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Abstract

Adapter-based tuning has recently arisen as an
alternative to fine-tuning. It works by adding
light-weight adapter modules to a pretrained
language model (PrLM) and only updating the
parameters of adapter modules when learning
on a downstream task. As such, it adds only a
few trainable parameters per new task, allow-
ing a high degree of parameter sharing. Prior
studies have shown that adapter-based tun-
ing often achieves comparable results to fine-
tuning. However, existing work only focuses
on the parameter-efficient aspect of adapter-
based tuning while lacking further investiga-
tion on its effectiveness. In this paper, we
study the latter. We first show that adapter-
based tuning better mitigates forgetting issues
than fine-tuning since it yields representations
with less deviation from those generated by
the initial PrLM. We then empirically com-
pare the two tuning methods on several down-
stream NLP tasks and settings. We demon-
strate that 1) adapter-based tuning outperforms
fine-tuning on low-resource and cross-lingual
tasks; 2) it is more robust to overfitting and less
sensitive to changes in learning rates.

1 Introduction

Large scale pretrained language models (PrLMs)
(Devlin et al., 2019; Liu et al., 2019; Conneau et al.,
2020a; Brown et al., 2020) have achieved state-of-
the-art results on most natural language processing
(NLP) tasks, where fine-tuning has become a dom-
inant approach to utilize PrLMs. A standard fine-
tuning process copies weights from a PrLM and
tunes them on a downstream task, which requires a
new set of weights for each task.
Adapter-based tuning (Houlsby et al., 2019;
Bapna and Firat, 2019) has been proposed as a
* Equally Contributed
t Linlin, Qingyu, Bosheng, Liying, and Jia-wei are under

the Joint PhD Program between Alibaba and their correspond-
ing universities.

more parameter-efficient alternative. For NLP,
adapters are usually light-weight modules inserted
between transformer layers (Vaswani et al., 2017).
During model tuning on a downstream task, only
the parameters of adapters are updated while the
weights of the original PrLM are frozen. Hence,
adapter-based tuning adds only a small amount
of parameters for each task, allowing a high de-
gree of parameter-sharing. Though using much
less trainable parameters, adapter-based tuning has
demonstrated comparable performance with full
PrLM fine-tuning (Houlsby et al., 2019; Bapna and
Firat, 2019; Stickland and Murray, 2019).
Existing work mostly focuses on the parameter-
efficient aspect of adapters and attempt to derive
useful applications from that, which is still the
case in most recent works: Riicklé et al. (2020)
explore methods to further improve the parame-
ter and computation efficiency of adapters; Pfeif-
fer et al. (2020a) combine knowledge from multi-
ple adapters to improve the performance on down-
stream tasks; Artetxe et al. (2020) and Pfeiffer
et al. (2020c) leverage the modular architecture
of adapters for parameter-efficient transfer to new
languages or tasks, and Wang et al. (2020) utilize
the same property for knowledge injection.
Besides parameter-efficiency, the unique char-
acteristic of adapter-based tuning, with alternat-
ing frozen and learnable layers, might be directly
useful for improving model performances. How-
ever, this has not yet been discussed in the prior
work. In this paper, we first empirically demon-
strate that adapter-based tuning better regularizes
training than fine-tuning by mitigating the issue
of forgetting. We show that it yields representa-
tions with less deviation from those generated by
the original PrLM. Next, to see what this prop-
erty of adapters will help when adapting PrL.Ms,
we compare the performance of fine-tuning and
adapter-based tuning on a wide range of datasets
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Figure 1: The structure of the adapter adopted
from Houlsby et al. (2019). N is the number of trans-
former layers.

and NLP tasks. Extensive experiments and anal-
ysis are conducted in different settings, including
low-resource and high-resource, monolingual and
cross-lingual.

Our main findings can be summarized as fol-
lows:

* For monolingual adaptation, adapter-based
tuning yields better results in low-resource
settings, especially when the task is more
domain-specific. With increasing training
samples, the performance gain over fine-
tuning is less significant (§3).

* Adapter-based tuning tends to outperform
fine-tuning on zero-shot cross-lingual tasks
under different amounts of training data (§4).

* Adapter-based tuning demonstrates higher sta-
bility and better generalization ability. It is
less sensitive to learning rates compared to
fine-tuning (§5).

2 Adapter Better Regularizes Tuning

2.1 Adapter-based Tuning

When adapting a  pretrained language
model (PrLM), adapter-based tuning inserts
light-weight neural networks (adapters) between
the transformer layers of the PrLM, and only
updates the parameters of the adapters on a down-
stream task, but keeps the ones of the PrLM frozen.
Unlike fine-tuning which introduces an entire
new model for every task, one great advantage
of adapter-based tuning is generating a compact
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Figure 2: Comparison of the representations obtained
at each layer before (Base) and after adapter-based
tuning or fine-tuning on BERT-base using Representa-
tional Similarity Analysis (RSA). 5000 tokens are ran-
domly sampled from the dev set for computing RSA.
A higher score indicates that the representation spaces
before and after tuning are more similar.

model with only a few trainable parameters added
per task.

Houlsby et al. (2019) have extensively studied
the choices of adapter architectures and where they
should be inserted into PrLLMs. They find that a
stack of down- and up-scale neural networks works
well which only introduces a small amount of extra
parameters to the network. This design inspires
most of the following work (Pfeiffer et al., 2020a,c;
Bapna and Firat, 2019). As shown in Figure 1,
the adapter maps an input hidden vector h from
dimension d to dimension m where m < d, and
then re-maps it to dimension d. We refer m as
the hidden size of the adapter. A skip-connection
is employed inside the adapter network such that
if the parameters of the projection layers are near
zeros, the adapter module approximates an identity
function. Formally, given the input hidden vector
h, the output vector h’ is calculated as:

W = fo(tanh fi(h)) + b (1)

in which fi(-) and f2(-) are the down- and up-
projection layers. At each transformer layer, two
adapters are inserted right after the self-attention
and the feed-forward layers respectively. During
adapter tuning, only the parameters of the adapters,
the normalization layers, and the final classifica-
tion layer are updated. We use the above described
adapter configuration in all of our experiments,
since it is adopted in most prior work with few
modifications.
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2.2 Representation Similarity

Fine-tuning large-scale PrLMs on downstream
tasks can suffer from overfitting and bad gener-
alization issues (Dodge et al., 2020; Phang et al.,
2018). Recently, Lee et al. (2020) propose Mixout
to regularize the fine-tuning of PrLLMs. They show
that Mixout avoids catastrophic forgetting and sta-
bilizes the fine-tuning process by encouraging the
weights of the updated model to stay close to the
initial weights. Since adapter-based tuning does
not update the weights of PrLLMs at all, we suspect
that it has a similar effect of alleviating the issue
of catastrophic forgetting. Since the weights of the
PrLLM are the same before and after adapter-based
tuning, to verify this, we use Representational Sim-
ilarity Analysis (RSA) (Laakso and Cottrell, 2000)
to assess the similarity of tuned representations to
those without tuning at each transformer layer.

RSA has been widely used to analyze the simi-
larity between two neural network outputs (Abnar
et al., 2019; Chrupata and Alishahi, 2019; Mer-
chant et al., 2020), which works by creating two
comparable sets of representations by inputting a
same set of n samples to the two models. For each
set of representations, a n x n pairwise similarity'
matrix is calculated. The final RSA similarity score
between the two representation space is computed
as the Pearson correlation between the flattened up-
per triangulars of the two similarity matrices. We
use a subset of GLUE tasks (Wang et al., 2018)
for our analysis. Given a task, we first perform
adapter-based tuning and fine-tuning to adapt a
BERT-base model (M,,4) to the target task, which
yields models M qq,: and My, respectively (See
Appendix A.2 for training details). Then we pass
sentences (or sentence-pairs depend on the task)
from the development set to Moy, Mydapt, and
My, respectively. We extract representations at
each layer from the three models and select the
corresponding representations of 5k randomly sam-
pled tokens? (n = 5000) for evaluation. Note
that the same set of tokens is used for all mod-
els. Finally, we compare the representations ob-
tained from Mqqp: Or My to those from M,
using RSA.

Figure 2 plots the results on STS-2, results of
other tasks demonstrate a similar trend and can be
found in Appendix A.3. For both fine-tuning and
adapter-based tuning, we observe that the repre-

! Cosine similarity is used
2We skip [PAD], [CLS], [SEP] for token selection.

sentation change generally arises in the top lay-
ers of the network, which is consistent with previ-
ous findings that higher layers are more task rele-
vant (Howard and Ruder, 2018). It can be clearly
observed that compared to fine-tuning, adapter-
based tuning yields representations with less devia-
tion from those of BERT-base at each layer, which
verifies our claim that adapter-based tuning can
better regularize the tuning process by mitigating
the forgetting problem. Apparently, this property
of adapter tuning comes from that it freezes all
the parameters of PrLMs. And because of the skip-
connection in the adapter, the hidden representation
out of the adapter can mimic the input representa-
tion, in this way, some of the original knowledge
of PrLMs (before injecting adapters) can be pre-
served.

Since we find that adapter-based tuning better
regularizes the learning process, the next question
is how this property will help to improve the per-
formance when adapting PrLLMs to downstream
tasks. We conduct extensive experiments to investi-
gate this. The remainder of this paper is organized
as follows. We compare fine-tuning and adapter-
based tuning on monolingual text-level adaptation
tasks in §3, followed by cross-lingual adaptation in
§4. Further analysis about the training stability and
generalization capabilities is shown in §5.

3 Monolingual Adaptation

In this section, we first experiment with eight
datasets as used in Gururangan et al. (2020) in-
cluding both high- and low-resource tasks (§3.1).
We refer this set of tasks as Task Adaptation Eval-
uation (TAE). We observe that adapter-based tun-
ing consistently outperforms fine-tuning on low-
resource tasks, while they perform similarly on
high-resource tasks. We further confirm the effec-
tiveness of adapters in low-resource settings on the
GLUE benchmark (Wang et al., 2018) (§3.2).

3.1 TAE

TAE consists of four domains (biomedical, com-
puter science, news text, and AMAZON reviews)
and eight classification tasks (two in each domain),
whose domain diversity makes it suitable to as-
sess the adaptation effectiveness of different ap-
proaches. Detailed data statistics are displayed in
Appendix A.1. We consider tasks with fewer than
Sk training examples as low-resource tasks and the
others as high-resource tasks.
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low-resource

high-resource

Model CHEMPROT ACL-ARC SCIERC HYP. RCT AGNEWS HELPFUL. IMDB

(4169) (1688) (3219)  (515) (180k)  (115k) (115k) (20K)
RoBa.-ftf 81.910 63.05.5 77319  86.60.9 87201 93902 65134  95.002
RoBa.-ft* 81.7()‘8 65.03‘5 78.51.8 88.93,3 87.00(1 93.70,2 69-106 95.20'1
RoBa.—adapter255 82.9()‘6 67.54'3 80.80.7 90.44.2 87.1()‘1 93.80'1 69.00,4 95.7(]'1
RoBa.-ft+TAPT? 82.60.4 67.418 79315 9045, 87704 94501 68.51.9 95.50.1
RoBa.-ft+TAPT* 82.5()3 66.55'1 79~70.8 9130.8 87.4()‘1 94.0(]'2 70.311 95.4(]'1
RoBa.—adapter256+TAPT 83.5045 70.02.1 81.10.2 90.03.5 87.2()41 94.00'1 68.80,8 95.80'0

Table 1: Average results across five random seeds with standard deviations as subscripts on TAE. micro-F1 is
reported for CHEMPROOT and RCT, and macro-F1 is reported for the other tasks. Results with “t” are taken
from Gururangan et al. (2020). Results with “*” are reproduced by us. Numbers in () indicate the training size.

Experimental Setup We perform supervised
fine-tuning on RoBERTa-base as our baseline
(RoBa.-ft). For adapter-based tuning, we set
the hidden size m of adapters to 256 (RoBa.-
adapterysg). We also present the results of adding
task-adaptive pretraining (+TAPT) (Gururangan
et al., 2020). In this setting, before fine-tuning
or adapter-based tuning, the model was trained
with a masked language modeling (MLM) objec-
tive on the training texts (without labels) of the
task. Note that in RoBa.-adaptersss+TAPT, we
also use adapter-based tuning for TAPT where only
the weights of adapters are updated at the TAPT
stage. This is to evaluate whether adapter-based
tuning can work with unsupervised learning ob-
jectives. We follow the experimental settings in
Gururangan et al. (2020) for TAPT. For fine-tuning
and adapter-based tuning, we train models for 20
epochs to make sure they are sufficiently trained
and save the checkpoint after each training epoch.
We select the checkpoint that achieves the best
score on the validation set for evaluation on the test
set. The batch size is set to 16 for both methods.
The learning rate is set to 2e-5 for fine-tuning, and
le-4 for adapter-based tuning. See Appendix A.2
for the hyperparameter selection process and more
training details.

Results Table 1 presents the comparison results.
We report the average result over 5 runs with dif-
ferent random seeds. On four low-resource tasks,
adapter-based tuning consistently outperforms fine-
tuning and improves the average result by 1.9%.
Adapter-based tuning alone without TAPT even out-
performs fine-tuning with TAPT. Besides, adding
TAPT before adapter-based tuning further improves
the performance on 3 out of 4 low-resource tasks,
which suggests that adapter-based tuning works
with both supervised and unsupervised objectives.

RCT AGNEWS

—e— Fine-tune
Adapter

Ve

—e— Fine-tune
Adapter

Test Performance

0.83

0.82

2k 4k 8k
# of training samples

16k 32k 64k all 2k 4k 8k 16k 32k 64k all
# of training samples

Figure 3: Test performance w.r.t the number of train-
ing examples. Reported results are averages across five
runs with different random seeds.

Another finding is that when trained on high-
resource tasks, both methods achieve similar re-
sults. To verify the effects of training size, on
high-resource tasks, we plot the performances with
varying numbers of training examples in Figure 3.
The trend is consistent with our existing observa-
tions — adapter-based tuning achieves better results
when the training set is small while fine-tuning will
gradually catch up with an increasing number of
training examples.

3.2 GLUE Low-resource Adaptation

To further validate that adapters tend to general-
ize better than fine-tuning under low-resource set-
tings, we follow Zhang et al. (2021) to study low-
resource adaptation using eight datasets from the
GLUE benchmark (Wang et al., 2018) which cov-
ers four types of tasks: natural language inference
(MNLI, QNLI, RTE), paraphrase detection (MRPC,
QQP), sentiment classification (SST-2) and linguis-
tic acceptability (CoLA). Appendix A.1 provides
detailed data statistics and descriptions.

Experimental Setup For each dataset, we sim-
ulate two low-resource settings by randomly sam-
pling 1k and 5k instances from the original training
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Model CoLA MNLI,, MNLIL,,, MRPC OQNLI QQP RTE SST-2 STS-B  Avg.
1k

BERT-ft 41.44'0 57.43.2 60.33,2 83.61.2 80.50.3 69.80_7 62.511 87.80.4 85.50‘9 69.91'7
BERT-adapter64 42-92.6 61.60,9 64.10,8 84.807 80.50.9 70.320 62.513 88.0()‘7 86.10.3 71.21_1
BERT—adapter64,256 43.629 61.60_9 64.10_8 84.8()‘7 81.00_2 76.807 65.32_0 88.0()‘7 86.3()‘2 72.410
RoBa.-ft 45-42.8 71,20,9 72.90,9 88.40_7 84.00.7 75.01,1 67.027 89.00,8 88.5()‘4 75.71,2
RoBa.—adapterM 47.72,5 71-00.8 71-90.8 88.90.9 83.20.5 74—.70_3 67.722 90.01,4 88.4042 76.01'1
RoBa.-adapter64,256 47.72_5 71.80,8 73.01,1 89.207 83.50,4 75-101 68-7()‘8 90.502 88.6042 76.40_8
5k

BERT-ft 54454 69.603 71.211 85.007 74718 - 88.610 88.797 76.012
BERT-adaptergy 54115 713p5 73.00.4 85303 74213 - 89.1p2 889¢1 76.606
BERT—adapter64_256 54.1 1.5 71.30,5 73.20,4 85.30.3 74.90,4 - 89.10,2 88.90_1 76.70,5
RoBa.-ft 55717 79.504 80.30.4 87.1p5 78.113 - 91405 90.601 80407
RoBa.-adapter64 56.81_2 80.20,3 80.60,2 86.50.7 78.210 - 92.205 90.40.2 80.7()‘6
RoBa.-adapter64,256 57-41.6 80.20_3 80.50_2 86.90_6 78.30'9 - 92.20'5 90.40_2 80.80_6

Table 2: Results on GLUE 1k and 5k low resource settings as described in §3.2. Results of MRPC and RTE in 5k
setting are omitted as their training data is less than Sk. CoLA is evaluated using Matthew’s Correlation. MRPC
and QQP are evaluated using F1 score. STS-B is evaluated using Spearman’s correlation. The other tasks are
evaluated using accuracy. We report averages across five random seeds, with standard deviations as subscripts.

data as the new training sets. In each setting, we
draw another 1k samples from the remaining train-
ing set as the validation set and instead use the
original validation set as the test set, since the orig-
inal GLUE test sets are not publicly available 3.

We perform fine-tuning on BERT-base (BERT-
ft) and RoBERTa-base (RoBa.-ft) respectively as
our baselines. We set the learning rate to 2e-5 and
the batch size to 16 for BERT and RoBERTa fine-
tuning experiments (See Appendix A.2 for details).
For adapters, we only tune its hidden sizes in {64,
128, 256}, setting the learning rate to le-4 and
batch size to 16 as the same used in §3.1.

Results Table 2 presents the comparison results.
For adapter-based tuning, we report two results on
each task. One is obtained with the optimal hid-
den size which varies per dataset, and the other
is obtained with the size of 64. We observe that
adapter-based tuning outperforms fine-tuning most
of the time under both 1k and 5k settings. In partic-
ular, the performance gain is more significant in 1k
setting, where on average across all tasks, adapter-
based tuning outperforms fine-tuning by 2.5% and
0.7% on BERT and RoBERTa respectively.

3.3 Discussions

One consistent observation from § 3.1 and § 3.2
is that adapters tend to outperform fine-tuning on
3Users are limited to a maximum of two submissions per

day to obtain test results, which is inconvenient for a large
number of runs

text-level classification tasks when the training set
is small, but with more training samples, the ben-
efit of adapters is less significant. In low-resource
setting, fine-tuning has more severe overfitting
problem, since it has much more tunable parame-
ters compared to adapter-tuning, so adapter-tuning
works better than fine-tuning. However, in high-
resource setting, overfitting is not a big issue and
model capacity counts more. Obviously, the model
capacity under fine-tuning is larger than that under
adapter-tuning since fine-tuning can update much
more model parameters.

When comparing the improvements of adapter
tuning over fine-tuning on tasks from TAE (§ 3.1)
and GLUE (§ 3.2), we find that the improvement
is more significant on low-resource tasks from
TAE — on RoBERTa-base, the average improve-
ment brought by adapters is 1.9% across four low-
resource tasks from TAE, while the average im-
provement on GLUE is 0.7% and 0.4% in 1k and
Sk settings respectively. As indicated in Gururan-
gan et al. (2020), the TAE dataset is more domain-
specific and has less overlap with the corpus used
for RoBERTa-base pretraining, one intuitive ex-
planation for this observation is that fine-tuning
has more severe forgetting and overfitting issues
in domain adaptation where the target domain is
dissimilar to the source domain in pretraining, thus
adapter-based tuning is more preferable in this sce-
nario.
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POS NER XNLI
Model All  Target Distant All  Target Distant All  Target Distant
XLMR-ft (Hu et al., 2020) 73.80 73.14  64.34 6540 64.87 5821 79.24 7856  76.73
XLMR-ft (reproduced) 7429  73.61 64.90 63.85 6332  56.85 79.28 78.64  77.03
XLMR-adapterasg 75.82 7520  68.05 6640 6595 59.01 80.08 7943  77.60

Table 3: Zero-shot cross-lingual results. Accuracy is reported for POS tagging and XNLI. F1 is reported for NER.
All is the average test result of all languages. Target is the average test result of all target languages except English.
Distant is the average test result of the languages not in the Indo-European family.

5% 10% 20%
Model All  Target Distant All  Target Distant All  Target Distant
XLMR-ft 75.76  75.09 73.12 76.73  76.07 74.21 7828 77.64  75.84
XLMR-adaptergy 76.09 7547  73.78 7752 7694  75.10 78.68 78.07  76.39

Table 4: Accuracy on XNLI with different amount of training data. We only compare XLMR-ft to XLMR-

adapterg, in this set of experiments as XLMR-adapterg, is more light-weight.

4 Cross-lingual Adaptation Model TAE,, GLUE; XNLI;,; XNLI;,
. . . finetune 78.52 69.86 78.64 75.09
In this section, we further compare fine-tuning and Adaptergs 7720 7120 79.01 75.47
adapter-based tuning in the zero-shot cross-lingual Adapter;ps 7929 71.09 79.24 75.83
Adaptersss 8041 71.06 79.43 75.45

transfer setting. All experiments in this section are
based on XLLM-R-large (Conneau et al., 2020a),
a recent SOTA multilingual PrLM covering 100
languages. We conduct evaluations on a set of
multilingual tasks from XTREME (Hu et al., 2020),
including Universal Dependencies v2.5 tree banks
(UD-POS) (Nivre et al., 2018), Wikiann NER (Pan
et al., 2017), and cross-lingual natural language
inference (XNLI) (Conneau et al., 2020b). UD-
POS contains 34 languages, Wikiann NER contains
40 languages, and XNLI contains 15 languages. We
refer the reader to Hu et al. (2020) for additional
details about the datasets.

Experimental Setup On each task, we perform
hyperparameter tuning on the English development
set. For both fine-tuning and adapter-based tun-
ing, we use batch size 32, and tune the learning
rates in {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}. For adapter-
based tuning, we further tune the hidden sizes in
{64, 128,256} and find size 256 often performs the
best. We train and select models with the English
training and development sets and then evaluate the
tuned models on test sets of all languages. See Ap-
pendix A.2 for hyperparameter and training details.

Results Table 3 summarizes the results. To better
compare cross-lingual transfer to different groups
of languages, we present the average results of
all languages (All), the target languages except
English (Target), and the Non-Indo-European lan-
guages (Distant). It can be observed that adapter-
based tuning significantly outperforms fine-tuning

Table 5: Average test results with different adapter hid-
den sizes. Results of GLUE;;, are based on BERT-base.
TAE;,., denotes low resource tasks from TAE.

on all three settings for each task. Specifically,
adapter-based tuning outperforms the reported fine-
tuning results (Hu et al., 2020) on Target and Dis-
tant by 2.06% and 3.71% on UD-POS, 1.08% and
0.8% on Wikiann NER, and 0.87% and 0.87% on
XNLI. See Appendix A.3 for detailed results on
each language.

Note that UD-POS, Wikiann NER, and XNLI
are all high-resource tasks, with 20k, 20k, and
400k training samples respectively. Unlike mono-
lingual tasks, adapters achieve consistent perfor-
mance gains even under high-resource settings on
cross-lingual tasks. We suspect that the ability to
mitigate forgetting is more useful in cross-lingual
scenarios since the model knowledge of the target
languages only comes from pretraining. Adapter-
based tuning can better maintain the knowledge.
We further investigate the effectiveness of adapter-
based tuning on XNLI with smaller training sets.
Table 4 summarizes the results when trained on
5%, 10%, and 20% of the original training sets. In
all settings, adapters still demonstrate consistent
improvements over fine-tuning.
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Figure 4: Box plots of test performance distribution over 20 runs across different learning rates. The upper/bottom
results are based on Bert-base/RoBERETa-base. Note that the fine-tuning results with learning rates larger than
4e-5 on RoBERTa. MNLI 5k are all zeros, which are outside of the range and not shown in the subplot.

5 Analysis

Adapter Hidden Size The hidden size m* is the
only adapter-specific hyperparameter. As indicated
in Houlsby et al. (2019), the hidden size provides
a simple means to trade off performance with pa-
rameter efficiency. Table 5 shows the performance
with different hidden sizes, from which we find that
increasing the hidden size may not always lead to
performance gains. For monolingual low-resource
adaptation, TAE tasks prefer a larger hidden size,
while the results on GLUE are similar across differ-
ent hidden sizes. We suspect that this is due to that
TAE datasets are more dissimilar to the pretraining
corpus, which requires relatively more trainable
parameters to learn the domain-specific knowledge.
On XNLI, a larger hidden size helps improve the
performance when the full data is used. However,
when only 5% training data is used, increasing the
hidden size does not yield consistent improvements.
The results indicate that the optimal hidden size de-
pends on both the domain and the training size of
the task.

Learning Rate Robustness We compare the two
tuning methods in terms of their stability w.r.t the
learning rate. Figure 4 shows the performance dis-
tributions on CoLA and MNLI under 1k and 5k
settings. The learning rates are varied in {2e-5, 4e-
5, 6e-5, 8e-5, le-4}. Each box in the plot is drawn
from the results of 20 runs with different random
seeds. We observe that fine-tuning yields larger
variances when increasing the learning rates. It
often collapses with learning rates larger than 4e-5

“The fraction of adapter parameters w.rt. BERT-base
(110M parameters) is 2%, 4%, and 6% when m is set to

64, 128, and 256. The fraction w.r.t. XLMR-large (550M
parameters) is 1%, 2%, and 3%, respectively.
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Figure 5: Loss on the dev set w.r.t training steps. Re-
sults are based on BERT-base. The original training
and dev sets from GLUE are used for this analysis.

60k steps

Eval ace. Mean (Best)
Fine-tune Adapter
CoLA 54.27 (61.99) 58.27 (62.07)
MRPC 84.53 (87.50) 85.28 (87.25)
QNLI 89.39 (90.63) 90.41 (91.16)
SST-2 90.21 (92.66) 91.01 (92.20)

Table 6: Mean (Best) results on the dev set across all
evaluation steps.

when RoBERTa-base is used. Adapter-based tun-
ing is more stable across a wider range of learning
rates.

Overfitting and Generalization Here, we first
study the robustness of adapter-based tuning to
overfitting. We use CoLA, MRPC, QNLI, and SST-
2 with their original training and development sets
for our analysis. The CoLA and MRPC contain
8.5k and 3.7k training samples and are regarded
as low-resource tasks. The QNLI and SST-2 con-
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tain 104k and 67k training samples and are used as
high-resource tasks. We train the two low-resource
tasks for 10k steps, and the high resource tasks for
60k steps with a batch size of 16. We use BERT-
base for all experiments. Figure 5 plots the loss
curves on dev sets w.r.t training steps. We observe
that models with fine-tuning can easily overfit on
both low- and high-resource tasks. Adapter-based
tuning is more robust to overfitting. Additional re-
sults on accuracy w.r.t. training steps and a similar
analysis on XNLI are in Appendix A.3.

We also present the mean and best dev results
across all evaluation steps in Table 6, where we
perform an evaluation step every 20 training steps.
The mean results of adapter-based tuning consis-
tently outperform those of fine-tuning. The differ-
ences between the mean and the best values are
also smaller with adapter-based tuning. The results
suggest that the performance of adapters is more
stable over fine-tuning along the training process.

Training neural networks can be viewed as
searching for a good minima in the non-convex
landscape defined by the loss function. Prior
work (Hochreiter and Schmidhuber, 1997; Li et al.,
2018) shows that the flatness of a local minima cor-
relates with the generalization capability. Thus, we
further show the loss landscapes of the two tuning
methods. Following Hao et al. (2019), we plot the
loss curve by linear interpolation between g and
6, with function f(a) = L(0y + « - (01 — 6p)),
where 0y and #; denote the model weights before
and after tuning. £(#) is the loss function and «
is a scalar parameter. In our experiments, we set
the range of « to [—2, 2] and uniformly sample 20
points. Figure 6 shows the loss landscape curves
on CoLA and SST based on BERT-base. It shows
that the minimas of adapter-based tuning are more
wide and flat, which indicates that adapter-based
tuning tends to generalize better.

Compare to Mixout The focus of this paper is
to answer the question — besides being parameter-

Model CoLA MRPC QNLI SST-2
finetune 4139 8356 80.51 87.84
finetune-mixout 42.35 84.00 80.03 87.71
Adaptergy 4293 84.79 80.54 88.02
Adaptergg-mixout  42.52  83.80 80.67 87.66

Table 7: Comparison with Mixout. Results are based
on BERT-base under 1k settiing. Average results across
5 random seeds are reported.

efficient, when would adapter-based tuning be
more effective than fine-tuning for PrLM adapta-
tion? Thus, we only use fine-tuning as our primary
baseline in previous sections. Here, for the sake
of curiosity, we further compare adapter-based tun-
ing to fine-tuning regularized by mixout (Lee et al.,
2020) on a subset of GLUE tasks, since mixout
similarly regularizes the learning process by miti-
gating the forgetting issue. Specifically, it replaces
all outgoing parameters from a randomly selected
neuron to the corresponding parameters of the ini-
tial model without tuning, such that it reduces di-
vergence from the initial model. Following the sug-
gestions in the paper, we conduct experiments by
replacing all dropout modules in the network with
mixout and set the mixout probability to 0.9. From
the results in Table 7, we find that using adapter-
based tuning alone yields the best results in most
cases. Applying mixout to fine-tuning improves the
performance on CoLA and MRPC only. However,
applying it to adapters instead tends to degrade the
performance. We suspect that this is because the
number of trainable parameters of adapters is very
few to begin with. Hence, further replacing a large
percentage of them with their initial weights may
weaken the learning ability.

6 Related Work

Fine-tuning pretrained large scale language mod-
els has proven its effectiveness on a wide range of
NLP tasks (Devlin et al., 2019; Liu et al., 2019;
Conneau et al., 2020a; Brown et al., 2020). How-
ever, fine-tuning requires a new set of weights for
each task, which is parameter inefficient. Adapter-
based tuning is proposed to deal with this prob-
lem (Houlsby et al., 2019). Most previous work
has demonstrated that it achieves comparable per-
formance to fine-tuning (Bapna and Firat, 2019;
Pfeiffer et al., 2020b,a,c; Riicklé et al., 2020; Wang
et al., 2020; Guo et al., 2020). However, exist-
ing work mostly focuses on the parameter-efficient
aspect while overlooks the effectiveness.
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Fine-tuning PrLLMs in a low-resource setting has
been studied for a while (Dodge et al., 2020; Lee
et al., 2020; Phang et al., 2018; Jiang et al., 2020;
Zhang et al., 2021). Previous work points out that
with large-scale parameters, fine-tuning on a few
samples can lead to overfitting and bad general-
ization, which causes the results unstable. Phang
et al. (2018) find that pretraining on an intermedi-
ate task can improve fine-tuning outcomes. Jiang
et al. (2020) improve the robustness of fine-tuning
by controlling the model complexity and prevent-
ing aggressive updating. On the other hand, catas-
trophic forgetting can appear when transferring
a pretrained neural networks (French, 1999; Mc-
Closkey and Cohen, 1989; Goodfellow et al., 2013),
where the learned knowledge from pretraining is
lost when adapting to downstream tasks. This phe-
nomenon often appears in NLP tasks (Mou et al.,
2016; Arora et al., 2019). To relieve this problem of
adapting pretrained language models, Howard and
Ruder (2018) gradually unfreeze the layers start-
ing from the last layer and Sun et al. (2019) find
assigning lower learning rate to the bottom layers
can improve the performance. Lee et al. (2020) reg-
ularize learning by encouraging the weights of the
updated model to stay close to the initial weights.
Aghajanyan et al. (2021) regularize fine-tuning by
introducing noise to the input which is similar to
adversarial training for fine-tuning studied in Zhu
et al. (2020). Mosbach et al. (2021) point out that
the instability of fine-tuning lies in the optimizer
and propose to revise the Adam optimizer by re-
placing it with a de-bias version. Chen et al. (2020)
propose a mechanism to recall the knowledge from
pretraining tasks.

7 Conclusion

Prior work often focuses on the parameter-efficient
aspect while overlooks the effectiveness of adapter-
based tuning. We empirically demonstrate that
adapter-based tuning can better regularize the learn-
ing process. We conduct extensive experiments to
verify its effectiveness and conclude that 1) it tends
to outperform fine-tuning on both low-resource and
cross-lingual tasks; 2) it demonstrates higher sta-
bility under different learning rates compared to
fine-tuning. We hope our study will inspire more
future work on PrLLM adaptation based on adapters
and other methods that only tune part of the PrLM
parameters.
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A Appendix

A.1 Datasets

TAE Table 8 presents the data statistics of the
TAE datasets we used in § 3.1.

GLUE Table 9 presents the statistics and descrip-
tions of GLUE tasks. In § 3.2, to investigate the ef-
fectiveness in low-resource scenarios, we simulate
two low-resource settings by randomly sampling
1k and 5k examples respectively from each of the
original training set as the new training sets. In
each setting, we draw 1k samples from the remain-
ing training set as our validation set and use the
original validation set as held-out test set since the
original GLUE test sets are not publicly available.

For the RSA analysis in § 2 and the analysis of
overfitting and generalization in § 5, we use the
original training and development sets for analysis
purpose, as this better reveals the behaviors under
both high- and low- resource settings.

A.2 Experimental Details

Implementation We use language model imple-
mentations from HuggingFace Transfromers li-
brary (Wolf et al., 2019). Our adapter implemen-
tation is also based on that. Following standard
practice (Devlin et al., 2019), we pass the final
layer [CLS] token representation to a task-specific
feedforward layer for prediction on downstream
tasks. Each experiment was performed on a single
v100 GPU. We use the Adam optimizer (Kingma
and Ba, 2015) with a linear learning rate scheduler.

Training Details on TAE and GLUE For both
fine-tuning and adapter-based tuning, we train mod-
els for a fixed number of epochs, and select models
with the best validation performances on epoch end
for evaluation.

For fine-tuning, on TAE we follow the learning
rate and batch size as suggested by Houlsby et al.
(2019). On GLUE, we tune learning rates in {le-5,
2e-5, 3e-5, 4e-5, 5e-5} and batch sizes in {16, 32}
to select the best configuration across tasks.

For adapters, on TAE, we set the batch size the
same as used in fine-tuning, and tune learning rates
in {2e-5, 5e-5,1e-4, 2e-4} and adapter’s hidden size
in {64, 128, 256} to select the best configuration
across all tasks. On GLUE, we keep the learning
rate and batch size the same as used in TAE, and
tune the adapter’s hidden sizes in {64, 128, 256}
for each task. We use the same hyperparameter

setting for all our analysis experiments with GLUE
tasks as well.

Table 10 presents the detailed hyperparameter
settings for TAE and GLUE.

Training Details on Xtreme Tasks For UD-
POS, Wikiann NER, and XNLI, we use batch size
32, and tune learning rates in {le-5, 2e-5, 3e-5,
4e-5, 5e-5} on each task. We tune the adapter’s hid-
den sizes in {64, 128, 256} to select the best value
across all tasks. We use the English training and
development sets of each task for hyperparameter
tuning. Table 11 presents the detailed settings.

A.3 Additional Results

RSA Figure 7 presents additional Representa-
tional Similarity Analysis (RSA) plots on three
GLUE tasks as mentioned in § 2. We further con-
duct RSA to show the deviation of representation
space before and after tuning (with English train-
ing set) on three distant languages (zh, ja, th) from
the cross-lingual NER task. Figure 8 presents the
results.

Accuracy w.r.t Training Steps Figure 9 shows
the change of accuracy with increasing training
steps on four GLUE tasks. The results again in-
dicate that adapter-based tuning is more robust to
overfitting.

Overfitting Analysis on XNLI We train XLMR-
large with 10% of the original English training data
of XNLI, and plot the average loss and accuracy
curves on development sets across all target lan-
guages except English in Figure 10. The plots
demonstrate similar trends as shown in the plots of
GLUE tasks (Figure 5 and Figure 9), where models
with fine-tuning are easily overfitted and adapter-
based tuning is more robust to overfitting.

Detailed Cross-lingual Results Table 12 and Ta-
ble 13 presents the cross-lingual POS tagging re-
sults and the cross-lingual NER results on each
language respectively. Table 14 presents detailed
results on XNLI when trained with full data. 15
presents detailed XNLI results when trained on 5%,
10%, and 20% of training data.
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Figure 7: Comparison of the representations obtained at each layer before (Base) and after adapter-based tuning or
fine-tuning on BERT-base using Representational Similarity Analysis (RSA). The original training and dev sets of
CoLA, MRPC, and MNLI are used for this analysis. 5000 tokens are randomly sampled from the dev set of each
task for computing RSA. A higher score indicates that the representation spaces before and after tuning are more
similar.
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Figure 8: Comparison of the representations obtained at each of the top 12 layers (layer 13-24) before (Base) and
after adapter-based tuning or fine-tuning on XLMR-large using Representational Similarity Analysis (RSA). We
show results on 3 distant languages from the Wikiann NER task. 5000 tokens are randomly sampled from the dev
set of each language for computing RSA. A higher score indicates that the representation spaces before and after
tuning are more similar.
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Domain Task Label Type #Train #Dev #Test # Class

BIOMED CHEMPROT relation classification 4169 2427 3469 13
RCT abstract sent. roles 180040 30212 30135 5
cs ACL-ARC citation intent 1688 114 139 6
SCIERC relation classification 3219 455 974 7
NEWS HYPERPARTISAN partisanship 515 65 65 2
AGNEWS topic 115000 5000 7600 4
REVIEWS HELPFULNESS review help.fulness 115251 5000 25000 2
IMDB review sentiment 20000 5000 25000 2
Table 8: Data statistics of Task Adaptation Evaluation (TAE) tasks.
Task Description # Train # Dev # Class
CoLA linguistic acceptability classification 8.5k 1042 2
MNLI textual entailment classification 392k  9816/9833 3
MRPC  paraphrase classification 3.7k 409 2
QNLI  textual entalment classification 104k 5464 2
QQP quora question paris classification 363k 404k 2
RTE textual entailment classification 2.5k 278 2
SST-2  sentiment classification 67k 873 2
STS-B  semnatic textual similarity (regression) 5.7k 1501 -
Table 9: Data statistics of GLUE tasks.
TAE GLUE
Hyperparameter fine-tuning adapter fine-tuning adapter
number of epochs 10 10 20 20
batch size 16 16 16 16
learning rate 2e-5 le-4 2e-5 le-4
dropout 0.1 0.1 0.1 0.1
feedforward layer 1 1 1 1
feedforward nonlnearity layer 1 1 1 1
classification layer 1 1 1 1

Table 10: Hyperparameters for fine-tuning and adapter-based tuning for experiments on TAE and GLUE.

POS NER XNLI
Hyperparameter fine-tune adapter fine-tune adapter fine-tune adapter
number of epochs 5 5 5 5 5 5
batch size 32 32 32 32 32 32
learning rate 2e-5 Se-5 2e-5 Se-5 le-5 4e-5
dropout 0.1 0.1 0.1 0.1 0.1 0.1
feedforward layer 1 1 1 1 1 1
feedforward nonlnearity layer 1 1 1 1 1 1
classification layer 1 1 1 1 1 1

Table 11: Hyperparameters for fine-tuning and adapter-based tuning for experiments on UD-POS, Wikiann NER,
and XNLI.
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en af ar bg de el es et eu fa fi fr he hi hu id it

Indo-European yes yes no yes yes yes yes no no yes no yes no yes no no yes
XLMR-ftt 96.10 89.80 67.50 88.10 88.50 86.30 88.30 86.50 72.50 70.60 85.80 87.20 68.30 56.80 82.60 72.40 89.40
XLMR-ft* 96.15 89.26 69.12 88.33 88.79 87.42 8834 8738 73.70 71.05 86.56 87.24 67.86 7548 8349 72.67 89.07
XLMR-adapterass  95.89  89.30 70.50 88.79 88.48 86.44 88.99 8731 7484 7194 8599 88.74 67.32 69.63 83.11 7331 90.16
ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh avg
Indo-European no no no yes yes yes yes no no no no no yes no no no -
XLMR-ftt 1590 78.10 53.90 80.80 89.50 87.60 89.50 6520 86.60 47.20 92.20 7630 70.30 56.80 24.60 25.70 73.80
XLMR-ft* 21.34 7886 53.84 8524 89.75 8798 89.75 6434 85.65 43.12 93.03 76.65 69.43 58.10 23.92 28.60 7429

XLMR-adapterssg  38.53 7847 5335 86.45 89.86 88.82 90.21 6431 8538 5588 91.10 76.21 6346 59.38 2428 5576 75.82

Table 12: Zero-shot cross-lingual POS tagging accuracy on the test set of each target language. Results with “t”
are taken from (Hu et al., 2020). Results with “x” are reproduced by us.

en ar he vi id Jjv ms tl eu ml ta te af nl de el bn hi mr ur
Indo-European yes no no no no no no no no no no no yes yes yes yes yes yes yes no
XLMR-ft! 84.7 53 56.8 794 53 625 571 732 609 678 595 558 789 84 788 795 788 73 68.1  56.4
XLMR-ft* 84.62 4372 54.08 77.19 5226 5837 69.78 7221 62.08 6578 5692 5231 77.64 8426 7795 7723 7625 71.01 64.14 54.15

XLMR-adapteryss  83.87 51.89 56.59 78.02 53.53 63.24 62.65 71.57 6496 6830 59.57 5493 7943 84.88 79.38 80.51 7899 73.17 72.74 72.36

fa fr it pt es bg ru ja ka ko th sW yo my zh kk tr et fi hu

Indo-European yes yes yes yes yes yes yes no no no no no no no no no no no no no
XLMR-ftf 619 805 813 819 796 814 69.1 232 716 60 1.3 705 336 543 331 562 761 79.1 792 79.8
XLMR-ft* 61.13 79.07 81.05 79.61 68.76 81.18 7146 1831 6893 57.99 147 69.95 41.26 5132 2582 49.83 7894 78.03 78.63 79.32

XLMR-adaptersss  60.39 8121 81.79 82.61 76.12 8250 69.76 2141 7055 61.37 247 6890 38.18 6048 31.11 51.34 81.89 80.36 80.86 82.06

Table 13: Zero-shot cross-lingual NER F1 on the test set of each language. Results with “1” are taken from (Hu
et al., 2020). Results with “x” are reproduced by us.

Model en ar bg de el es fr hi ru SW th tr ur vi zh
XLMR-ftt 88.7 712 83 825 80.8 837 8.2 756 791 712 774 780 717 793 782
XLMR-ft* 88.28 78.34 8273 82.07 81.34 83.63 8193 7533 79.04 7159 76.67 7836 71.86 79.32 78.80

XLMR-adapterasg  89.22  78.62 83.59 83.47 8239 84.69 8327 7642 79.74 7221 77.84 7880 7227 7932 79.34

Table 14: Zero-shot XNLI accuracy on the test set of each language when trained with full data. Results with “}”
are taken from (Hu et al., 2020). Results with “+” are reproduced by us.

Model en ar bg de el es fr hi ru SW th tr ur vi zh

5% training data
XLMR-ft 85.09 73,53 787 79.58 7726 80.13 79.36 72.07 76.52 678 7253 7453 683 7524 7574
XLMR-adaptergy 84.77 7395 7876 79.02 78.08 80.55 79.48 72.01 76.54 68776 73.83 7556 68.6 7594 75.50

10% training data
XLMR-ft 8596 75.04 79.78 79.82 78.72 80.99 80.25 7323 77.28 68.08 7443 757 69.54 76.02 76.16
XLMR-adaptergy 85.74 76.78 80.27 80.77 79.72 81.87 81.13 73.87 7842 693 7425 77.08 69.54 7730 76.82

20% training data
XLMR-ft 87.26 7648 81.07 82.03 80.47 8255 81.53 7506 78.04 69.96 7600 7736 70.75 77.74 77.94
XLMR-adaptergy 87.24 78.00 81.87 82.15 8047 82.65 81.53 7500 7874 70.87 7594 7844 70.51 7870 78.16

Table 15: Zero-shot XNLI accuracy on the test set of each language when trained on 5%, 10%, 20% of training
data respectively.
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