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Abstract

The goal of database question answering is to
enable natural language querying of real-life
relational databases in diverse application do-
mains. Recently, large-scale datasets such as
Spider andWikiSQL facilitated novel modeling
techniques for text-to-SQL parsing, improving
zero-shot generalization to unseen databases.
In this work, we examine the challenges that
still prevent these techniques from practical de-
ployment. First, we present KaggleDBQA, a
new cross-domain evaluation dataset of real
Web databases, with domain-specific data types,
original formatting, and unrestricted questions.
Second, we re-examine the choice of evalua-
tion tasks for text-to-SQL parsers as applied
in real-life settings. Finally, we augment our
in-domain evaluation task with database do-
cumentation, a naturally occurring source of
implicit domain knowledge. We show that
KaggleDBQA presents a challenge to state-of-
the-art zero-shot parsers but a more realistic
evaluation setting and creative use of associated
database documentation boosts their accuracy
by over 13.2%, doubling their performance.

1 Introduction

Text-to-SQL parsing is a form of database ques-
tion answering (DBQA) that answers a user’s
natural-language (NL) question by converting it
into a SQL query over a given relational database. It
can facilitate NL-based interfaces for arbitrary end-
user applications, thereby removing the need for
domain-specific UX or learning query languages.
As such, DBQA attracted significant attention in
academia and industry, with development of super-
vised datasets (Yu et al., 2018), large-scale mod-
els (Wang et al., 2020b; Zeng et al., 2020), and
novel modeling techniques (Yu et al., 2020; Deng
et al., 2020).

The key challenge of text-to-SQL parsing is zero-
shot generalization to unseen domains, i.e. to new

database schemas and differently distributed NL
questions. Large-scale annotated datasets like Spi-
der (Yu et al., 2018) and WikiSQL (Zhong et al.,
2017) evaluate cross-domain generalization of text-
to-SQL parsers by restricting overlap between train
and test domains. Such challenging benchmarks
facilitate rapid progress in DBQA. State-of-the-art
(SOTA) accuracy on Spider rose from 12.4% to
70.5% in just two years since its release, demonstrat-
ing the value of well-chosen evaluation settings.
Despite impressive progress in DBQA, deploy-

ment of SOTA parsers is still challenging. They
often lack robustness necessary to deploy on real-
life application domains. While many challenges
underlie the gap between SOTA DBQA and its real-
life deployment, we identify three specific discrep-
ancies.
First, Spider and WikiSQL datasets normalize

and preprocess database schemas or rely on aca-
demic example databases that originate with human-
readable schemas (Suhr et al., 2020). In contrast, in-
dustrial databases feature abbreviated and obscure
naming of table, columns, and data values, often ac-
crued from legacy development or migrations. Fig-
ure 1 shows a characteristic example. After deploy-
ment, text-to-SQL parsers struggle with schema
linking to domain-specific entities because they do
not match the distribution seen in their pre-training
(e.g. BERT) or supervised training (e.g. Spider).

Second, the NL questions of Spider and Wik-
iSQL have high column mention percentage (Deng
et al., 2020), whichmakes their language unrealistic.
This can be an artifact of rule-generated NL tem-
plates (as inWikiSQL) or annotation UIs that prime
the annotators toward the schema (as in Spider). Ei-
ther way, real-world deployment of a text-to-SQL
parser optimized on Spider faces a distribution shift
in NL, which reduces its realistic performance.
Finally, the standard evaluation setting of cross-

domain text-to-SQL parsing assumes no in-domain
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Database: Student Math Score

Table FINREV_FED_17: ¤ state_code school_district yr_data t_fed_rev c14 c15 ⋮
33 NEW YORK CITY

SCHOOL DISTRICT
17 2061297 956851 439209 ⋮

47 FAIRFAX CO SCHS 17 126916 21035 36886 ⋮
Column Descriptions: t_fed_rev Total federal revenue through the state to each school district

c14 Federal revenue through the state-Title 1 (no child left behind act)
c15 Federal revenue through the state - Child Nutrition A

Table FINREV_FED_17_KEY: ¤ state_code state #_Records
1 Alabama 137
⋯ ⋯ ⋯
50 Wisconsin 425
51 Wyoming 48

Example Question: Which school district received the most of federal revenue through state in Wisconsin?
Example SQL: SELECT T1.school_district

FROM FINREV_FED_17 as T1 JOIN FINREV_FED_KEY_17 as T2
ON T1.state_code = T2.state_code WHERE T2.state = "Wisconsin"
ORDER BY T1.t_fed_rev DESC LIMIT 1

Figure 1: Two table excerpts from the Student Math Score database in KaggleDBQA and an example question-SQL
pair. The column names are abbreviated (e.g. t_fed_rev) or obscure (e.g. c14, c25) but documentation (e.g.
column descriptions) alleviates this. Source: https://kaggle.com/loganhenslee/studentmathscores.

supervision. This simplifies parser evaluation and
raises the challenge level for zero-shot generaliza-
tion. However, it does not leverage knowledge
sources commonly present in real-world applica-
tions, both explicit (annotated in-domain examples)
and implicit (e.g. database documentation, SQL
queries in the application codebase, or data dis-
tributions). A well-chosen alternative evaluation
setting would facilitate development of DBQA tech-
nologies that match their real-world evaluation.
KaggleDBQA We introduce KaggleDBQA, a
new dataset and evaluation setting for text-to-SQL
parsers to bridge the gap between SOTA DBQA
research and its real-life deployment.1 It systemati-
cally addresses three aforementioned challenges:
• To test database generalization, it includes real-
world databases from Kaggle,2 a platform for
data science competitions and dataset distribu-
tion. They feature abbreviated and obscure col-
umn names, domain-specific categorical values,
and minimal preprocessing (Section 3.1).

• To test question generalization, we collected un-
restricted NL questions over the databases in
KaggleDBQA. Importantly, the annotators were
not presented with original column names, and
given no task priming (Section 3.2). Out of 400
collected questions, one-third were out of scope
for SOTA text-to-SQL parsers. The remaining
1Available at https://aka.ms/KaggleDBQA.
2https://www.kaggle.com

272 questions, while expressible, can only be
solved to 13.56% accuracy (Section 4).

• Finally, we augment KaggleDBQA with
database documentation, common metadata
for real-world databases and a rich source
of implicit domain knowledge. Database
documentation includes column and table
descriptions, categorical value descriptions
(known as data dictionaries), SQL examples,
and more (Section 3.3). We present a technique
to augment SOTA parsers with column and
value descriptions, which significantly improves
their out-of-domain accuracy (Section 4).

Figure 1 shows a representative example from
the dataset. Aligning “federal revenue” and
t_fed_rev is hard without domain knowledge.
In addition to more realistic data and questions,

we argue that evaluation of real-world text-to-SQL
performance should assume few-shot access to ∼10
in-domain question-SQL examples rather than mea-
suring zero-shot performance. In practical terms,
few-shot evaluation assumes up to 1-2 hours of ef-
fort by a target database administrator or applica-
tion developer, and translates to significant perfor-
mance benefits. In a few-shot evaluation setting,
augmenting a SOTA text-to-SQL parser (RAT-SQL
by Wang et al. (2020b)) with database documenta-
tion almost doubled its performance from 13.56%
to 26.77%. See Section 4.

https://kaggle.com/loganhenslee/studentmathscores
https://aka.ms/KaggleDBQA
https://www.kaggle.com
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2 Related Work

Text-to-SQL Semantic Parsing Semantic pars-
ing has been studied extensively for decades (Liang,
2016). Key in-domain datasets such as Geo-
Query (Zelle and Mooney, 1996) and ATIS (Dahl
et al., 1994) acted as initial catalyst for the field
by providing an evaluation measure and a training
set for learned models. Applying a system to a do-
main with a different distribution of questions or
parses required out-of-domain data or domain trans-
fer techniques. Recently, cross-domain datasets
WikiSQL (Zhong et al., 2017) and Spider (Yu et al.,
2018) proposed a zero-shot evaluation methodol-
ogy that required out-of-domain generalization to
unseen database domains. This inspired rapid devel-
opment of domain-conditioned parsers that work
“out of the box” such as RAT-SQL (Wang et al.,
2020b) and IRNet (Guo et al., 2019). We use the
same exact match accuracy metric as these works.
Recent work (Zhong et al., 2020) has proposed eval-
uating SQL prediction via semantic accuracy by
computing denotation accuracy on automatically
generated databases instead.
Few-shot learning In this paper, we propose a
few-shot evaluation to inspire future research of
practical text-to-SQL parsers. Like zero-shot, few-
shot has access to many out-of-domain examples,
but it also has access to a small number of in-
domain examples as well. Few-shot learning has
been applied to text classification in (Mukherjee
and Awadallah, 2020), and has also been applied
to semantic parsing. Common techniques include
meta-learning (Huang et al., 2018; Wang et al.,
2020a; Li et al., 2021; Sun et al., 2020) and ad-
versarial learning (Li et al., 2020).
Generalization and Practical usability Recent
work has begun to question whether existing
datasets are constructed in a way that will lead to
models that generalize well to new domains. Suhr
et al. (2020) identified a number of challenges with
text-to-SQL datasets, one of which is an artificially
high overlap between words in a question and words
in the tables. This issue appears in Spider and is a
byproduct of the fact that question authors view the
database schema as they write their question. The
Spider-Realistic (Deng et al., 2020) dataset aims to
reduce this by explicitly rewriting the questions to
avoid overlapping terms. Other works has studied
the problem of the gap between academic datasets
and their practical usability (de Vries et al., 2020;

Radhakrishnan et al., 2020; Zhang et al., 2020), in-
cluding highlighting the need for data to be real.
Our goal was to create an evaluation dataset and
metric that minimizes this gap; our dataset is con-
structed from real data found on Kaggle that has
been used for competitions or other analyses.
Another direction of generalization being ex-

plored is compositionality. Keysers et al. (2020)
used rules to generate a large-scale semantic parsing
dataset that specifically tests models for compos-
ability.
Leveraging other resources for learning Ras-
togi et al. (2020) provide NL descriptions for slots
and intents to help dialogue state tracking. Lo-
geswaran et al. (2019) use descriptions to facilitate
zero-shot learning for entity linking. Weller et al.
(2020) use descriptions to develop a system that can
perform zero-shot learning on new tasks. We fol-
low by including documentation on each included
real-world database. Notably, this documentation
was written for human consumption of the database
rather than prepared for KaggleDBQA, and thus
is a natural source of domain knowledge. It pro-
vides similar benefits to codebase documentation
and comments, which improve source code encod-
ing for AI-assisted software engineering tasks (Pan-
thaplackel et al., 2020; Wei et al., 2019).

3 KaggleDBQA: A Real World Dataset

The goal of the KaggleDBQA evaluation dataset
is to more closely reflect the data and questions a
text-to-SQL parser might encounter in a real-world
setting. As such, it expands upon contemporary
cross-domain text-to-SQL datasets in three key as-
pects: (i) its databases are pulled from real-world
data sources and not normalized; (ii) its questions
are authored in environments that mimic natural
question answering; (iii) its evaluation assumes
the type of system augmentation and tuning that
could be expected from domain experts that execute
text-to-SQL parser deployment. We describe each
of these components in turn in this section.
3.1 Database Collection

We chose to obtain databases from Kaggle, a pop-
ular platform for hosting data science competi-
tions and sharing datasets and code. Their hosted
datasets are by definition “real” as they are used
by members of the site for research. Competi-
tion hosts upload their data unnormalized, and the
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Table 1: Comparison of text-to-SQL datasets. We follow the data filtering rules of Suhr et al. (2020) and Deng
et al. (2020), which reduces the effective number of examples from the original datasets to make them consistent.
%WHERE measures the percentage of examples where all WHERE/HAVING columns in the SQL query are explicitly
mentioned in the NL question. %VAL compares all the values in the SQL queries; %SELECT compares all the
SELECT columns; %NON SELECT compares all columns except the SELECT columns. KaggleDBQA has low
column mention percentage and contains databases with multiple tables.

Dataset # Examples # DB # Table/DB % WHERE % VAL % SELECT % NON-SELECT
ATIS 275 1 25 0.0 95.6 0.0 0.0
GeoQuery 525 1 7 3.8 100.0 32.9 9.1
Restaurants 39 1 3 0.0 100.0 0.0 0.0
Academic 179 1 17 5.2 100.0 15.1 1.7
IMDB 111 1 17 1.6 100.0 7.1 0.8
Yelp 68 1 8 4.2 100.0 5.7 4.1
Scholar 396 1 10 0.0 100.0 0.7 0.2
Advising 281 1 15 4.0 100.0 6.1 3.9
Spider Train 7000 140 5.26 40.8 89.01 52.4 41.6
Spider Dev 1034 20 4.05 39.2 91 48.2 33.1
KaggleDBQA 272 8 2.25 8.7 73.5 24.6 6.8

data content and formatting matches its domain-
specific usage (see Figure 1 for an example). To
construct KaggleDBQA, we randomly selected 8
Kaggle datasets that satisfied the following criteria:
(a) contained a SQLite database; (b) licensed under
a republishing-permissive license; (c) had associ-
ated documentation that described the meaning of
the tables and columns.

3.2 Questions

For each database, we asked five annotators to write
ten domain-specific questions that they think some-
one might be interested in and that can be answered
using the database. We use five annotators per
database to help guarantee diversity of questions.
Each annotated two databases, for a total of 20 an-
notators and 400 questions.
The annotators are not required to possess SQL

knowledge so their questions are more reflective of
natural user interests. Importantly, to discourage
users from using the same terms from the database
schema in their questions, we replace the original
column names with the column descriptions. When
annotating the questions, the annotators are shown a
paragraph description of the database, table names,
column descriptions and ten sampled rows for each
table. We do not provide any constraints or tem-
plates other than asking them to avoid using exact
phrases from the column headings in the questions.
Appendix A.2.3 shows the full guidelines.

Separately, each question is annotated with its
SQL equivalent by independent SQL experts. They
are given full access to all of the data content and

database schema. One-third of the questions were
yes/no, percentage, temporal, or unexpressible in
SQL and were not considered in our evaluation
of SOTA models (see Appendix A.2.2 for details),
leaving 272 questions in total.

3.3 Database Documentation

Each database has associated plain-text documenta-
tion that can assist text-to-SQL parsing. It is com-
monly found as internal documentation for database
administrators or external documentation accom-
panying a dataset release. The contents vary but
often contain an overview of the database domain,
descriptions of tables and columns, sample queries,
original sources, and more.
While all of these types of information could

be leveraged to assist with domain transfer, in this
work we focus on the column descriptions. They
help address the schema linking problem of text-
to-SQL parsing, i.e. aligning entity references in
the question with database columns (Wang et al.,
2020b). For example, “federal revenue” in Fig-
ure 1 must be aligned to the column t_fed_rev

even though its abbreviated name makes alignment
non-obvious.
We manually extract the column descriptions

from the database documentation and provide the
mapping from column to description as part of
KaggleDBQA. The descriptions are free text and
sometimes contain additional information such as
defining the values in an categorical column. Such
information could help with the value-linking prob-
lem (mapping a value in the question to the column
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Table 2: Average partial match % of columns descrip-
tions across examples. We check whether 1- to 3-grams
in the question are part of any column descriptions.

Type of n-gram 1 2 3
% Cols matched in golden SQL 56.27 21.47 4.80
# Cols matched in golden SQL 1.06 0.37 0.07
# Cols matched not in the SQL 4.69 1.29 0.13

that likely contains it). We leave the entire descrip-
tion as a single field and leave it to future work to
explore these uses further. In addition to column
descriptions, we also include the original unstruc-
tured documentation which can be used for future
research on automatically extracting descriptions
or leveraging other domain knowledge.

3.4 Few-shot Evaluation Setting

The current cross-domain datasets Spider (Yu et al.,
2018) and WikiSQL (Zhong et al., 2017) evaluate
models in a zero-shot setting, meaning the model
is trained on one set of domains and evaluated on a
completely disjoint set. This evaluation encourages
the development of systems that work well "out
of the box" and has spurred great development in
cross-domain text-to-SQL systems that are able to
generalize to new domains. However, we believe
the zero-shot setting is overly-restrictive compared
to how text-to-SQL systems are likely to be actually
used in practice.
We postulate that it is more realistic to assume

a setting where an application author spends 1-2
hours authoring examples and adapting existing
database documentation. This time investment is a
small fraction of the time required to prepare an ap-
plication itself and sowe believe application authors
would devote the time if it resulted in increased
text-to-SQL accuracy. In informal experiments, we
have found SQL annotators can author 10-20 exam-
ples in an hour. Thus, the KaggleDBQA evaluation
setting is few-shot: 30% of the questions for each
domain (6-15 depending on the domain) are des-
ignated as in-domain and may be used as part of
training for that domain, along with documentation.
The remaining 70% are used for evaluation.

We report accuracy in both the few-shot as well
as the standard zero-shot (cross-domain) setting in
this paper, but consider the few-shot setting to be
the primary evaluation setting for KaggleDBQA.
Evaluation is conducted on the same 70% portion
regardless of setting, to ensure comparable results.
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Figure 2: Comparisons of text-to-SQL datasets in terms
of SQL structure hardness. KaggleDBQA has more
complex SQL query structure than the Spider dev set.

3.5 Dataset Statistics and Comparison

We compare KaggleDBQA with previous bench-
mark datasets using key metrics in Table 1.
KaggleDBQA has the lowest value mention per-
centage among all datasets, and also exhibits a low
overlap between question terms and column names
similar to that in all of the datasets besides Spi-
der, making it more in line with what would be
expected in a real-world setting where the people
asking questions are not familiar with the actual
database schema and terminology. This is likely a
result of replacing column names with descriptions
in the question annotation task.
We also analyze the overlap between question

terms and column descriptions in Table 2. Because
the descriptions are significantly longer than col-
umn names, we require only that they share an n-
gram in common (ignoring stop-words) rather than
requiring exact match as was done for column men-
tion percent. Unigram overlap is reasonably high
(56% of correct columns match the question) but
also results in many false-positive matches with
other columns. Increasing n-gram size decreases
false-positives but also rapidly decreases the correct
column match percent. Thus, column descriptions
may help guide the model, but are not as strong of
a signal as found in Spider which suffers from high
exact column name match overlap. This was our
intention in asking our annotators to avoid using
the descriptions verbatim when writing questions.
To measure the complexity of SQL in

KaggleDBQA, we adopt the hardness criteria of
Spider and report the numbers in Figure 2. The
queries are on average more complex than Spider’s,
with significantly more hard and extra-hard ones.
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4 Experiments

4.1 Baseline Results
We first evaluate KaggleDBQA using models that
were developed for the Spider dataset.
EditSQL (Zhang et al., 2019): EditSQL (with
BERT) is the highest-performing model on the Spi-
der dataset that also provides an open-source im-
plementation along with a downloadable trained
model.3 The model was built for edit-based multi-
turn parsing tasks, but can also be used as a single-
turn parser for Spider or KaggleDBQA. It employs
a sequence-to-sequence model with a question-
table co-attention encoder for schema encoding.
RAT-SQL (Wang et al., 2020b): RAT-SQL (v3
+ BERT) is the model with highest accuracy on
the Spider leaderboard that also provides an open-
source implementation.4,5 It adds string matching
to the encoder through the use of relation-aware
self-attention and adopts a tree-based decoder to
ensure the correctness of the generated SQL.
Throughout this paper, we use the same exact-

match accuracy metric introduced by the Spider
dataset. Although our primary evaluation setting
is few-shot, we first examine the traditional zero-
shot setting to present an unbiased comparison with
previous results. Table 3 compares the performance
of these two models (both trained on Spider). As
can be seen, the performance of both models is
significantly lower on KaggleDBQA. This echoes
the findings of Suhr et al. (2020) who found that
a model trained on Spider did not generalize well
to other datasets. Also, KaggleDBQA has much
fewer column mentions and much more complex
SQL than Spider (see Table 1 and Figure 2).

For all further experiments onKaggleDBQA that
emulate real-world evaluation, we choose RAT-
SQL as the best performing parser.
4.2 RAT-SQL on KaggleDBQA
4.2.1 Moving to the Few-Shot Setting
To apply RAT-SQL to KaggleDBQA’s few-shot
setting, for each domain we create a model by
fine-tuning on its 30% in-domain data. See Ap-
pendix A.3 for implementation details. This fine-

3https://github.com/ryanzhumich/
editsql

4As of one month before paper authoring. Current SOTA
systems are also based on RAT-SQL and add less than 5%
accuracy, thus will likely behave similarly.

5https://github.com/microsoft/rat-sql

Table 3: Zero-shot testing results of various open-source
models on KaggleDBQA and on the test set of Spider.
All numbers are the exact match accuracy evaluated by
the Spider official scripts. The Spider results are from
the official leaderboard. The KaggleDBQA results are
the average of three different runs.

Models Spider KaggleDBQA

RAT-SQL (Wang et al., 2020b) 65.60 13.56
EditSQL (Zhang et al., 2019) 53.40 11.73

tuning is always performed as the last step before
evaluation.

As Table 4 shows, fine-tuning on a small amount
of in-domain data dramatically increases overall
accuracy from 13.56% to 17.96% (rows (a) and (e)),
Although the few-shot setting is our primary setting,
we also present results in the zero-shot setting to
compare to previous work (Table 4 rows (e)-(h)).
However, in the remainder of the paper we will be
focusing on the few-shot setting.
4.2.2 Leveraging Database Documentation
The database schemas in KaggleDBQA are ob-
scure, making the task difficult without leveraging
the database documentation. We consider only the
column descriptions, but other portions of the do-
cumentation may prove useful in future work. The
best approach for incorporating column descrip-
tions into a text-to-SQL model is model-specific.
RAT-SQL makes use of relations between question
tokens and schema terms to assist with schema-
linking. We extend the same functionality to col-
umn descriptions by appending the column descrip-
tions to the column names (separated by a period)
and recomputing matching relations. The concate-
nated column name is also presented to the trans-
former encoder for schema encoding.
Simply adding these descriptions results in mis-

match between the training set (Spider) which
does not have descriptions, and the evaluation set
(KaggleDBQA) which does. To alleviate it, we first
augment the schemas in Spider with artificial de-
scriptions. For column c of table t, the description
for c is “the c of the t”. We then retrain RAT-SQL
on Spider with these artificial descriptions.
Since the artificial descriptions simply restate

information from the schema, the model may not
learn to leverage them for any further information
about schema linking and simply treat them as noise.
Therefore, we also evaluate RAT-SQL adapted to
the general domain of KaggleDBQA so that it (a)

https://github.com/ryanzhumich/editsql
https://github.com/ryanzhumich/editsql
https://github.com/microsoft/rat-sql
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Table 4: Exact match accuracy and standard error on KaggleDBQA, mean of three runs with different random seeds.
With fine-tuning

Models Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer Avg
(a) RAT-SQL 28.78 35.18 11.76 3.50 14.81 30.66 10.68 8.33 17.96 ± 0.5%
(b) w. desc 22.72 29.62 12.74 3.50 11.11 33.33 19.04 8.33 17.55 ± 0.6%
(c) w. adaptation 28.78 44.44 16.66 8.76 16.04 37.33 16.66 13.87 22.82 ± 0.1%
(d) w. desc + adaptation 36.35 44.44 21.56 7.01 22.22 41.33 27.38 13.87 26.77 ± 0.4%

Without fine-tuning
Models Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer Avg
(e) RAT-SQL 22.72 25.92 8.82 0.00 12.34 17.33 4.76 16.66 13.56 ± 0.1%
(f) w. desc 24.24 20.37 7.84 0.00 9.87 13.33 7.14 16.66 12.43 ± 0.1%
(g) w. adaptation 25.75 38.88 12.74 3.50 7.40 20.00 9.52 16.66 16.80 ± 0.8%
(h) w. desc + adaptation 30.29 25.92 17.64 3.50 16.04 25.33 11.9 16.66 18.41 ± 0.4%

experiences useful descriptions and (b) adapts to
the language distribution of KaggleDBQA. We
evaluate the benefits of this adaptation using leave-
one-out: for each domain in KaggleDBQA, we fine-
tune the model on all other domains except for the
target (with the same fine-tuning parameters as for
few-shot learning). Adapting in this way is pre-
dictive of the performance of a novel domain with
similar characteristics.
As with the other few-shot results, the model

is then fine-tuned on the few examples of target
domain data. Adaptation and fine-tuning are two
separate training processes. Adaptation is meant
to adapt to the real-world distribution. Fine-tuning
is meant to adjust for in-domain knowledge. The
most effective setting for a target database in our
experiments is to conduct adaptation first, followed
by fine-tuning.
Table 4 (row (d)) shows the results. Using col-

umn descriptions in the context of adaptation in-
creases model accuracy from 17.96% to 26.77%.
Ablations show that adaptation and descriptions
each contribute approximately half of this gain (row
(c)). Descriptions provide no benefit without adap-
tation (row (b)), likely due to the train-test mismatch
between artificial descriptions and real ones. With-

Table 5: Exact match accuracy and standard error
on schema-normalized KaggleDBQA, average of three
runs with different random seeds.

With fine-tuning
Models Avg
(a) RAT-SQL 17.96 ± 0.5%
(b) w. desc 17.55 ± 0.6%
(c) w. normalization 23.09 ± 0.9%
(e) w. adaptation 22.82 ± 0.1%
(f) w. desc + adaptation 26.77 ± 0.4%
(g) w. normalization + adaptation 25.60 ± 0.9%
(h) w. desc + normalization + adaptation 27.83 ± 0.7%

out any artificial descriptions, accuracy drops even
further so they are critical to leveraging in-domain
knowledge. Overall, incorporating in-domain data
(i.e. a few-shot setting and database documenta-
tion) nearly doubles model accuracy from 13.56%
to 26.77% on KaggleDBQA.

4.3 Column Normalization

One of themajor challenges inKaggleDBQA is that
column names are often obscure or abbreviated. A
natural question is whether this creates difficulty be-
cause the model struggles to understand the mean-
ing of a column or because it leads to a low overlap
between question and column terms. In an attempt
to tease these factors apart, we created a normalized
version of KaggleDBQA by replacing the obscure
column names with normalized column names such
as one might find in the Spider dataset. This was
done manually using column descriptions to help
clarify each column and without introducing any ex-
tra knowledge into the column names except for the
expansion of abbreviations (e.g. t_fed_rev→
total federal revenue).
In Table 5 we give the results of evaluation on

the normalized KaggleDBQA, following the same
setup as Table 4. Normalization provides a signif-
icant boost in performance (row (c) vs. row (a)).
The trend is similar to Table 4. Without adaptation,
models with descriptions are not better than those
without (row (b) vs. row (a), row (d) vs. row (c)).
After adaptation, the train-test mismatch is partly
mitigated and the performance improves (row (f)
vs. row (e), row (h) vs. row (g)). Normalization
and descriptions provide complementary knowl-
edge augmentation, jointly improving accuracy by
5% (row (h) vs. row (e)), more than either alone.

Normalization helps clarify the obscure column
names of KaggleDBQA. However, the other chal-
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Table 6: Examples where description-augmented (“desc.”) models solve a question that unaugmented models (“no
desc.”) do not. Both models are adapted and fine-tuned. Both omit values, as per the official Spider metric.

Database USWildFires Column Descriptions
STAT_CAUSE_CODE Code for the (statistical) cause of the fire
STAT_CAUSE_DESCR Description of the (statistical) cause of the fire.
FIRE_SIZE Estimate of acres within the final perimeter of the fire
Question What’s the most common cause of the fire (code) in the database?
no desc. SELECT Fires.STAT_CAUSE_DESCR FROM Fires GROUP BY Fires.

STAT_CAUSE_DESCR ORDER BY Count(*)DESC LIMIT 1
desc. SELECT Fires.STAT_CAUSE_CODE FROM Fires GROUP BY Fires.

STAT_CAUSE_CODE ORDER BY Count(*)DESC LIMIT 1

Question What is the total area that has been burned until now?
no desc. SELECT Sum(*)FROM Fires
desc. SELECT Sum(Fires.FIRE_SIZE)FROM Fires

Database Pesticide Column Descriptions
origin Code indicating sample origin (1=U.S. 2=imported 3=unknown)
country Country of origin if the sample was imported
Question How many samples come from other countries?
no desc. SELECT sampledata15.country FROM sampledata15
desc. SELECT Count(*)FROM sampledata15 WHERE sampledata15.origin = ’⬚’

Table 7: Distribution of error types in each domain over 10 randomly-selected erroneous examples.

Error Types Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer %
Entity-column matching 0 2 2 3 0 2 0 0 15.00%
Incorrect Final Column 3 2 5 3 4 4 4 2 33.75%
Missing Constraint 5 3 3 1 5 5 2 2 32.50%
Incorrect Constraint 4 2 2 2 6 0 7 2 31.25%
Understanding Error 0 1 0 4 0 1 2 3 13.75%
Ambiguous Columns 0 2 2 0 1 1 0 0 7.50%
Equivalent 1 0 2 0 0 0 0 0 3.75%

lenges such as low column mention percentage and
in-domain schema conventions still leave signifi-
cant room for improvement. We provide the full
experimental results on normalized tables in the
Appendix.

4.4 Error Analysis

Table 6 shows examples of improvements due
to descriptions. First, column descriptions help
the parser correctly identify columns to select.
For instance, it chooses STAT_CAUSE_CODE over
STAT_CAUSE_DESCR when asked for “the most com-
mon cause of the fire (code)”. Second, they clarify
necessary constraints. For instance, when asked
“how many samples come from other countries?”,
the parser chooses the correct origin column rather
than superficially-matching country in the clause
WHERE sampledata15.origin = "2".

Table 7 shows a distribution of error types in
KaggleDBQA using 10 randomly-selected erro-
neous predictions for each domain. The error cat-
egories mostly follow Suhr et al. (2020), modulo
(a) removing unobserved categories, (b) separat-

ing semantically equivalent predictions into their
own “Equivalent” category, and (c) categorizing
significant structural errors as “Understanding Er-
rors”. We also provide more characteristics of each
database in Table 8 in an attempt to understand the
difference in performance across databases. Our
model performs worst on the databases with the
most columns (Pesticide, Baseball and Soccer).
The only database with lower accuracy is Math-
Score which has multiple tables and a relatively
small fine-tuning set.
The most common error types and their exam-

ples are summarized in Table 9. (i) The most com-
mon type is “Incorrect Final Column” (33.75%),
illustrating the difficulty of schema linking in
KaggleDBQA even with documentation and fine-
tuning. (ii) 32.5% of the errors are in “Missing Con-
straints”. In KaggleDBQA questions, users some-
times use implications instead of directly mention-
ing the desired constraint, e.g. “in preparation” for
Status = "Under Construction". (iii) 31.25%
of the errors are in “Incorrect Constraint”, e.g.
failing to parse “highest” into the top-1 result in
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Table 8: Statistics of each database in KaggleDBQA.
Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer

#Tables 1 1 2 3 5 1 2 2
#Columns 15 6 34 15 44 19 10 37
#Fine-tuning Examples 10 9 16 9 12 12 13 6
#Test Examples 22 18 34 19 27 25 28 12

Table 9: The most common error types of our best model and their representative examples.

33.75%: Incorrect Final Column
Question What is the latitudinal band that is most likely to experience wildfires in the USA?
Predicted SELECT STAT_CAUSE_DESCR FROM Fires GROUP BY STAT_CAUSE_DESCR ORDER BY

Count(*)Desc LIMIT 1
Gold SELECT LATITUDE FROM Fires GROUP BY LATITUDE ORDER BY count(*)DESC LIMIT 1

32.5%: Missing Constraint
Question How many nuclear power plants are in preparation to be used in Japan?
Predicted SELECT Count(*)FROM nuclear_power_plants WHERE Country = ’⬚’
Gold SELECT count(*)FROM nuclear_power_plants WHERE Country = "Japan"AND Status

= "Under Construction"

31.25%: Incorrect Constraint
Question Which state gets the highest revenue?
Predicted SELECT NDECoreExcel_Math_Grade8.state FROM FINREV_FED_17 JOIN

NDECoreExcel_Math_Grade8 GROUP BY NDECoreExcel_Math_Grade8.state ORDER
BY Sum(FINREV_FED_17.t_fed_rev)Asc

Gold SELECT T2.state FROM FINREV_FED_KEY_17 as T2 JOIN FINREV_FED_17 as T1 ON
T1.state_code = T2.state_code GROUP BY T2.state ORDER BY sum(t_fed_rev)
DESC LIMIT 1

15%: Entity-column matching
Question Which type of crime happens the most in Salford?
Predicted SELECT Type FROM GreaterManchesterCrime WHERE Location LIKE ’⬚’ GROUP BY

Type ORDER BY Count(*)Desc LIMIT 1
Gold SELECT Type FROM GreaterManchesterCrime WHERE LSOA LIKE "%Salford%"GROUP

BY Type ORDER BY count(*)DESC LIMIT 1

13.75%: Understanding Error
Question How many downloads of ep and album respectively?
Predicted SELECT Sum(totalSnatched), Sum(totalSnatched)FROM torrents WHERE

releaseType = ’⬚’
Gold SELECT sum(totalSnatched)FROM torrents WHERE releaseType = "ep"UNION

SELECT sum(totalSnatched)FROM torrents WHERE releaseType = "album"

descending order. (iv) 15% of the errors are in
“Entity-column matching”, e.g. aligning “Salford”
to Location rather than LSOA. This illustrates the
difficulty of value linking, partly mitigated by value
descriptions for categorical columns in the database
documentation.

5 Conclusion & Future Work

KaggleDBQA provides two resources to facili-
tate real-world applications of text-to-SQL pars-
ing. First, it encourages an evaluation regime
that bridges the gap between academic and indus-
trial settings, leveraging in-domain knowledge and
more realistic database distribution. We encour-
age adopting this regime for established text-to-
SQL benchmarks. Second, it is a new dataset of
more realistic databases and questions, present-

ing a challenge to state-of-the-art parsers. De-
spite the addition of domain knowledge in the form
of database documentation, our baselines reach
only 26.77% accuracy, struggling to generalize to
harder questions. We hope that better use of docu-
mentation and new modeling and domain adapta-
tion techniques will help further advance state of
the art. The KaggleDBQA dataset is available at
https://aka.ms/KaggleDBQA.

Ethical Considerations

Dataset Collection The data collection process
was pre-approved by IRB. Each annotator agreed
to a consent form before having access to the label-
ing task. Each annotator was rewarded with a $20
e-gift card for the approximately one hour of their
time. The authors of this paper acted as the SQL an-

https://aka.ms/KaggleDBQA
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notators and incurred no additional compensation.
The databases collected for KaggleDBQA were in-
dividually reviewed to ensure they were properly
licensed for re-distribution. For other details of
dataset construction, please refer to Section 3.
Aside from email addresses, no personal infor-

mation of annotators was collected during our study.
Email addresses were not shared and were promptly
deleted after compensation had been provided. The
association between annotator and annotation was
deleted before any analysis or distribution was con-
ducted.
Language Distribution KaggleDBQA only in-
cludes question annotations and databases in En-
glish, thus evaluating multi-lingual text-to-SQL
models on it will require translation. The set of an-
notators included both native and second-language
speakers of English, all fluent.
Usage of DBQA Technology Our goal with
KaggleDBQA is to encourage the development of
DBQA that will work in real-world settings. The
actual deployment of a text-to-SQL parser must be
conducted with appropriate safeguards in place to
ensure users understand that the answers may be
incorrect, especially if those answers are to be used
in decision making.
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Table 10: Evaluation results on KaggleDBQA using 100% of the evaluation data. All numbers are the exact match
accuracy evaluated by the Spider official scripts. Here we report the average score of three runs with different
random seeds.

Models Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer Avg
RATSQL 22.91 23.45 8.00 0.00 11.11 25.22 4.76 11.11 13.32

w. desc 21.87 20.98 9.99 0.00 11.11 18.01 6.50 11.11 12.44
w. adaptation 20.83 33.33 12.66 3.57 11.11 24.32 8.93 12.96 15.96
w. desc + adaptation 29.16 25.88 18.00 3.57 16.23 30.62 10.53 12.96 18.37

Table 11: The original user question distribution. This reflects the natural information need from users.

Question Types # Example
Yes/No 51 Has there been a recent surge in violent crime in Manchester?
Percentage What percentage of August crime detections resulted in prosecution of a suspect?
Time-related 46 Divide the day into 3 slots (6am to 4pm, 4pm to 11pm, 11pm to 6am),

which has the highest amount of crime conducted per hour?
SQL-unexpressible 31 Which states had the highest percentage change in average scores

over the last few years?
SQL-expressible 272 Which LSOA has had the most instances of bicycle theft this month?

A Appendix

A.1 Evaluation on Full Testing Data
We show the zero shot testing and out-of-domain
adaptation results in Table 10. In contrast to Table 4,
they are evaluated using the full set of testing data.
A.2 Details of Dataset Construction
A.2.1 Example Page of User Instructions
For each user, we show two different HTML
files that contain different instructions of the task,
database overview, table name(s), column descrip-
tions, ten sampled rows of the database content.
A.2.2 Question Types
Question annotators were allowed to write any type
of question without restriction. While this repre-
sents a natural distribution of questions one might
expect to encounter in a realistic setting, some types
do not appear in the Spider training set and thus
pose particular difficulty with current text-to-SQL
systems. We remove these from the official evalua-
tion but still include them in the dataset for future
work on these types of questions. Table 11 summa-
rizes the distribution over these types of questions.
A.2.3 SQL annotation Guidelines
We also establish few guidelines and follow them
throughout the annotation process:
1. If the referred column is categorical, use "="

operator with the value from the database (e.g.,
Where is the area with the largest number

of sexual offenses crime events? → SELECT

Location FROM GreaterManchesterCrime

WHERE Type = "Violence and sexual

offences"GROUP BY Location ORDER BY

count(*)DESC LIMIT 1). If it is free-form
text use "LIKE" operator with a term from
the question (e.g., What were the closing odds
for a draw in matches with VfB Stuttgart?
→ SELECT DRAW_CLOSING FROM betfront

WHERE MATCH LIKE "%VfB Stuttgart%").
2. Sometimes ID columns are paired with their

name realizations (e.g., state_code and state).
We choose to return ID whenever users do not
explicitly ask for the name realizations.

3. Duplicate rows can sometimes yield an incorrect
result. However, it is not possible for models to
know in advance unless they encode database
content. So we use the DISTINCT operator when
necessary to return the correct answer or it is
explicitly asked for by the user (e.g.,What are
titles for each unique entry?).

A.3 Implementation Details
For all our experiments we use the RAT-SQL of-
ficial implementation and the pre-trained BERT-
Large from Google. 6 We follow the original set-
tings to get the pre-fine-tuned/pre-adapted models.

6We use the BERT-Large, Uncased (Whole Word Mask-
ing) model from https://storage.googleapis.
com/bert_models/2019_05_30/wwm_uncased_
L-24_H-1024_A-16.zip

https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
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Table 12: Exact match accuracy and standard error on schema-normalized KaggleDBQA, average of three runs
with different random seeds.

With fine-tuning

Models Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer Avg
(a) RAT-SQL 25.75 44.44 23.52 7.01 19.74 33.33 22.61 8.33 23.09 ± 0.9%
(b) w. desc 25.75 40.73 19.60 3.50 20.98 28.00 25.00 8.33 21.48 ± 1.0%
(c) w. adaptation 30.30 46.29 19.60 12.27 19.74 41.33 21.42 13.88 25.60 ± 0.9%
(d) w. desc + adaptation 33.33 49.99 28.43 8.76 22.21 37.33 26.18 16.44 27.86 ± 0.7%

Without fine-tuning
Models Nuclear Crime Pesticide MathScore Baseball Fires WhatCD Soccer Avg
(e) RAT-SQL 30.29 35.18 15.68 0.05 12.34 22.66 5.95 25.00 19.04 ± 0.6%
(f) w. desc 24.23 25.92 13.72 0.00 0.08 13.33 0.07 13.87 13.35 ± 0.9%
(g) w. adaptation 25.75 40.73 21.56 14.02 14.81 25.33 10.69 25.00 22.23 ± 0.7%
(h) w. desc + adaptation 34.84 37.03 23.52 8.76 18.51 24.00 16.66 21.96 23.16 ± 0.5%

For adaptation and fine-tuning, we decrease the
learning rate of BERT parameters by 50 times to
6e-8 to avoid overfitting. We keep the learning rate
of non-BERT parameters the same at 7.44e-4. We
also increase the dropout rate of the transformers
from 0.1 to 0.3 to provide further regularization.


