables an SLU model to incorporate user personal-
ization over time. However, the above approaches
do not explicitly address unsupported user utter-
ances/intents, leading to catastrophic failures illus-
trated in Figure 1. Thus, it is critically desirable
for an SLU system to classify the supported intents
(in-domain (IND)) and reject unsupported ones
(out-of-domain (OOD)) correctly.

A straightforward solution is to collect OOD
data and train a supervised binary classifier on
both IND data and OOD data (Hendrycks et al.,
2018). However, collecting a representative set of
OOD data could be impractical due to the infinite
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compositionality of language. Arbitrarily select-
ing a subset could incur the selection bias, causing
the learned model might not generalize to unseen
OOD data. Ryu et al. (2017, 2018) avoid learning
with OOD data by using generative models (e.g.,
autoencoder and GAN) to capture the IND data
distribution, then judge IND/OOD based on the
reconstruction error or likelihood. Recently, Tan
et al. (2019) utilizes a large training data to enable
the meta-learning for OOD detection. Zheng et al.
(2020) generates pseudo OOD data to learn the
OOD detector. The above-discussed approaches re-
quire additional data or training procedures beyond
the intent classification task, introducing significant
data collection effort or inference overhead.

This paper proposes a strategy based on neural
networks to use only IND utterances and their la-
bels to learn both the intent classifier and OOD
detector. Our strategy modifies the structure of the
classifier, introducing an extra branch as a regu-
larization target. We call the structure a Domain-
Regularized Module (DRM). This structure is prob-
abilistically motivated and empirically leads to a
better generalization in both intent classification
and OOD detection. Our analysis focuses more
on the latter task, finding that DRM not only out-
puts a class probability that is a better indicator for
judging IND/OOD, but also leads to a feature rep-
resentation with a less distribution overlap between
IND and OOD data. More importantly, DRM is a
simple drop-in replacement of the last linear layer,
making it easy to plug into any off-the-shelf pre-
trained models (e.g. BERT (Devlin et al., 2019)) to
fine-tune for a target task. The evaluation on four
datasets shows that DRM can consistently improve
upon previous state-of-the-art methods.

2 Problem Definition & Background

2.1 Problem Definition

In the application of intent classification, a user
utterance will be either an in-domain (IND) utter-
ance (supported by the system) or an out-of-domain
(OOD) utterance (not supported by the system).
The classifier is expected to correctly (1) predict
the intent of supported IND utterances; and (2)
detect to reject the unsupported OOD utterances.

The task is formally defined below. We are given
a closed world IND training set DIND = {x, y} =
{(xi, yi)}Ni=1. Each sample (xi, yi), an utterance
xi and its intent class label yi ∈ {1 . . . C} for
C predefined in-domain classes, is drawn from a

fixed but unknown IND distribution PIND(x, y).
We aim to train an intent classifier model only on
IND training data DIND such that the model can
perform: (1) Intent Classification: classify the
intent class label y of an utterance x if x is drawn
from the same distribution PIND as the training set
DIND; (2) OOD Detection: detect an utterance
x to be an abnormal/unsupported sample if x is
drawn from a different distribution POOD.

2.2 Related Work

Intent Classification is one of the major SLU
components (Haffner et al., 2003; Wang et al.,
2005; Tur and De Mori, 2011). Various models
have been proposed to encode the user utterance
for intent classification, including RNN (Ravuri
and Stoicke, 2015; Zhang and Wang, 2016; Liu and
Lane, 2016; Kim et al., 2017; Wang et al., 2018;
Goo et al., 2018), Recursive autoencoders (Kato
et al., 2017), or enriched word embeddings (Kim
et al., 2016). Recently, the BERT model (Devlin
et al., 2019) was explored by (Chen et al., 2019) for
SLU. Our work also leverages the representation
learned in BERT.

OOD Detection has been studied for many
years (Hellman, 1970). Tur et al. (2014) explores
its combination with intent classification by learn-
ing an SVM classifier on the IND data and ran-
domly sampled OOD data. Ryu et al. (2017) de-
tects OOD by using reconstruction criteria with an
autoencoder. Ryu et al. (2018) learns an intent clas-
sifier with GAN and uses the discriminator as the
classifier for OOD detection. Zheng et al. (2020)
leverages extra unlabeled data to generate pseudo-
OOD samples using GAN via auxiliary classifier
regularization. Tan et al. (2019) further incorpo-
rates the few-shot setting, learning the encoding
of sentences with a prototypical network that is
regularized with the OOD data outside a learn-
ing episode. Other researchers developed meth-
ods in computer vision based on the rescaling of
the predicted class probabilities (ODIN) (Liang
et al., 2017) or building the Gaussian model with
the features extracted from the hidden layers of
neural networks (Mahalanobis) (Lee et al., 2018).
Recently, (Hsu et al., 2020) proposed Generalized-
ODIN with decomposed confidence scores. How-
ever, both approaches also heavily depend on the
image input perturbation to achieve good perfor-
mance. Unfortunately, such perturbation cannot be
applied to discrete utterance data in SLU.
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3 Our Method

Our method is inspired by the decomposed con-
fidence of Generalized-ODIN (Hsu et al., 2020),
but we leverage the fact that the training data are
all from IND to introduce an extra regularization.
This regularization leads to a better generalization
(lower classification error) on the intent classifica-
tion. The improvement is in contrast to the original
Generalized-ODIN, which has its classification er-
ror slightly increased. Since the improved general-
ization is likely due to a more generalizable feature
representation, we leverage this observation, pro-
viding a modified Mahalanobis (Lee et al., 2018),
which we called L-Mahalanobis, for a transformer-
based model to detect OOD data. In the follow-
ing sections, we first describe the DRM and then
elaborate on using the outputs of a DRM-equipped
model to detect OOD data.

3.1 Domain-Regularized Module (DRM)

The motivation begins with introducing the domain
variable d (d = 1 means IND, while d = 0 means
OOD) following the intuition in (Hsu et al., 2020),
then rewrite the posterior of class y given x with
domain d as follows:

p̂(y|d = 1,x) =
p̂(y, d = 1|x)

p̂(d = 1|x)

=
p̂(y|x)

p̂(d = 1|x)
− p̂(y, d = 0|x)

p̂(d = 1|x)

≈ p̂(y|x)

p̂(d = 1|x)
(1)

where the last step holds since p̂(y, d = 0|x) is
close to 0 with the intrinsic conflict between IND
classes y and random variable d = 0 for OOD.

3.1.1 DRM Design
Motivated by the above Equation 1, we design the
DRM to mitigate overconfidence by decomposing
the final logits f into two branches. Figure 2 illus-
trates the architecture.
Domain Logits fd models p̂(d = 1|x) before nor-
malization. It projects from hidden state h to a
scalar w.r.t. d:

fd = Wdh + bd (2)

where Wd ∈ R|h|×1. Since p̂(d = 1|x) is a proba-
bility between 0 and 1, Section 3.1.2 will describe
the training details of domain loss via the sigmoid
function.

Linear !"
/ !

logits

classification logits

domain logits
hidden 
state
ℎ

Linear !$

domain loss classification
loss

sigmoid

Figure 2: The DRM involves a domain component and
a classification components for the IND classes.

Classification Logits fc models the probability
posterior p̂(y|x) before normalization. It follows
the conventional linear projection from hidden state
h to the number of classes:

fc = Wch + bc (3)

where Wd ∈ R|h|×C with C classes.
At the end, we obtain the final logits f to repre-

sent p̂(y|d = 1,x) by putting fd and fc together
following the dividend-divisor structure of Equa-
tion 1:

f = fc/fd (4)

where each element of fc is divided by the same
scalar fd.

3.1.2 DRM Training
We propose two training loss functions to train a
model with DRM. The first training loss aims to
minimize a cross-entropy between the predicted
intent class and ground truth IND class labels.

Lclassification , −
C∑
i=1

yi log p̂(f)i (5)

where p̂(f) is the softmax of logits f :

p̂(f) = softmax(f)

The second training loss aims to ensure that the
domain component fd is close to 1 since all utter-
ances in the training set are IND.

Ldomain , (1− sigmoid(fd))
2 (6)

We first restrict fd between 0 and 1 by using sig-
moid activation function. Then, this loss function
encourages sigmoid(fd) close to 1 for training on
IND utterances. In order to avoid fd to be very
large values and affect the training convergence,
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we further apply clamp function on fd before it
feeds to Equation 4:

fd =

{
fd if − δ < fd < δ

δ if fd <= −δ or fd >= δ

Thus, we sum them up to optimize the model:

L = Lclassification + Ldomain (7)

Remarks: It is important to note that the de-
sign of Ldomain is to introduce extra regularization
to mitigate the overconfidence in standard poste-
rior probability p̂(f). sigmoid(fd) is not used to
directly predict if an utterance is IND or OOD.

3.2 IND Intent Classification Method

Following Equation 1 and our DRM design, it
is straightforward to use the confidence score of
softmax(f) to predict the IND intent class.

3.3 OOD Detection Methods

There are two types of strategies to utilize the out-
puts of a classifier to perform OOD detection. One
is based on the confidence which is computed from
logits, the other is based on the features. In the
below, we describe how to compute different OOD
scores with our DRM.

3.3.1 Confidence-based Methods
Recent works (Liang et al., 2017) has shown that
the softmax outputs provide a good scoring for de-
tecting OOD data. In our DRM model, we use the
decomposed softmax outputs for the score. The log-
its fc w.r.t. the true posterior distribution in open-
world can be combined with varied approaches:

DRM Confidence Score:

ConfDRM = softmax(fc) (8)

DRM ODIN Confidence Score:

ODINDRM = softmax(fc/T ) (9)

with large T = 1000 (Liang et al., 2017).
DRM Entropy Confidence Score:

ENTDRM = Entropy[softmax(fc)] (10)

The OOD utterances have low ConfDRM ,
ODINDRM scores and high ENTDRM score.

3.3.2 Feature-based Method
While our DRM confidence already outperforms
many existing methods (later shown in experi-
ments), we further design the feature-based Ma-
halanobis distance score, inspired by the recent
work (Lee et al., 2018) for detecting OOD images.

We first recap the approach in (Lee et al., 2018)
which consists of two parts: Mahalanobis distance
calculation and input preprocessing. Mahalanobis
distance score models the class conditional Gaus-
sian distributions w.r.t. Gaussian discriminant anal-
ysis based on both low- and upper-level features of
the deep classifier models. The score on layer ` is
computed as follows:

S`Maha(x) = maxi−(f `(x)− µ`c)TΣ−1` (f `(x)− µ`c)

where f `(x) represents the output features at the
`th-layer of neural networks; µi and Σ are the
class mean representation and the covariance ma-
trix. Thus, the overall score is their summation:

SMaha(x) =
∑
`

SMaha(f
`(x))

In addition, the input preprocessing adds a small
controlled noise to the test samples to enhance the
performance.

Although Mahalanobis distance score can be ap-
plied only to the last feature layer without input pre-
processing Slast

Maha(x), the analysis (Table 2 in (Lee
et al., 2018)) shows that either input preprocessing
or multi-layer scoring mechanism is required to
achieve decent OOD detection performance. Un-
fortunately, neither of the above two mechanisms is
applicable in the intent classifier for SLU. First, un-
like image data, noise injection into discrete natural
language utterances has been shown not to perform
well. Second, in most cutting-edge intent classi-
fier models, low- and upper-level network layers
are quite different. The direct application of multi-
layer Mahalanobis distance leads to much worse
OOD detection performance.

Since BERT-based models showed significant
performance improvement for intent classification
in SLU (Chen et al., 2019), we focus on designing
the multi-layer Mahalanobis score for BERT-based
classifier models. In existing BERT-based text clas-
sification models, such as BERT, RoBERTa, Distil-
BERT, ALBERT, etc., there are different designs
between the last transformer layer and the classifi-
cation layer. Figure 3 shows our generic design of
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Table 1: SLU Benchmark and In-House Dataset Statistics

Dataset Domain #Intents #Train #Dev #Test

CLINC (Larson et al., 2019) various domains in voice assistants 150 15,000 3,000 4,500
other out-of-scope domains - 100 100 1,000

ATIS (Hemphill et al., 1990) airline travel information domain 18 4,478 500 893

Snips (Coucke et al., 2018) music, book, and weather domains 7 13,084 700 700

Movie (in-house) movie QA domain 38 39,558 4,897 4,926
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Figure 3: Multi-layer Mahalanobis Score Design for
BERT-based Classifier Model

Mahalanobis score computation (blue) for various
BERT-based models.

Our design is based on our extensive experiments
and understanding of the common insights in differ-
ent BERT-based models. Specifically, we use the
features from different layers between the last trans-
former layer and the classification layer. We em-
pirically found that the nonlinear tanh layer plays
an important role. Thus, to map the features of
each transformer layer and last layer into the same
semantic space, we pass the features of each layer
through tanh function and sum them up to compute
our Mahalanobis score:

SL−Maha(x) = SMaha(f
n(x))

+
∑

1≤`<n
SMaha(tanh(f `(x))) (11)

where f ` and fn are the features of each layer `
and last layer n in a BERT-based intent classifier
model. We refer to our proposed approach as L-
Mahalanobis.

4 Experimental Evaluation

4.1 Datasets
We evaluate our proposed approach on three bench-
mark SLU datasets and one in-house SLU dataset.
Table 1 provides an overview of all datasets.

Among all these datasets, the recently released
CLINC dataset serves as a benchmark for OOD
detection in SLU. For the other three datasets, we
treat them mutually OOD due to non-overlapping
domains.

We crowdsourced the in-house Movie dataset
containing common questions that users may ask
regarding movies. This dataset mainly consists of
queries a user may ask in the movie domain. The
dataset consists of 38 different intents (e.g. rating
information, genre information, award information,
show trailer) and 20 slots or entities (e.g., director,
award, release year). This dataset was collected
using crowdsourcing as follows. At first, some
example template queries were generated by lin-
guistic experts for each intent, along with intent
and slot descriptions. Next, a generation crowd-
sourcing job was launched where a crowd worker
was assigned a random intent, a combination of
entities, and few slots generally associated with the
intent. To better understand the intent and slots,
the worker was asked to review the intent and slot
descriptions, and example template utterances. The
first task of the worker was to provide 3 different
queries corresponding to the given intent, which
also contains the provided entities. The second task
of the worker was to provide additional entities
corresponding to the same slot type. A subsequent
validation crowdsourcing job was launched where
these crowdsourced queries were rated by valida-
tion workers in terms of their accuracy with the
provided intent and entities. Each query was rated
by 5 different validation workers, and the final val-
idated dataset contains a subset of crowdsourced
queries with high accuracy score and high inter-
rater agreement.

4.2 Implementation and Training Details
We implemented our method using PyTorch on
top of the Hugging Face transformer library (Wolf
et al., 2019). We follow the hyperparameters in
the original models. For the only hyperparame-
ter δ, we experimented only on CLINC dataset
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from 2.2 to 4 with uniform interval 0.2 (we try
10 values of δ) based on sigmoid(2.2) ≈ 0.9 and
sigmoid(4) ≈ 0.982. We used δ = 3 which
gives the best performance in our experiment for
all datasets. We train each model with 3 epochs
using 4 NVIDIA Tesla V100 GPUs (16GB) for
each training. We conducted experiments on two
transformer-based models, BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019).

Remarks: All experiments only use IND data
for both training and validation. We use the same
hyperparameters in all datasets and validate the
generalizability of our method.

4.3 Baselines
4.3.1 IND Intent Classification Baselines
We consider the strongest baseline BERT-Linear
(the last layer is linear) fine-tuned on the pre-trained
BERT-based models (Chen et al., 2019).

4.3.2 OOD Detection Baselines
We consider the existing OOD detection methods:

ConGAN (Ryu et al., 2018): a GAN-based
model based on given sentence representations
to generate OOD features with additional feature
matching loss. OOD utterances are expected to
have low discriminator confidence scores.

Autoencoder (AE) (Ryu et al., 2017): first uses
an LSTM based classifier model to train sentence
representations; then train an autoencoder on the
above sentence embeddings. OOD utterances are
expected to have high reconstruction error.

ODIN (Liang et al., 2017): we only use the
temperature scaling on logits. OOD utterances are
expected to have a low scaled confidence score.

Generalized-ODIN (G-ODIN) (Hsu et al.,
2020): we fine-tune on pre-trained BERT models
with replaced last layer and only use the decom-
posed confidence. We evaluate all three variations
proposed in the paper hI , hE and hC and report
the best one. OOD utterances are expected to have
low scaled confidence score.

Mahalanobis (Lee et al., 2018): we only use
the feature of BERT’s last layer to compute Ma-
halanobis distance score. OOD utterances are ex-
pected to have a low scaled confidence score.

For ConGAN and AE, we evaluate the model
in the original paper as well as customized BERT-
based backbone models as strong baselines. Specif-
ically, we customize En-ConGAN and En-AE as
follows: En-ConGAN uses BERT sentence repre-
sentation as input; En-AE applies a BERT classi-

fier model to train the sentence representation and
then use them to further train an autoencoder. Thus,
En-ConGAN and En-AE are not existing baselines.

Note that ERAEPOG (Zheng et al., 2020) and
O-Proto (Tan et al., 2019) are not comparable since
they require additional unlabeled data and labels.
We only put the ERAEPOG results on CLINC
dataset (from the original paper) for reference.

4.4 Evaluation Metrics

4.4.1 IND Intent Classification Metrics
We evaluate IND performance using the classifica-
tion accuracy metric as in literature (Liu and Lane,
2016; Wang et al., 2018; Chen et al., 2019).

4.4.2 OOD Detection Metrics
we follow the evaluation metrics in literature (Ryu
et al., 2018) and (Liang et al., 2017; Lee et al.,
2018). Let TP, TN, FP, and FN denote true positive,
true negative, false positive, and false negative. We
use the following OOD evaluation metrics:

EER (lower is better): (Equal Error Rate) mea-
sures the error rate when false positive rate (FPR)
is equal to the false negative rate (FNR). Here,
FPR=FP/(FP+TN) and FNR=FN/(TP+FN).

FPR95 (lower is better): (False Positive Rate
(FPR) at 95% True Positive Rate (TPR)) can be
interpreted as the probability that an OOD utterance
is misclassified as IND when the true positive rate
(TPR) is as high as 95%. Here, TPR=TP/(TP+FN).

Detection Error (lower is better): measures
the misclassification probability when TPR is 95%.
Detection error is defined as follows:

min
δ
{PIND(s ≤ δ)p(x ∈ PIND)

+POOD(s > δ)p(x ∈ POOD)}

where s is a confidence score. We follow the same
assumption that both IND and OOD examples have
an equal probability of appearing in the testing set.

AUROC (higher is better): (Area under the
Receiver Operating Characteristic Curve) The
ROC curve is a graph plotting TPR against the
FPR=FP/(FP+TN) by varying a threshold.

AUPR (higher is better): (Area under the
Precision-Recall Curve (AUPR)) The PR curve is a
graph plotting the precision against recall by vary-
ing a threshold. Here, precision=TP/(TP+FP) and
recall=TP/(TP+FN). AUPR-IN and AUPR-OUT is
AUPR where IND and OOD distribution samples
are specified as positive, respectively.
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Table 2: Comprehensive OOD Detection Results on CLINC Dataset (CLINC Train/OOD)

Model Last Layer OOD Method
OOD Evaluation

EER(↓) FPR95(↓) Detection Error(↓) AUROC(↑) AUPR In(↑) AUPR Out(↑)

ConGAN - - 78.90§ 94.40§ 52.04§ 52.22§ 82.79§ 23.54§

AE - - 18.13§ 58.50§ 23.94§ 87.78§ 96.98§ 54.12§

ERAEPOG - - 12.04§ 23.70§ 11.67§ 95.83§ 99.05† 83.98§

BERT

En-ConGAN 75.20§ 98.72§ 49.95§ 22.36§ 69.86§ 11.27§

En-AE 8.70§ 13.03§ 8.47§ 96.12§ 98.89§ 88.38§

ODIN 9.01§ 16.52§ 8.66§ 96.24§ 98.73§ 87.34§

G-ODIN 8.91§ 12.99§ 8.40§ 95.81§ 98.75† 88.81§

Linear

Confidence 11.31§ 21.98§ 11.00§ 94.96§ 98.52§ 84.59§

Entropy 10.33§ 17.99§ 10.10§ 95.65§ 98.73§ 87.20§

Mahalanobis 8.31§ 12.68§ 8.02§ 96.90§ 99.14† 88.19§

L-Mahalanobis* 7.21 10.18 6.92 97.52 99.41 89.37

DRM*

Confidence* 8.50 12.85 7.85 96.34 98.95 87.51
Entropy* 8.31 12.53 8.14 96.67 99.01 89.68

Mahalanobis* 7.01 10.88 6.88 97.43 99.37 90.36
L-Mahalanobis* 6.70 10.12 6.62 97.77 99.46 91.55

RoBERTa

En-ConGAN 80.26§ 99.34§ 49.95§ 15.20§ 66.64§ 10.58§

En-AE 8.56§ 12.38§ 8.29§ 96.82§ 99.08† 90.06§

ODIN 9.11§ 15.12§ 8.68§ 96.11§ 98.84§ 88.72§

G-ODIN 8.85§ 12.26§ 8.53§ 96.74§ 99.12† 89.95§

Linear

Confidence 10.81§ 22.35§ 10.38§ 95.23§ 98.58§ 86.46§

Entropy 9.31§ 14.81§ 8.93§ 95.89§ 98.73§ 88.70§

Mahalanobis 8.40§ 11.82§ 8.13§ 96.92§ 99.06§ 90.37§

L-Mahalanobis* 6.90 9.53 6.71 97.94 99.50 92.47

DRM*

Confidence* 8.35 11.76 8.02 97.10 99.25 90.46
Entropy* 8.29 11.51 7.86 97.17 99.27 90.69

Mahalanobis* 6.31 7.80 6.13 98.07 99.53 92.86
L-Mahalanobis* 6.11 7.63 5.98 98.16 99.56 92.96

Our best method (DRM+L-Mahalanobis) is significantly better than each baseline model (without *) with p-value < 0.01 (marked by §) and p-value < 0.05
(marked by †) using t-test. All methods with * are our proposed methods.

Note that EER, detection error, AUROC, and
AUPR are threshold-independent metrics.

4.4.3 Statistical Significance
We also evaluate the statistical significance be-
tween all baselines and our best result (DRM +
L-Mahalanobis) on all the above metrics. We train
each model 10 times with different PyTorch ran-
dom seeds. We report the average results and t-test
statistical significance results.

4.5 Results

4.5.1 IND Classification Results
Table 3 reports the IND intent classification re-
sults on each dataset finetuned using BERT and
RoBERTa pre-trained models. It is interesting to
observe that all DRM combined models consis-
tently achieve better classification accuracy with
up to 0.8% improvement (reproduced ”No joint”
row in Table 3 in (Chen et al., 2019) on Snips
dataset). This is because the domain loss forces
sigmoid(fd) close to 1 and therefore also slightly
mitigates its impact to IND classification. Thus, the
true posterior distribution of IND data is also mod-
eled more precisely. For both BERT and RoBERTa

Table 3: IND Intent Classification Results

Model Last Layer Datasets
CLINC ATIS Snips Movie

BERT Linear 96.19† 97.76† 97.97† 97.26†

DRM* 96.66 98.21 98.23 97.87

RoBERTa Linear 96.82† 97.64† 98.07† 98.07†

DRM* 97.15 98.31 98.87 98.63

Our DRM methods (marked by *) are significantly better than baseline
model on all datasets with p-value < 0.05 (marked by †) using t-test.

backbones, DRM models are significantly better
than conventional BERT-linear classification mod-
els with p-value < 0.05.

4.5.2 OOD Detection Results
Results on CLINC Dataset: Table 2 reports the
OOD detection results on CLINC dataset. This
result covers all existing work and our enhanced
baselines. We focus on analyzing the contribution
by each of our proposed techniques, DRM and
L-Mahalanobis. The first three rows report the
performance of existing approaches based on the
original designs in their papers (ERAEPOG in grey
uses additional unlabeled data). Unfortunately, we
observe that their performance is even worse than
the simple confidence-based approach via BERT



2450

Table 4: OOD Detection Results on Snips/ATIS/Movie Datasets (RoBERTa Model Finetuning)

OOD Method
OOD Evaluation

EER(↓) FPR95(↓) Detection Error(↓) AUROC(↑) AUPR In(↑) AUPR Out(↑)

IND dataset: Snips; OOD Datasets: CLINC OOD/ATIS/Movie

En-ConGAN 54.50§/63.05§/54.22§ 99.16§/99.87§/99.10§ 42.61§/49.10§/37.32§ 39.03§/30.88§/45.64§ 37.15§/34.47§/30.03§ 51.23§/45.70§/52.59§

Confidence 9.91§/17.83§/22.22§ 14.94§/47.43§/51.85§ 9.18§/11.17§/19.34§ 96.09§/92.03§/87.44§ 94.78§/92.65§/97.67§ 97.21§/92.29§/55.16§

Entropy 10.21§/18.05§/23.15§ 14.54§/45.04§/52.68§ 9.25§/10.77§/19.58§ 96.32§/92.44§/87.12§ 94.90§/92.94§/97.60§ 97.53§/92.99§/52.27§

ODIN 10.01§/16.93§/23.15§ 14.22§/39.04§/58.33§ 9.43§/9.64§/23.01§ 96.46§/93.81§/83.58§ 94.59§/93.99§/96.63§ 97.75§/94.53§/47.36§

G-ODIN 9.65§/15.16§/22.02§ 13.31§/37.86§/55.67§ 8.32§/8.55§/21.82§ 97.21§/94.73§/85.60§ 95.70§/95.04§/97.73§ 98.02§/95.44§/50.38§

En-AE 4.40§/4.37§/3.59§ 4.18§/3.59§/3.08† 4.25§/4.00§/3.64† 98.56§/98.12§/88.96§ 97.41§/98.92†/94.39§ 98.12§/95.34§/86.84§

Maha 3.90§/1.81/11.11§ 2.66§/2.23§/5.58§ 3.47§/1.36†/10.21§ 98.79†/99.74†/95.61§ 97.73§/99.75†/99.22§ 99.21§/99.77†/76.61§

DRM+L-Maha* 3.00/1.79/2.78 1.95/0.00/2.78 2.63/1.16/3.16 98.90/99.79/98.53 98.15/99.79/99.76 99.24/99.80/87.02

IND dataset: ATIS; OOD Datasets: CLINC OOD/Snips/Movie

En-ConGAN 21.60§/19.74§/23.28§ 81.52§/86.33§/93.77§ 15.51§/15.54§/16.03§ 82.34§/81.79§/79.32§ 84.52§/89.35§/58.36§ 72.74§/60.20§/89.14§

Confidence 10.21§/8.52§/10.19§ 20.50§/12.92§/17.59§ 9.28§/8.36§/9.33§ 96.99§/97.84§/96.62§ 97.19§/98.57§/99.56† 97.04§/96.99§/84.27§

Entropy 9.91§/8.84§/10.12§ 21.67§/13.75§/17.59§ 9.11§/8.16§/9.38§ 97.06§/97.93§/96.68§ 97.25§/98.62§/99.57† 97.11§/97.14§/85.02§

ODIN 9.11§/8.36§/10.08§ 21.32§/14.39§/18.52§ 7.50§/6.15§/9.37§ 97.16§/98.00§/96.73§ 97.39§/98.68§/99.58† 97.16§/97.18§/84.88§

G-ODIN 8.75§/8.01§/9.97§ 20.87§/13.44§/17.76§ 7.31§/6.02§/8.98§ 97.27§/98.11§/96.85§ 97.46§/98.76§/99.59† 97.28§/97.32§/85.90§

En-AE 4.00§/2.09/3.69§ 2.20†/0.00/0.35† 3.45†/1.33/1.97† 99.41†/99.83/99.63§ 99.43†/99.89/98.72§ 99.43†/99.74/97.93§

Maha 4.00§/3.85§/6.48§ 12.13§/8.06§/11.64§ 3.76§/2.94§/5.04§ 99.18§/99.47§/98.72† 98.78§/99.45§/99.71§ 99.46/99.49/95.45§

DRM+L-Maha* 2.70/2.09/1.85 1.30/0.32/0.00 2.55/2.01/1.23 99.48/99.70/99.78 99.51/99.82/99.97 99.47/99.50/98.22

IND dataset: Movie; OOD Datasets: CLINC OOD/ATIS/Snips

En-ConGAN 45.90§/15.12§/41.09§ 44.05§/14.35§/39.59§ 22.95§/7.56§/20.55§ 43.85§/57.44§/45.78§ 85.21§/88.23§/90.40§ 14.68§/17.56§/10.09§

Confidence 19.22§/16.70§/18.81§ 36.81§/47.94§/47.52§ 18.51§/15.15§/18.53§ 91.65§/91.99§/90.53§ 98.11§/98.50§/98.68§ 76.78§/67.58§/59.63§

Entropy 19.12§/17.26§/19.13§ 34.64§/44.24§/44.80§ 18.25§/16.12§/18.87§ 91.79§/92.14§/90.72§ 98.11§/98.50§/98.69§ 78.66§/70.87§/63.96§

ODIN 19.42§/18.95§/19.94§ 34.43§/39.91§/39.38§ 18.24§/18.38§/19.33§ 91.34§/91.40§/90.03§ 97.96§/98.29§/98.53§ 78.56§/71.62§/65.18§

G-ODIN 18.61§/18.23§/19.25§ 34.19§/36.42§/37.03§ 18.15§/17.27§/18.91§ 91.86§/91.97§/90.63§ 98.21§/98.34§/98.70§ 78.98§/72.07§/66.79§

En-AE 13.70§/7.28§/16.05§ 43.42§/16.05§/32.29§ 11.00§/4.46§/11.87§ 94.57§/93.56§/92.23§ 98.91§/99.58†/99.01† 77.12§/76.13§/68.75§

Maha 3.90§/3.41†/6.11§ 6.02§/2.35§/15.40§ 3.72§/3.02§/6.02§ 99.37§/99.43§/98.63§ 99.81†/99.89/99.82† 97.82†/97.27§/91.44§

DRM+L-Maha* 3.70/3.36/4.66 2.56/1.01/4.34 3.61/2.85/4.58 99.48/99.53/99.06 99.89/99.92/99.88 97.90/97.38/93.85

In each OOD method for an IND dataset, ”/” separates the results for different OOD datasets.
Our method (*) is significantly better than baseline models with p-value < 0.01 (marked by §) and p-value < 0.05 (marked by †) using t-test in most cases.

finetuning baseline (row 5). Thus, we mainly focus
on comparing our method with strong baselines
with BERT and RoBERTa models.

For a given OOD detection method, we find that
their combinations with DRM consistently perform
better than those with standard models. The im-
provement is at least 1-2% for all metrics against
our enhanced baselines. Among all OOD detection
approaches, our proposed L-Mahalanobis OOD de-
tection approach achieves the best performance
for both linear and DRM combined BERT and
RoBERTa models. It is not surprising to observe
that our DRM method combined with a better pre-
trained RoBERTa model achieves larger OOD de-
tection performance improvement. Note that our
customized En-AE performs much better than most
other methods since we incorporated the enhanced
reconstruction capability with pre-trained BERT
models. However, En-AE cannot utilize all BERT
layers as our proposed L-Mahalanobis method, re-
sulting in worse performance.

In addition, DRM+L-Mahalanobis models are
significantly better than existing methods and en-
hanced baselines with p-value < 0.01 on most
metrics for both BERT and RoBERTa backbones.

Ablation Study on CLINC Dataset: We analyze
how our two novel components, DRM model and
L-Mahalanobis, impact the performance.

The rows with “DRM” in “Last Layer” column
of Table 2 show the performance of DRM model.
As one can see, for all OOD methods, DRM consis-
tently performs better than the conventional “Lin-
ear” last layer. Specifically, the DRM and Confi-
dence combo also outperforms its closest baseline
G-ODIN. This validates the effectiveness of our
disentangled logits design in DRM based on the
mathematical analysis of overconfidence. It also
shows that our new domain loss can indeed en-
hance the model awareness that all training data is
IND.

The rows with “L-Mahalanobis” in “OOD
Method” column of Table 2 outperform other OOD
methods with the same model and last layer. Com-
pared with its closest baseline Mahalanobis, the
better performance of L-Mahalanobis validates the
usefulness of all layers’ features in various models.
Results on ATIS/Snips/Movie Datasets: Since
our strong baselines on pre-trained RoBERTa
model showed better results on CLINC, we next
evaluate other results finetuned on RoBERTa
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(a) Conventional Confidence Score (b) DRM Confidence Score (c) DRM L-Mahalanobis Score

Figure 4: Histogram of Detection Scores using Various Methods (Snips IND, ATIS OOD) (We choose this
IND/OOD combination to provide the best visualization for analysis)

model. When taking each dataset as IND, we
use the other two mutually exclusive datasets and
CLINC OOD as OOD datasets for evaluating OOD
detection performance. As one can see in Table 4,
our method outperforms other approaches on both
Snips and movie IND datasets. For ATIS IND
dataset, En-AE for Snips OOD dataset achieves
almost perfect performance. This is because ATIS
and Snips are almost completely non-overlapping
and ATIS is well designed with carefully selected
varieties and entities in the airline travel domain.
When taking Snip as IND and ATIS as OOD, it
is interesting to see that our method achieves bet-
ter performance than En-AE. This is because that
Snips contains a large number of entities such that
the reconstruction error will be lower and become
less separable than that in ATIS OOD utterances.

For both Snips and Movie IND datasets,
DRM+L-Mahalanobis are significantly better than
baseline methods with p-value < 0.01 in most
cases for all OOD datasets. For ATIS IND dataset,
DRM+L-Mahalanobis shows similar behavior ex-
cept En-AE since it is easier to train an autoencoder
model for ATIS IND dataset due to its carefully col-
lected clean training utterances.

4.6 Qualitative Analysis
We provide a quantitative analysis by visualizing
our two methods, DRM and L-Mahalanobis.

4.6.1 Detection Score Distribution
Figure 4 plots the histograms of detection scores for
OOD and IND data. Compared with Figure 4(a),
DRM significantly reduces the overlap between
OOD and IND in Figure 4(b). L-Mahalanobis uti-
lizes features from all layers to further reduce the
overlap in Figure 4(c). Moreover, the score distri-
butions from left to right in Figure 4, imply that a
larger entropy of all score reflects a better uncer-
tainty modeling.

4.6.2 Feature Distribution Visualization
Figure 5 visualizes the utterance representations
learned with or without DRM. The red IND data are
tightly clustered within classes (totally 150 CLINC
IND classes), while the blue OOD data spread arbi-
trarily. As one can see, the blue dots in Figure 5(b)
have less overlap with red dots, indicating the DRM
helps to learn the utterance representation to better
disentangle IND and OOD data.

(a) Conventional RoBERTa (b) DRM RoBERTa

Figure 5: t-SNE Visualization of Utterance Representa-
tions on CLINC Dataset (Red: IND, Blue: OOD)

5 Conclusion

This paper proposes using only IND utterances to
conduct intent classification and OOD detection for
SLU in an open-world setting. The proposed DRM
has a structure of two branches to avoid overcon-
fidence and achieves a better generalization. The
evaluation shows that our method can achieve state-
of-the-art performance on various SLU benchmark
and in-house datasets for both IND intent classi-
fication and OOD detection. In addition, thanks
to the generic of our DRM design and with the
recent extensive use of BERT on different data
modalities, our work can contribute to improving
both in-domain classification robustness and out-
of-domain detection robustness for various classifi-
cation models such as image classification, sound
classification, vision-language classifications.
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Impact Statement

Our proposed method in this paper has been de-
ployed in the domain classification SLU model for
Samsung Bixby voice assistant. In addition to SLU,
our work could have a broader impact on other ap-
plications, which can be benefited from having a
more robust classification system. For example, our
method can help the robot to detect objects more
accurately or stop safely by correctly identifying
unknown objects, classify environmental sounds or
detect anomaly sounds, and so on. Moreover, by
better detecting the OOD samples that are differ-
ent from the training data distribution, our method
can facilitate to handle distributional shifts between
training data and practical usage data.
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