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Abstract

Heavily overparameterized language mod-
els such as BERT, XLNet and T5 have
achieved impressive success in many NLP
tasks. However, their high model complex-
ity requires enormous computation resources
and extremely long training time for both pre-
training and fine-tuning. Many works have
studied model compression on large NLP mod-
els, but only focusing on reducing inference
time while still requiring an expensive train-
ing process. Other works use extremely large
batch sizes to shorten the pre-training time, at
the expense of higher computational resource
demands. In this paper, inspired by the Early-
Bird Lottery Tickets recently studied for com-
puter vision tasks, we propose EarlyBERT, a
general computationally-efficient training al-
gorithm applicable to both pre-training and
fine-tuning of large-scale language models.
By slimming the self-attention and fully-
connected sub-layers inside a transformer, we
are the first to identify structured winning tick-
ets in the early stage of BERT training. We ap-
ply those tickets towards efficient BERT train-
ing, and conduct comprehensive pre-training
and fine-tuning experiments on GLUE and
SQuAD downstream tasks. Our results show
that EarlyBERT achieves comparable perfor-
mance to standard BERT, with 35∼45% less
training time. Code is available at https:

//github.com/VITA-Group/EarlyBERT.

1 Introduction

Large-scale pre-trained language models (e.g.,
BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019), T5 (Raffel et al., 2019)) have significantly
advanced the state of the art in the NLP field. De-
spite impressive empirical success, their computa-
tional inefficiency has become an acute drawback
in practice. As more transformer layers are stacked

∗Work was done when the author interned at Microsoft.

with larger self-attention blocks, model complexity
increases rapidly. For example, compared to BERT-
Large model with 340 million parameters, T5 has
more than 10 billion to learn. Such high model
complexity calls for expensive computational re-
sources and extremely long training time.

Model compression is one approach to allevi-
ating this issue. Recently, many methods have
been proposed to encode large NLP models com-
pactly (Sanh et al., 2019; Jiao et al., 2019; Sun
et al., 2019, 2020b). However, the focus is solely
on reducing inference time or resource costs, leav-
ing the process of searching for the right com-
pact model ever more costly. Furthermore, most
model compression methods start with a large pre-
trained model, which may not be available in prac-
tice. Recent work (You et al., 2020b) proposes
to use large training batches, which significantly
shortens pre-training time of BERT-Large model
but demands daunting computing resources (1,024
TPUv3 chips).

In contrast, our quest is to find a general resource-
efficient training algorithm for large NLP models,
which can be applied to both pre-training and fine-
tuning stages. Our goal is to trim down the train-
ing time and avoid more costs of the total training
resources (e.g., taking large-batch or distributed
training). To meet this challenge demand, we draw
inspirations from recent work (You et al., 2020a)
that explores the use of Lottery Ticket Hypothe-
sis (LTH) for efficient training of computer vision
models. LTH was first proposed in Frankle and
Carbin (2019) as an exploration to understand the
training process of deep networks. The original
LTH substantiates a trainable sparse sub-network
at initialization, but it cannot be directly utilized for
efficient training, since the subnetwork itself has
to be searched through a tedious iterative process.
In addition, most LTH works discussed only un-
structured sparsity. The study of You et al. (2020a)
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presents discoveries that structured lottery tickets
can emerge in early stage of training (i.e., Early-
Bird Ticket), and therefore a structurally sparse sub-
network can be identified with much lower costs,
leading to practical efficient training algorithms.

Inspired by the success of LTH and Early-Bird
Ticket, we propose EarlyBERT, a general efficient
training algorithm based on structured Early-Bird
Tickets. Due to the vast differences between the ar-
chitectures and building blocks of computer vision
models and BERT, directly extending the method
of You et al. (2020a) does not apply to our work. By
instead using network slimming (Liu et al., 2017)
on the self-attention and fully-connected sub-layers
inside a transformer, we are the first to introduce
an effective approach that can identify structured
winning tickets in the early stage of BERT training,
that are successfully applied for efficient language
modeling pre-training and fine-tuning. Extensive
experiments on BERT demonstrate that EarlyBERT
can save 35∼45% training time with minimal per-
formance degradation, when evaluated on GLUE
and SQuAD benchmarks.

2 Related Work

Efficient NLP Models It is well believed that
BERT and other large NLP models are consid-
erably overparameterized (McCarley, 2019; Sun
et al., 2019). This explains the emergence of many
model compression works, which can be roughly
categorized into quantization (Shen et al., 2020;
Zafrir et al., 2019), knowledge distillation (Sun
et al., 2019; Jiao et al., 2019; Sanh et al., 2019;
Sun et al., 2020a,b), dynamic routing (Fan et al.,
2019; Xin et al., 2020), and pruning (Li et al., 2020;
Wang et al., 2019; McCarley, 2019; Michel et al.,
2019). Almost all model compression methods
focus on reducing inference time, while their com-
mon drawback is the reliance on fully-trained and
heavily-engineered dense models, before proceed-
ing to their compact, sparse versions - which es-
sentially transplants the resource burden from the
inference to the training stage.

Pruning is the mainstream approach for com-
pressing BERT so far (Gordon et al., 2020). Mc-
Carley (2019) proposed to greedily and iteratively
prune away attention heads contributing less to
the model. Wang et al. (2019) proposed to struc-
turally prune BERT models using low-rank factor-
ization and augmented Lagrangian `0 norm regu-
larization. McCarley (2019) pruned less important

self-attention heads and slices of MLP layers by
applying `0 regularization to the coefficient corre-
sponding to each head/MLP layer. Others aim to
reduce the training time of transformer-based mod-
els via large-batch training and GPU model par-
allelism (You et al., 2020b; Shoeybi et al., 2019).
Our work is orthogonal to these works, and can be
readily combined for further efficiency boost.

Lottery Ticket Hypothesis in Computer Vision
Lottery Ticket Hypothesis (LTH) was firstly pro-
posed in Frankle and Carbin (2019), which shed
light on the existence of sparse sub-networks (i.e.,
winning tickets) at initialization with non-trivial
sparsity ratio that can achieve almost the same
performance (compared to the full model) when
trained alone. The winning tickets are identified
by pruning fully trained networks using the so-
called Iterative Magnitude-based Pruning (IMP).
However, IMP is expensive due to its iterative na-
ture. Moreover, IMP leads to unstructured sparsity,
which is known to be insufficient in reducing train-
ing cost or accelerating training speed practically.
These barriers prevent LTH from becoming imme-
diately helpful towards efficient training.

Morcos et al. (2019) studies the transferabil-
ity of winning tickets between datasets and opti-
mizers. Zhou et al. (2019) investigates different
components in LTH and observes the existence of
super-masks in winning tickets. Lately, You et al.
(2020a) pioneers to identify Early-Bird Tickets,
which emerge at the early stage of the training pro-
cess, and contain structured sparsity when pruned
with Network Slimming (Liu et al., 2017) which
adopts channel pruning. Early-bird tickets miti-
gate the two limitations of IMP aforementioned,
and renders it possible to training deep models effi-
ciently, by drawing tickets early in the training and
then focusing on training this compact subnetwork
only. Chen et al. (2021) reveals the benefit of LTH
in data-efficient training, but their focus is not on
saving training resources.

Lottery Ticket Hypothesis in NLP All above
works evaluate their methods on computer vision
models. For NLP models, previous work has also
found that matching subnetworks exist in trans-
formers and LSTMs (Yu et al., 2019; Renda et al.,
2020). Evci et al. (2020) derived an algorithm for
training sparse neural networks according to LTH
and applied it to character-level language model-
ing on WikiText-103. For BERT models, a lat-
est work (Chen et al., 2020b) found that the pre-
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trained BERT models contain sparse subnetworks,
found by unstructured IMP at 40% to 90% sparsity,
that are independently trainable and transferable
to a range of downstream tasks with no perfor-
mance degradation. Their follow-up work (Chen
et al., 2020a; Gan et al., 2021) pointed out similar
phenomenons in pre-trained computer vision and
vision-language models. Another work (Prasanna
et al., 2020) aims to find structurally sparse lottery
tickets for BERT, by pruning entire attention heads
and MLP layers. Their experiments turn out that all
subnetworks (“good” and “bad”) have “compara-
ble performance” when fined-tuned on downstream
tasks, leading to their “all tickets are winning” con-
clusion.

Nevertheless, both relevant works (Chen et al.,
2020b; Prasanna et al., 2020) examine only the
pre-trained BERT model, i.e., finding tickets with
regard to the fine-tuning stage on downstream tasks.
To our best knowledge, no existing study analyzes
the LTH at the pre-training stage of BERT; nor has
any work discussed efficient BERT training using
LTH, for either pre-training or fine-tuning. Our
work makes the first attempt of introducing LTH to
both efficient pre-training and efficient fine-tuning
of BERT. Our results also provide positive evidence
that LTH and Early-Bird Tickets in NLP models
are amendable to structured pruning.

3 The EarlyBERT Framework

In this section, we first revisit the original Lot-
tery Ticket Hypothesis (LTH) (Frankle and Carbin,
2019) and its variant Early-Bird Ticket (You et al.,
2020a), then describe our proposed EarlyBERT.

3.1 Revisiting Lottery Ticket Hypothesis

Denote f(x; θ) as a deep network parameterized
by θ and x as its input. A sub-network of f can be
characterized by a binary mask m, which has ex-
actly the same dimension as θ. When applying the
mask m to the network, we obtain the sub-network
f(x; θ � m), where � is the Hadamard product
operator. LTH states that, for a network initialized
with θ0, an algorithm called Iterative Magnitude
Pruning (IMP) can identify a mask m such that
the sub-network f(x; θ0 � m) can be trained to
have no worse performance than the full model f
following the same training protocol. Such a sub-
network f(x; θ0 �m), including both the mask m
and initial parameters θ0, is called a winning ticket.
The IMP algorithm works as follows: (1) initialize

m as an all-one mask; (2) fully train f(x; θ0 �m)
to obtain a well-trained θ; (3) remove a small por-
tion of weights with the smallest magnitudes from
θ � m and update m; (4) repeat (2)-(3) until a
certain sparsity ratio is achieved.

Two obstacles prevent LTH from being directly
applied to efficient training. First, the iterative pro-
cess in IMP is essential to preserve the performance
of LTH; however, this is computationally expen-
sive, especially when the number of iterations is
high. Second, the original LTH does not pursue
any structured sparsity in the winning tickets. In
practice, unstructured sparsity is difficult to be uti-
lized for computation acceleration even when the
sparsity ratio is high (Wen et al., 2016).

To mitigate these gaps, Early-Bird Tickets are
proposed by You et al. (2020a), who discovers that
when using structured mask m and a properly se-
lected learning rate, the mask m quickly converges
and the corresponding mask emerges as the win-
ning ticket in the early stage of training. The early
emergence of winning tickets and the structured
sparsity are both helpful in reducing computational
cost in the training that follows. You et al. (2020a)
focuses on computer vision tasks with convolu-
tional networks such as VGG (Simonyan and Zis-
serman, 2014) and ResNet (He et al., 2016). In-
spired by this, we set out to explore whether there
are structured winning tickets in the early stage
of BERT training that can significantly accelerate
language model pre-training and fine-tuning.

3.2 Discovering EarlyBERT

The proposed EarlyBERT1 training framework con-
sists of three steps: (i) Searching Stage: jointly
train BERT and the sparsity-inducing coefficients
to be used to draw the winning ticket; (ii) Ticket-
drawing Stage: draw the winning ticket using the
learned coefficients; and (iii) Efficient-training
Stage: train EarlyBERT for pre-training or down-
stream fine-tuning.

Searching Stage To search for the key sub-
structure in BERT, we follow the main idea of
Network Slimming (NS) (Liu et al., 2017). How-
ever, pruning in NS is based on the scaling factor γ
in batch normalization, which is not used in most
NLP models such as BERT. Therefore, we make

1EarlyBERT refers to the winning ticket discovered by
the proposed 3-stage framework, which is equivalent to the
resulting pruned BERT model after drawing the winning ticket.
We also interchangeably use EarlyBERT as the name of the
proposed framework.
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necessary modifications to the original NS so that
it can be adapted to pruning BERT. Specifically, we
propose to associate attention heads and interme-
diate layers of the fully-connected sub-layers in a
transformer with learnable coefficients, which will
be jointly trained with BERT but with an additional
`1 regularization to promote sparsity.

Some studies (Michel et al., 2019; Voita et al.,
2019) find that the multi-head self-attention module
of transformer can be redundant, presenting the
possibility of pruning some heads from each layer
of BERT without hurting model capacity. A multi-
head attention module (Vaswani et al., 2017) is
formulated as:

MultiHead(Q,K, V ) = Concat(h1, . . . ,hn)W
O

hi = Attention(QWQ
i ,KW

K
i , V W

V
i ), (1)

where n is the number of heads, and the projections
WO,WQ

i ,W
K
i ,W

V
i are used for output, query,

key and value. Inspired by Liu et al. (2017), we in-
troduce a set of scalar coefficients chi (i is the index
of attention heads and h means “head”) inside hi:

hi = chi ·Attention(QW
Q
i ,KW

K
i , V W

V
i ). (2)

After the self-attention sub-layer in each trans-
former layer, the output MultiHead(Q,K, V ) will
be fed into a two-layer fully-connected network, in
which the first layer increases the dimension of the
embedding by 4 times and then reduces it back to
the hidden size (768 for BERTBASE and 1,024 for
BERTLARGE). We multiply learnable coefficients
to the intermediate neurons:

FFN(x) = cf ·max(0, xW1 + b1)W2 + b2. (3)

These modifications allow us to jointly train BERT
with the coefficients, using the following loss:

L(f(·; θ), c) = L0(f(·; θ), c) + λ‖c‖1, (4)

where L0 is the original loss function used in pre-
training or fine-tuning, c is the concatenation of all
the coefficients in the model including those for
attention heads and intermediate neurons, and λ is
the hyper-parameter that controls the strength of
regularization.

Note that in this step, the joint training of BERT
and the coefficients are still as expensive as normal
BERT training. However, the winning strategy of
EarlyBERT is that we only need to perform this
joint training for a few steps, before the winning

ticket emerges, which is much shorter than the full
training process of pre-training or fine-tuning. In
other words, we can identify the winning tickets at
a very low cost compared to the full training. Then,
we draw the ticket (i.e., the EarlyBERT), reset the
parameters and train EarlyBERT that is computa-
tionally efficient thanks to its structured sparsity.
Next, we introduce how we draw EarlyBERT from
the learned coefficients.

Ticket-drawing Stage After training BERT and
coefficients c jointly, we draw EarlyBERT using
the learned coefficients with a magnitude-based
metric. Note that we prune attention heads and
intermediate neurons separately, as they play dif-
ferent roles.

We prune the attention heads whose coefficients
have the smallest magnitudes, and remove these
heads from the computation graph. We also prune
the rows in WO (see Eqn. (1)) that correspond to
the removed heads. Note that this presents a de-
sign choice: should we prune the heads globally
or layer-wisely? In this paper, we use layer-wise
pruning for attention heads, because the number of
heads in each layer is very small (12 for BERTBASE
and 16 for BERTLARGE). We observe empirically
that if pruned globally, the attention heads in some
layers may be completely removed, making the
network un-trainable. Furthermore, Ramsauer et al.
(2020) observes that attention heads in different
layers exhibit different behaviors. This also moti-
vates us to only compare importance of attention
heads within each layer.

Similar to pruning attention heads, we prune
intermediate neurons in the fully-connected sub-
layers. Pruning neurons is equivalent to reducing
the size of intermediate layers, which leads to a
reduced size of the weight matrices W1 and W2 in
Eqn. (3). Between global and layer-wise pruning,
empirical analysis shows that global pruning works
better. We also observe that our algorithm natu-
rally prunes more neurons for the later layers than
earlier ones, which coincides with many pruning
works on vision tasks. We leave the analysis of this
phenomenon as future work.

Efficient-training Stage We then train Early-
BERT that we have drawn for pre-training or fine-
tuning depending on the target task. If we apply
EarlyBERT to pre-training, the initialization θ0 of
BERT will be a random initialization, the same
setting as the original LTH (Frankle and Carbin,
2019) and Early-Bird Tickets (You et al., 2020a).
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(a) Self-attention in Pre-training (b) FC in Pre-training

(c) Self-attention in Fine-tuning (d) FC in Fine-tuning

Figure 1: Illustration of mask difference in Hamming distance. Top: mask distance observed in pre-training.
Bottom: mask distance observed in fine-tuning. The color represents the normalized mask distance between
different training steps. The darker the color, the smaller the mask distance. In both cases, the mask converges
quickly, which indicates the early emergence of the tickets.

If we apply EarlyBERT to fine-tuning, then θ0 can
be any pre-trained model. We can also moderately
reduce the training steps in this stage without sacri-
ficing performance, which is empirically supported
by the findings in Frankle and Carbin (2019); You
et al. (2020a) that the winning tickets can be trained
more effectively than the full model. In practice,
the learning rate can also be increased to speed up
training, in addition to reducing training steps.

Different from unstructured pruning used in LTH
and many other compression works (Frankle and
Carbin, 2019; Chen et al., 2020b), structurally prun-
ing attention heads and intermediate neurons in
fully-connected layers can directly reduce the num-
ber of computations required in the transformer
layer, and shrink the matrix size of the correspond-
ing operations, yielding a direct reduction in com-
putation and memory costs.

3.3 Validation of EarlyBERT

Early Emergence Following a similar manner
in You et al. (2020a), we visualize the normalized
mask distance between different training steps, to
validate the early emergence of winning tickets.
In Figure 1, the axes in the plots are the number
of training steps finished. We only use one fully-
connected sub-layer to plot Figure 1(b),1(d) due to
high dimensionality. In both pre-training and fine-

Methods MNLI QNLI QQP SST-2

BERTBASE 83.16 90.59 90.34 91.70
EarlyBERTBASE 83.58 90.33 90.41 92.09
Random 82.26 88.87 0.12 91.17

Methods CoLA RTE MRPC

BERTBASE 0.535 65.70 80.96
EarlyBERTBASE 0.527 66.19 81.54
Random 0.514 63.86 78.57

Table 1: Comparison between randomly-pruned mod-
els and EarlyBERT on GLUE tasks. Different from ex-
periments in Sec. 4, here we prune only 4 heads in each
layer and no intermediate neurons.

tuning, the mask converges in a very early stage of
the whole training process. Although we observe
an increase of mask distance in fully-connected lay-
ers during pre-training (in Figure 1(b)), this can be
easily eliminated by early stopping and using mask
distance as the exit criterion. An ablation study on
how early stopping influences the performance of
EarlyBERT is presented in Sec. 4.2.

Non-trivial Sub-network Here, by non-trivial
we mean that with the same sparsity ratio as in
EarlyBERT, randomly pruned model suffers from
significant performance drop. The performance
drop happens even if we only prune attention heads.
We verify this by running fine-tuning experiments
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Methods MNLI QNLI QQP SST-2 SQuAD Time Saved2

BERTBASE 83.16 90.59 90.34 91.70 87.50 -
EarlyBERTBASE 81.81 89.18 90.06 90.71 86.13 40∼45%
RandomBASE 79.92 84.46 89.42 89.68 84.47 45∼50%
LayerDrop (Fan et al., 2019) 81.27 88.91 88.06 89.89 84.25 ∼33%

BERTLARGE 86.59 92.29 91.59 92.21 90.76 -
EarlyBERTLARGE 85.13 89.22 90.64 90.94 89.45 35∼40%
RandomLARGE 78.45 84.46 89.89 88.65 88.79 40∼45%
LayerDrop (Fan et al., 2019) 85.12 91.12 88.88 89.97 89.44 ∼33%

Table 2: Performance of EarlyBERT (fine-tuning) compared with different baselines. We follow the official imple-
mentation of LayerDrop method (Fan et al., 2019). The protocol that we follow for measuring the training time
savings is described in Sec. 4.1. We only evaluate models on large downstream tasks since our goal is improving
training efficiency.

on BERTBASE. Specifically, we prune 4 heads from
each transformer layer in BERTBASE and Early-
BERT. We fine-tune BERTBASE for 3 epochs with
an initial learning rate 2×10−5. We run the search-
ing stage for 0.2 epochs with λ = 1× 10−4, draw
EarlyBERT with pruning ratio ρ = 1/3, and then
fine-tune EarlyBERT for 2 epochs with doubled
initial learning rate. For the randomly pruned mod-
els, we randomly prune 4 heads in each layer and
follow the same fine-tuning protocol as EarlyBERT.
The reported results of randomly pruned models are
the average of 5 trials with different seeds for prun-
ing. The results on four tasks from GLUE bench-
mark (Wang et al., 2018) presented in Table 1 show
that randomly pruned model consistently under-
performs EarlyBERT with a significant gap, sup-
porting our claim that EarlyBERT indeed identifies
non-trivial sub-structures.

4 Experiments

4.1 Experimental Setting

Backbone Models Following the official BERT
implementation (Devlin et al., 2018; Wolf et al.,
2019), we use both BERTBASE (12 transformer lay-
ers, hidden size 768, 3,072 intermediate neurons,
12 self-attention heads per layer, 110M parameters
in total) and BERTLARGE (24 transformer layers,
hidden size 1,024, 4,096 intermediate neurons, 16
self-attention heads per layer, 340M parameters in
total) for experiments.

Datasets We use English Wikipedia (2,500M
words) as the pre-training data. For fine-tuning
experiments and evaluation of models in the pre-
training experiments, we use tasks from GLUE
benchmark (Wang et al., 2018) and a question-
answering dataset SQuAD v1.1 (Rajpurkar et al.,

2016). Note that as our goal is efficient pre-training
and fine-tuning, we focus on larger datasets from
GLUE (MNLI, QNLI, QQP and SST-2), as it is
less meaningful to discuss efficient training on very
small datasets. We use the default training settings
for pre-training and fine-tuning on both models.
To evaluate model performance, we use Matthew’s
correlation score for CoLA, matched accuracy for
MNLI, F1-score for SQuAD v1.1, and accuracy in
percentage for other tasks on GLUE. We omit %
symbols in all the tables on accuracy results.

Implementation Details For the vanilla BERT,
we fine-tune on GLUE datasets for 3 epochs with
initial learning rate 2× 10−5, and for 2 epochs on
SQuAD with initial learning rate 3× 10−5; we use
AdamW (Loshchilov and Hutter, 2017) optimizer
for both cases. For pre-training, we adopt LAMB
optimization technique (You et al., 2020b), which
involves two phases of training: the first 9/10 of the
total training steps uses a sequence length of 128,
while the last 1/10 uses a sequence length of 512.
Pre-training by default has 8,601 training steps and
uses 64k/32k batch sizes and 6 × 10−3/4 × 10−3

initial learning rates for the two phases, respec-
tively. All experiments are run on 16 NVIDIA
V100 GPUs.

Training Time Measuring Protocol We strictly
measure the training time saving of EarlyBERT on
the QQP task in GLUE using CUDA benchmark
mode. To get rid of the influence of the hardware
environment at our best, we individually measure
the time elapsed during each step and calculate the
average time per step over the whole training pro-
cess. The time for data I/O is excluded. The train-
ing time of EarlyBERT includes both the searching
stage and the efficient training stage.
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Figure 2: Effect of reducing training epochs and up-
scaling learning rate for EarlyBERT in fine-tuning. The
combination of 2-epoch fine-tuning and 4×10−5 turns
out to be the optimal choice.

4.2 Experiments on Fine-tuning

The main results of EarlyBERT in fine-tuning are
presented in Table 2. According to the observa-
tion of the early emergence of tickets in Sec. 3.3,
we run the searching stage for 0.2 epochs (which
accounts for less than 7% of the cost of a stan-
dard 3-epoch fine-tuning) with λ = 1 × 10−4 for
all tasks. When drawing EarlyBERT, we prune 4
heads in each layer from BERTBASE and 6 heads
from BERTLARGE, and globally prune 40% inter-
mediate neurons in fully-connected sub-layers in
both models, instead of pruning only heads as in
Table 1. After this, we re-train the EarlyBERT
models for reduced training epochs (from 3 to 2)
on GLUE benchmark and the learning rate scaled
up by 2 times to buffer the effect of reduced epochs.
For SQuAD dataset, we keep the default setting, as
we find SQuAD is more sensitive to the number of
training steps. The selection of these hyperparam-
eters are based on the ablation studies that follow
the main results in Table 2, in which we investi-
gate the effects of the number of training epochs,
learning rate during downstream fine-tuning, the
regularization strength λ, and the pruning ratios on
self-attention heads and intermediate neurons.

Several observations can be drawn from Ta-
ble 2. First, in most tasks, EarlyBERT saves over
40% of the total training time with 4 self-attention
heads pruned in each layer and 40% FC neurons
pruned globally, without inducing much perfor-
mance degradation. Specifically, following the
training time measurement protocol in Sec. 4.1,
we observe that EarlyBERT saves 42.97% of the
total training time of a full BERT model on QQP
task. The time saving slightly differs over vari-
ous tasks, hence we report a range of saving time.
Here, RandomBASE saves slightly more training
time because random pruning skips the searching

λ 10−4 10−3 10−2

88.55 88.43 88.42

# Pruned Heads 4 5 6

Layer-wise pruning 88.55 88.13 87.65

# Pruned Neurons 30% 40% 50%

Layer-wise pruning 88.18 88.22 87.90
Global pruning 88.31 88.23 87.91

Table 3: Ablation of regularization strength λ and
pruning ratios on self-attention heads and intermediate
neurons. All numbers are the average of three runs
with different random seeds on four tasks on GLUE
(MNLI/QNLI/QQP/SST-2).

stage in EarlyBERTBASE, but it induces much more
accuracy drop. EarlyBERTBASE can also outper-
form another strong baseline LayerDrop (Fan et al.,
2019), which drops one third of the layers so that
the number of remaining parameters are compa-
rable to ours. Note that LayerDrop models are
fine-tuned for three full epochs, yet EarlyBERT is
still competitive in most cases. Second, we consis-
tently observe obvious performance advantage of
EarlyBERT over randomly pruned models, which
provides another strong evidence that EarlyBERT
does discover nontrivial key sparse structures. Even
though there still exists a margin between Early-
BERT and the baseline (You et al. (2020a) also
observed similar phenomenon in their tasks), the
existence of structured winning tickets and its po-
tential for efficient training is highly promising. We
leave as future work to discover winning tickets of
higher sparsity but better quality.
Ablation Studies on Fine-tuning We perform
extensive ablation studies to investigate impor-
tant hyper-parameter settings in EarlyBERT, using
EarlyBERTBASE as our testing bed. For all experi-
ments, we use the average accuracy on the larger
datasets from GLUE benchmark (MNLI, QNLI,
QQP and SST-2) as the evaluation metric.

• Number of training epochs and learning rate.
We first investigate whether we can properly
reduce the number of training epochs, and if
scaling the learning rate can help compliment
the negative effect caused by reducing training
steps. Results in Figure 2 show that when we
fine-tune EarlyBERT for fewer epochs on GLUE,
up-scaling learning rate first helps to recover per-
formance, and then causes decrease again. We
will use two epochs and 4×10−5 as learning rate



2202

Methods CoLA MNLI MRPC QNLI QQP RTE SST-2 SQuAD

BERTBASE 0.45 81.40 84.07 89.86 89.80 60.29 90.48 87.60
EarlyBERTBASE 0.41 79.97 80.39 89.86 89.44 61.01 90.94 85.48

BERTLARGE 0.50 83.56 85.90 90.44 90.45 59.93 92.55 90.43
EarlyBERTLARGE 0.47 82.54 85.54 90.46 90.38 61.73 91.51 89.36

Table 4: Performance of EarlyBERT (pre-training) compared with BERT baselines. Different from fine-tuning
experiments, we evaluate pre-trained models on all downstream tasks in GLUE and SQuAD since fine-tuning cost
is negligible compared to the dominant pre-training cost.

for EarlyBERT on GLUE experiments.

• Regularization strength λ. A proper selection
of the regularization strength λ decides the qual-
ity of the winning ticket, consequently the per-
formance of EarlyBERT after pre-training/fine-
tuning. Results in Table 3 show that λ has
marginal influence on EarlyBERT performance.
We use λ = 10−4 that achieves the best perfor-
mance in following experiments.

• Pruning ratios ρ. We further investigate the ef-
fects of different pruning ratios as well as layer-
wise/global pruning on the performance of Early-
BERT. As discussed in Sec. 3.2, we only consider
layer-wise pruning for self-attention heads. Ta-
ble 3 shows that the performance monotonically
decreases when we prune more self-attention
heads from BERT; however, we see a slight in-
crease and then a sharp decrease in accuracy,
when the pruning ratio is raised for intermediate
neurons in fully-connected sub-layers (40% prun-
ing ratio seems to be the sweet spot). We also
observe consistent superiority of global pruning
over layer-wise pruning for intermediate neurons.

• Early-stop strategy for searching. In Figure 1,
we show the early emergence of winning tickets
in BERT when trained with `1 regularization, sug-
gesting we stop the searching stage early to save
computation while still generating high-quality
tickets. Here, we study how the early-stop strat-
egy influences the model performance. We fine-
tune EarlyBERT on QNLI following the same
setting described earlier in this section, but stop
the searching stage at different time points during
the first epoch for searching. Results in Figure 3
show (i) an abrupt increase in accuracy when we
stop at 20% of the first epoch; (ii) slight increase
when we delay the stop till the end of the first
epoch. Considering training efficiency, we think
20∼40% makes suitable stopping time.

1% 5% 10% 20% 40% 100%
Search Stop Time in the First Epoch

88

89

90

Ac
cu

ra
cy

 (%
)

Figure 3: How various time points of early stopping for
searching influences EarlyBERT performance.

Time Saving
3 Heads 4 Heads 5 Heads 6 Heads

Prune Ratio

FC - 30%
-35.78% -38.66% -41.26% -45.34%

89.62% 89.55% 89.60% 89.50%

FC - 40%
-39.72% -42.97% -43.93% -44.49%

89.66% 89.61% 89.58% 89.38%

FC - 50%
-43.89% -45.54% -47.02% -48.53%

89.54% 89.35% 89.34% 89.31%

Table 5: Training time savings vs. accuracies of Early-
BERT on the QQP task in GLUE with different pruning
ratios for self-attention heads and FC neurons.

Trade-off Between Efficiency and Performance
We vary the pruning ratios for the FC layers and
the number of self-attention heads pruned in each
layer in EarlyBERT, fine-tune the models on QQP
in GLUE, and obtain the corresponding validation
accuracies and training time savings following the
protocol above. Results are shown in Table 5. We
can see clear correlations between the training time
saving and the accuracy — the more FC neurons or
self-attention heads pruned, the more training time
saving yet the larger accuracy drop. Moreover, for
most combinations of these two hyper-parameters,
the accuracy drop is within 1%, which also supports
the efficiency of EarlyBERT.

4.3 Experiments on Pre-training
We also conduct pre-training experiments and
present the main results in Table 4. We run the
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Figure 4: Effect of reducing training steps in pre-
training on EarlyBERTBASE.

search stage for 400 steps of training in the first
training phase that uses a sequence length of 128
which only accounts for less than 3% of a standard
pre-training, with λ = 1 × 10−4. When we draw
EarlyBERT, similar to the settings in fine-tuning
experiments, we prune 4 heads in each layer from
BERTBASE and 6 heads from BERTLARGE; how-
ever, we prune slightly fewer (30%) intermediate
neurons in fully-connected sub-layers in both mod-
els, since we empirically observe that pre-training
is more sensitive to aggressive intermediate neuron
pruning. In both phases of pre-training, we reduce
the training steps to 80% of the default setting when
training EarlyBERT (based on the ablation study
shown in Figure 4). Other hyper-parameters for
pre-training follow the default setting described in
Sec. 4.1. All models are fine-tuned and evaluated
on GLUE and SQuAD v1.1 with the default setting.

Different from fine-tuning experiments, the pre-
training stage dominates the training time over the
downstream fine-tuning, and thus we only consider
the training time saving during pre-training. Since
the randomly pruned models do not have compet-
itive performance in fine-tuning experiments as
shown in Sec. 4.2, we focus on comparing Early-
BERT with the full BERT baseline.

From the results presented in Table 4, we can see
that on downstream tasks with larger datasets such
as QNLI, QQP and SST-2, we can achieve accura-
cies that are close to BERT baseline (within 1% ac-
curacy gaps except for EarlyBERTBASE on MNLI
and SQuAD). However, on downstream tasks with
smaller datasets, the patterns are not consistent: we
observe big drops on CoLA and MRPC but im-
provement on RTE. Overall, EarlyBERT achieves
comparable performance while saving 30∼35%
training time thanks to its structured sparsity and
reduction in training steps.

Reducing Training Steps in Pre-training We
investigate whether EarlyBERT, when non-
essential heads and/or intermediate neurons are
pruned, can train more efficiently, and whether we
can reduce the number of training steps in pre-
training. This can further help reduce training cost
in addition to the efficiency gain from pruning. We
use EarlyBERTBASE-Self (only self-attention heads
are pruned when drawing the winning ticket) as the
testing bed. Figure 4 shows the performance de-
creases more when we reduce the number of train-
ing steps to 60% or less. Reducing it to 80% seems
to be a sweet point with the best balance between
performance and efficiency.

4.4 Comparison with Previous Lottery
Tickets Work in NLP

On one hand, two relevant works (Chen et al.,
2020b; Prasanna et al., 2020) only investigate lot-
tery tickets on pre-trained NLP models for fine-
tuning on the downstream tasks, while EarlyBERT
makes the first attempt of introducing lottery tick-
ets to both fine-tuning and pre-training stages, and
provides empirical evidence that NLP models are
amendable to structured pruning.

On the other hand, EarlyBERT pursues struc-
tured sparsity while Chen et al. (2020b) promotes
unstructured sparsity, which is hardware unfriendly
and provides almost no acceleration, besides the
high cost of IMP. As an implicit comparison, Chen
et al. (2020b) induces 0.4% accuracy drop on
SQuAD v1 dataset compared to the BERT base-
line with 40% unstructured sparsity (comparable
with our settings in Section 4.2), while EarlyBERT
induces 1.37% accuracy drop. Note that Chen
et al. (2020b) uses 6x training times (because IMP
reaches 40% sparsity with 6 iterations) and 4.69x
FLOPs, but EarlyBERT uses only 0.76x training
times and FLOPs in contrast.

5 Conclusion

In this paper, we present EarlyBERT, an efficient
framework for large-scale language model pre-
training and fine-tuning. Based on Lottery Ticket
Hypothesis, EarlyBERT identifies structured win-
ning tickets in an early stage, then uses the pruned
network for efficient training. Experimental results
demonstrate that the proposed method is able to
achieve comparable performance to standard BERT
with much less training time. Future work includes
exploring more data-efficient strategies to enhance
the current training pipeline.
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A More Comparison with BERT
Baseline

For more explicit comparison, we conduct a two-
way fine-tuning experiment in addition to the main
results in Table 2. All results are averages of 3
runs.

We first increase the training cost of EarlyBERT
to match BERT performance by extending the
searching stage to a full epoch, which, according
to our ablation study in Figure 3, helps to improve
the performance of EarlyBERT. In this case, Early-
BERT still has 16% time and FLOPs savings, with
comparable performance shown in Table 6.

Secondly, we reduce the training steps of BERT
to match the FLOPs of EarlyBERT, inducing ob-
vious gaps between BERT and EarlyBERT as pre-
sented in Table 7.

GLUE Task MNLI QNLI QQP SST-2

BERT 83.48% 90.43% 90.37% 91.86%
EarlyBERT 83.36% 90.44% 90.33% 91.55%

Table 6: We increase the number of training steps of
EarlyBERT so that it achieves very close performances
to the BERT baseline on the larger four tasks in GLUE
benchmark.

GLUE Task MNLI QNLI QQP SST-2

BERT -
Reduced

82.85% 89.86% 89.45% 91.70%

EarlyBERT 83.26% 90.16% 90.22% 91.67%

Table 7: Comparison between the performance of
BERT and EarlyBERT with the same training time on
the larger four tasks on GLUE benchmark by reducing
the number of training steps of BERT. Obvious gaps
can be observed on all four tasks but SST-2.

B Searching EarlyBERT using on the
Masked Language Modeling Task

It is found in Chen et al. (2020b) selecting a win-
ning ticket for BERT fine-tuning on the masked
language modeling task (MLM), i.e., pre-training
objective makes for better tickets performing on
many of the downstream tasks. Here, we try the
experiments of using the MLM objective during the
searching stage. Results are summarized in Table 8.
Our main observations include:

• When using the MLM objective for the search-
ing stage, the mask distance for both self-

GLUE Task MNLI QNLI QQP SST-2

BERT 83.36% 90.53% 90.41% 91.61%
EarlyBERT 81.97% 88.68% 89.26% 90.48%
MLM - FC Global 78.36% 84.84% 88.86% 88.65%
MLM - FC Layerwise 79.01% 86.55% 89.16% 88.53%

Table 8: Comparison of the accuracies of EarlyBERT
and EarlyBERT with winning tickets searched using
MLM objective on downstream tasks in GLUE.

attention heads and FC neurons converged
well and quickly within 100 training steps.

• We first apply the global pruning method to
the FC neurons because we observed better
performance of EarlyBERT with that method.
However, while we previously found in Early-
BERT that the latter layers will be pruned
more, we observed the opposite phenomenon
when using MLM objective — the former lay-
ers are pruned more instead. In terms of accu-
racy, we observed significant gaps compared
to EarlyBERT.

• Based on the above observations, we also ap-
plied layerwise pruning for MLM experiments
(shown in the last row of Table 8). We did see
improved accuracy with layerwise pruning but
the gaps between EarlyBERT are still large
(except on QQP).

C The Effect of Reduced Training Steps
during Pre-training

We perform the same as the analysis of the effect
of reduced training steps during pre-training in Fig-
ure 4 for both the vanilla BERT and EarlyBERT.
We calculate how performance will be influenced
due to the reduced training steps. We use F1 score
for SQuAD, Matthew’s correlation score for CoLA
and accuracy for all other tasks on GLUE as the
metric. We report the performance reduction (or

Training Steps BERT EarlyBERT

100% 0.00% 0.00%
80% -1.94% +1.96%
60% -2.48% -1.42%
40% -3.62% -3.43%

Table 9: Effects of reduced training steps for BERT and
EarlyBERT in average on GLUE benchmark tasks and
SQuAD.
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gain) in percentage average on all tasks, normal-
ized by the performance of baseline, i.e., BERT
or EarlyBERT trained with the default number of
training steps. Similar metric is used in DistilBERT
(Sanh et al., 2019). Results are shown in Table 9.
We can see that using only 80% training steps ac-
tually improves the performance of EarlyBERT on
average but in contrast hurts the performance of
BERT. Similarly, using 60% training steps hurts
BERT more than EarlyBERT. And as expected, sav-
ing more training steps generally hurt more. We
think this is one piece of evidence that motivated
us to use reduced training steps for EarlyBERT.


