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Abstract

Existing software-based energy measurements
of NLP models are not accurate because they
do not consider the complex interactions be-
tween energy consumption and model execu-
tion. We present IrEne, an interpretable and
extensible energy prediction system that accu-
rately predicts the inference energy consump-
tion of a wide range of Transformer-based
NLP models. IrEne constructs a model tree
graph that breaks down the NLP model into
modules that are further broken down into
low-level machine learning (ML) primitives.
IrEne predicts the inference energy consump-
tion of the ML primitives as a function of
generalizable features and fine-grained run-
time resource usage. IrEne then aggregates
these low-level predictions recursively to pre-
dict the energy of each module and finally of
the entire model. Experiments across multiple
Transformer models show IrEne predicts infer-
ence energy consumption of transformer mod-
els with an error of under 7% compared to the
ground truth. In contrast, existing energy mod-
els see an error of over 50%. We also show
how IrEne can be used to conduct energy bot-
tleneck analysis and to easily evaluate the en-
ergy impact of different architectural choices.
We release the code and data at https://
github.com/StonyBrookNLP/irene.

1 Introduction

Accurately measuring the energy consumption of
NLP models is becoming ever more important.
Models are growing exponentially, with billions,
even approaching trillions, of parameters with
correspondingly large resource consumption (e.g.
GPT-3 (Brown et al., 2020) has 175 billion param-
eters and Switch Transformers can have 1.6 trillion
parameters (Fedus et al., 2021)). Recent works
have sought to estimate energy consumption and
suggest ways to reduce the resulting costs and car-

bon impacts (Strubell et al., 2019; Schwartz et al.,
2019; Henderson et al., 2020; Anthony et al., 2020)

Unfortunately, there are no easy-to-use and ac-
curate solutions for measuring or predicting the
energy consumption. On the one hand, measur-
ing energy consumption directly through hardware
power monitors is not feasible as it requires ex-
clusive access to the hardware and detailed instru-
mentation. On the other hand, there are software
models that predict energy as a function of resource
utilization (Strubell et al., 2019; Henderson et al.,
2020) but these energy prediction models are in-
accurate (Cao et al., 2020). The inaccuracy stems
from the prediction models not accounting for the
complex interactions between energy consumption
and resource utilization.

In this work, we focus on inference energy which
can incur substantial costs especially for models
that support high-volume web services. We ask
how we can build an energy prediction method that
is accurate, interpretable, and extensible. We make
three contributions in answering this question.

First, we frame the problem of interpretable en-
ergy prediction over a model tree abstraction. This
abstraction represents the model as the root node
that is composed from model-specific modules,
which themselves are recursively composed from
lower-level machine learning (ML) primitives, ones
that are not model-specific. Given a model, the en-
ergy prediction problem is framed as the task of
predicting the energy of all the nodes in its model
tree abstraction. The result is that IrEne can predict
not only the inference energy consumption of the
entire model, but also of its components, making
the energy prediction highly interpretable.

Second, we develop IrEne, that includes a multi-
level prediction method that predicts energy in all
nodes of the abstraction tree in a bottom-up fashion
using resource utilization and model description
features. For each of the leaf-nodes that are re-used
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in different models, the ML primitives, IrEne uses
a separate regressor trained on ground-truth energy
measurements. One simple way to get energy for
all other higher-level nodes is to recursively sum-
up the values. While this works reasonably well
(even better than a prior prediction model), direct
summing of the raw predictions is sub-optimal be-
cause the error can propagate through the model
tree thus making upper-level nodes estimation more
erroneous. Instead, we learn a single regressor for
all intermediate nodes, one that essentially adjusts
the sum of children’s predicted energy values based
on features of the children. Since IrEne is built on
top of energy predictions of ML primitives that are
not model specific, it is generalizable and can be
used to predict the energy for previously unseen
(Transformer-based) models.

Third, to evaluate IrEne, we create an evaluation
dataset with ground-truth energy measurements for
multiple Transformer-based models at all levels in
the model tree abstraction. Evaluations show that
IrEne is more accurate — with an average model-
level energy error of 5 ~ 7% compared against
the ground-truth, while existing software-based
method (Strubell et al., 2019) has over 55% error.
The module-level energy errors are also substan-
tially small showing that IrEne is both accurate and
interpretable. Last, we also conduct multiple anal-
yses that show the utility of IrEne for interpretable
energy predictions.

2 Related work

Over the last couple of years, there has been
increased interest in the energy consumption of
NLP models, starting with the work by Strubell
et al. (Strubell et al., 2019). This work, and a
follow up software framework called experiment-
impact-tracker (Henderson et al., 2020) tracks the
resource (i.e., CPU, GPU, memory) utilization of
an NLP model and predicts energy consumption
as a function of resources. However, our previ-
ous study shows that this type of resource utiliza-
tion only modeling can be highly inaccurate (Cao
et al., 2020). This is in part due to the complex
relationship between resource utilization and en-
ergy consumption. Further, there are other activi-
ties that are not accounted via resource utilization
such as data movement in GPU memory which can
also cause significant energy footprint (Chen et al.,
2016; Boroumand et al., 2018).

Other works (Zhou et al., 2020; Schwartz et al.,

2019) report the energy numbers through alternate
metrics including dollar cost or in terms of floating
point operations. However, these do not directly
map to the energy consumption. Energy prediction
of applications on mobile devices is a well-studied
topic in the systems community (Pathak et al., 2011,
2012; Yoon et al., 2012; Cao et al., 2017) but these
work require fine-grained understanding of the ap-
plication. None of the existing systems predict
energy for NLP applications.

3 Interpretable Energy Prediction

In this section we first state our design goals, moti-
vate the abstraction, and problem formulation for
interpretable energy prediction.

3.1 Design Goals

We design the energy prediction model with three
design goals: (i) accurate prediction while incur-
ring low profiling overheads; high overheads when
measuring runtime resource utilization can hide the
true energy costs of the NLP model, (ii) provide
interpretable energy analysis of the components
inside the NLP model, especially for analyzing en-
ergy bottlenecks; (iii) extensible and generalizable,
in the sense that, they are trained once but can
work on unseen NLP models to remain useful as
new models emerge.

3.2 Model Tree Abstraction

To achieve the above goals, we first need a repre-
sentation of the NLP model that is at a suitable
abstraction both from interpretability and general-
ization standpoints.

On the one hand, using only low-level abstrac-
tions such as the math operations can help with
easy generalization to new models as their units
are basic math (or other compute) operations that
are building blocks of any model. However, they
lack interpretability since they don’t directly con-
vey the model architecture semantics. For example,
a BERT (Devlin et al., 2019) model has matrix
multiplications in both the self-attention and feed
forward layers. Only having the energy of each ma-
trix multiplication alone, without knowing which
higher level logic units (i.e., either self-attention
or feed forward layer) they belong to, does not
help analyze if they are the bottlenecks for that
particular unit. On the other hand, high-level ab-
stractions preserve the architecture semantics and
are interpretable for practitioners, but they don’t
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Figure 1: A tree view of a 1-layer BERT model. The yellow rectangle nodes stand for basic machine learning (ML)
level operations. The brown rectangle nodes are also ML level which are non-parametric (i.e., has no trainable
parameters). The ML level operations are model-agnostic and provided by machine learning software framework.
The light blue oval nodes denote model-specific operations that reflect the architectural semantics given by the
model developer, for example BertSelfAttention was designed to transform input sequence representations by
‘attending” (weighted combination) to each position of the input sequence.

easily generalize to unseen models that may not
have the same modules used for training.

Instead, we use a model tree abstraction that rep-
resents the model nodes in three-levels: math level,
machine learning (ML) level and module level.
Math level nodes are a finite set of mathematical
operations (like addition, subtraction, matrix multi-
plication etc); they form model-agnostic ML level
nodes (such as Linear, LayerNorm etc.), which fur-
ther can be used to construct complex module level
nodes. Module level nodes are groups of lower ML
level node operations that reflect the logic units
of the NLP algorithms defined by model authors.
The model tree abstraction is such that each parent
node captures computation of all of its children
nodes. Figure 1 shows an example of a one-layer
BERT (Devlin et al., 2019) model (omitted math
level nodes). The execution of the model tree nodes
can be in parallel, but current systems have a fixed
sequential order for executing the sibling nodes.
In this work, we only focus on sequential execu-
tion. Note that the model tree doesn’t capture the
order of execution. E.g., BertOutput appears
right after Bert Intermediate in BERT’s com-
putation graph, but here they’ll be represented
as siblings of the same parent BertLayer:O0,
and their energy will be treated separately.
The parent node BertLayer:0 encapsulates
the energy and computation of its children
node BertIntermediate, BertOutput, and
BertAttention, in no particular order.

3.3 Problem Definition

With this new model tree abstraction, we formally
state the problem of interpretable energy estimation

of a NLP model. Given a model tree abstraction
of a NLP model M consisting of a set of nodes
N = {n|nm U npmoeq} (nyy is the set of ML level
nodes, n,,,04 18 the set of module level nodes), for
an input size Z (a pair of batch size b and sequence
length s) !, we can predict the energy E,, for every
node n in the model tree. The energy of root node
is the energy for the entire model.

4 Interpretable Prediction with IrEne

Figure 2 shows the IrEne architecture. IrEne takes
the user-specified model and builds an energy pre-
dictor for a target hardware device. The model
is run once on the target hardware and the run-
time resource utilization is logged. During this run,
IrEne uses code instrumentation and just-in-time
(JIT) run-time tracing to break down the model into
sub-components, and extracts a model tree repre-
sentation (see details in §A).

IrEne then provides interpretable energy analy-
sis by predicting the energy for every node in the
model tree in a bottom-up fashion. At the leaves,
where the nodes correspond to the ML primitives,
IrEne uses separate regression models for each type
of ML primitive (e.g., one regressor for Linear
Layer, another for LayerNorm etc.). For the inter-
mediate nodes, their energy is predicted recursively
using a single regressor that makes a weighted com-
bination of the predicted energy values from its
children. For both types of regressors, they use
features that are derived from resource utilization
(e.g. cpu utilization) and generalized node features

'The batch size and input sequence length together decide

the amount of input data to the model, therefore, they both
affect the model energy consumption.
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Figure 2: IrEne works by taking model specifications (for example, model code) as inputs and extracting a model
tree representation using code instrumentation and run-time tracing. IrEne then runs the model once on a given
hardware and feeds resource profiles combined with the model computation features into a regressor to predict the
energy of the entire model tree representation. The root of the tree represents the energy of the entire NLP model
and each child node represents the energy of different modules/ML operators that make up the model.

(e.g. size of inputs) enabling accurate multi-level
energy prediction.

IrEne represents higher-level modules via gener-
alizable features and the ML primitives. Even if the
intermediate modules are model-specific (e.g. Bert-
SelfAttention), the features are general, allowing
IrEne to predict energy of unseen models.

The IrEne model is trained using ground-truth
energy measurements of ML primitives and a hand-
ful of NLP models; we use a highly accurate hard-
ware power monitor to measure ground truth energy
(§A). Of course, one can use the power monitor to
measure energy directly at runtime. However, this
is cumbersome and requires physical access to the
device which is not always feasible with cloud-
based deployments. Further, the hardware meter
only measures the total energy, which is not inter-
pretable in terms of its components.

4.1 Multilevel energy prediction

At the leaf-level, the energy prediction problem
requires predicting the energy of ML primitives. As
an offline step, IrEne first enumerates all relevant
ML primitives and builds a specialized regressor
for each primitive by training over ground truth
data. In some cases, model developers can define
their own ML primitives. We extract information
about such custom primitives from the JIT trace.

Formally, for a leaf node n with ML primitive i,
we predict the energy of the node as:

PMLi(n) = W, * feat(n) + b; (1)

using primitive specific parameters W; the

weight vector and b; the bias. We learn these pa-

rameters using a mean squared error loss between
predicted P, (n) and ground-truth energy G.(n).

Our hierarchical tree representation gives a natu-
rally interpretable way of propagating this predic-
tion through the tree. Since each node represents
total computation of its children nodes, the total
energy from children nodes should also roughly
correspond to that of the parent node. Formally,

P(n)= >

¢ € child(n)
= pMLi(p) if n is leaf (2)

We call this baseline prediction model Predict-
edSum. This model is interpretable but naively
summing up the energy values accumulates error
going up the tree and results in noisy module-level
predictions. To account for this, we use a weighted
sum of child node energy, where the weights are
learnt using node features. Formally,

P.(c) if nis non-leaf

P.(n) = Z a(c) x Pe(c) if n is non-leaf

¢ € child(n)
= P (n)
a(c) = 1+ tanh(W x feat(c) + b) /7 3)
where W and b are parameters and 7 is a hyper-
parameter. Unlike ML primitives, here we have a
single regressor with one set of weight vector (W)
and bias scalar (b) parameters across all non-leaf
nodes of any type. Note that this single regres-
sor doesn’t predict node’s energy directly, but de-
termines how much the predicted energy from its
child node should be scaled before summing the
children node energy. It does this recursively start-
ing from the root, and hence encodes tree structure
in its computation. We do not learn node-specific
regressors because that does not allow generalizing
to new models that may have different modules

if n is leaf
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than the ones during training.

Since the method is essentially calibrating the
sum of the energy values, regularizing the model
so that the computed weights on the energy values
to be around 1 helps the learning. We do this by
equation 3, which makes the range of computed
weights, a(c) to be within 1 & 7. To supervise this
model, we use the ground-truth energy from all the
non-leaf nodes, and we train it in an end-to-end
fashion. Formally,

loss(n) = Z

s € subtree(n)
We scale the mean squared error with ground-
truth energy, since scales of energy at different
levels of the tree are vastly different. We refer to
this model as the End2End regressor, since the
error signal in energy prediction of any node back-
propagates through the whole subtree. We use this
training scheme in IrEne. In our evaluation (sec-
tion 5), we perform an ablation study to show why
the tree structure and the end-to-end regressor is
crucial for accuracy.

(Pe(s) — Ge(s))?
Ge(s)?

4)

4.2 Featurization

We design two categories of energy-relevant fea-
tures in IrEne : (i) the model features that reflect
hardware-independent compute and memory infor-
mation, and (ii) the resource features that capture
how the models use hardware resources and cause
energy activities. Table 1 shows the features used
in IrEne. For the model description related informa-
tion, we use features that characterize the compute,
memory, and size of input etc. These are features
that are independent of the underlying hardware.
For resource features, we use utilization, usage
and clock speed of hardware components including
CPU, memory and GPU. Note that these two sets
of features are extensible, meaning that one can
add more either hardware-specific features or new
model features. See Appendix sections A.2 and
A.3 for details on how we obtain these features.

5 IrEne Evaluation

Our evaluation is aimed at measuring the accuracy
of IrEne relative to ground truth and the state-of-
the-art. We show the IrEne only causes 5-7% error
for the model energy prediction. We also show
that for a given Transformer model, IrEne can be
used to find the energy bottlenecks and analyze the
energy versus task performance trade-offs.

batch_size : batch size

seq_len : # of input tokens

flops : floating point operations (unit: million)
mem_bytes : memory read and write (unit: MiB)

cpu_util : CPU utilization (unit: %)

mem_usg : memory usage (unit: %)

gpu_util : GPU processor utilization (unit: %)
gm_usg : GPU memory usage (unit: %)

g_clk : GPU processor clock speed (unit: MHz)
gm_clk : GPU memory clock speed (unit: MHz)
latency : inference latency (unit: s)

gpu_energy : GPU driver energy (unit: joule)

Table 1: Features used for energy estimation in IrEne.

Specification PC1 PC2

CPU Intel 19-7900X Intel i7-6800K
Memory 32 GiB 32 GiB

GPU 2x GTX 1080 Ti 2x GTX 1070

GPU Memory 11.2 GiB per GPU 8 GiB per GPU
Storage 1 TiB SSD 1 TiB SSD

Table 2: Target hardware specifications.

5.1 Setup

Target Hardware: we use 2 GPU-equipped desk-
top PCs as the target hardware for running our
models. See Table 2 for details.

Software and models: We perform inference in
Transformer models using PyTorch (Paszke et al.,
2019) v1.7 through the HuggingFace Transform-
ers (Wolf et al., 2020) library. The six mod-
els we study are — BERT-base (Devlin et al.,
2019), RoBERTa-base (Liu et al., 2019), Distill-
BERT (Sanh et al., 2020), DistilGPT2 (Sanh et al.,
2020; Radford et al., 2019), OpenAl GPT (Radford
et al., 2018) and GPT2 (Radford et al., 2019).
Software-based Measurement Baseline: For
comparisons, we use the software-based energy
measurements provided by the experiment-impact-
tracker (Henderson et al., 2020) which estimates
energy as a function of the GPU, CPU, and mem-
ory utilization. The method computes energy by
aggregating resource usage as follows: e;orq; =
PUE Zp(pdramedram + DepuCepu + pgpuegpu),
where presource 2 are the percentages of each sys-
tem resource used by the attributable processes
relative to the total in-use resources and €;csource
is the energy usage of that resource. The constant

Yresources can be dram, cpu, gpu
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for power usage effectiveness (PUE) compensates
for extra energy used to cool or heat data centers.

5.2 Dataset and Evaluation Methodology

For each model, we obtain the model tree and for
each node in it, we associate ground-truth energy
measurements using the power monitor and its re-
source features using low-overhead logging (Sec-
tion A). For each node we run it repetitively for
20 seconds, since it often takes a very short time
for one run (e.g. from 0.1 to 100 millisecond). We
repeat this process for five rounds (the variations
are within <1%) and record the average energy as
the ground-truth for the node. We use 1 GPU to
run all experiments. We record the start and end
timestamp of the model program, and extract the
energy values by comparing and aligning the times-
tamps from the resource profiler logs and power
monitor logs.

Ground Truth Energy: We measure ground truth
energy using a emonPi power monitor (Hudson,
2021) which is open source. The emonPi uses a
clip-on CT sensor to monitor the energy consumed
by the computer which records the passthrough
current and voltage every 170 ms. This allows
us to accurately measure the power draw at a sub
second granularity. We obtain current, voltage,
and timestamp values from the power meter’s built-
in serial port. The energy (e) consumed during a
time period is then calculated using the sampled
current (1;) and voltage (V;) values in that period:
e=> Vil

To guarantee the consistency and reliability of
the hardware energy measurements, we cool down
the PCs after each experiment finishes to avoid po-
tential overheating issue that can cause subsequent
energy distortions. We measure the standby power
consumption (when the CPU load is < 0.1%) and
ensure before running the experiments that the PC
does not draw more than the standby power. Fur-
ther, no other application is running during our
experiments.

To understand the scale of energy usage, Table 3
shows the estimated energy consumption (in kWh)
using our ground truth measurement. We also show
the cost of answering one million queries (in USD)
when using a BERT-base model in a reading com-
prehension (over one passage), and in an end-to-
end setting (over 150 passages) ignoring retrieval
compute. For reference, Google search handles
millions of queries every minute (Kenshoo, 2019).

Energy/IM Cost/IM
Use Case Qns (kWh) ~ Qns (USD)
QA over a single passage 161 21.24
QA over 150 passages 24,000 3,165

(ignore search/retrieval)

Table 3: Example energy for BERT-base QA models
using batch size 16 and sequence length 256 on PC1
using one GPU. The cost is estimated at 13.19 cents
per kWh. 3

Quantity BERT-base DistilBERT GPT2
# ML Nodes 3864 1932 2997
# Module Nodes 2100 560 972

# Model Nodes 28 28 28

# Tree Depth 6 5 4

Table 4: Energy dataset statistics for BERT-base, Distil-
BERT and GPT?2 model. For each model, we construct
28 trees (model nodes) with batch sizes from 8 to 32
with a step of 8, and input sequence lengths from 32
to 256 with a step of 32. We associate features and
ground-truth energy for each node in these trees.

Energy Dataset: To evaluate the energy predic-
tion, we create a dataset that cover a wide range
of input sizes for the six studied Transformer mod-
els and the 24 BERT model variants (Turc et al.,
2019). Each instance in the dataset can be of type
ML, Module or Model level and is associated with
features shown in Table 1 and hardware measured
energy. We show the statistics of the dataset for
BERT-base, DistilBERT and GPT?2 in Table 4.
Energy Error Metric: We measure the energy
error percentage as 100 X |PE — GE|/GE, where
PE is the predicted energy and GF is the ground
truth energy.

5.3 Energy Prediction Results

We compare IrEne with the existing software mea-
surement methods (Strubell et al., 2019; Henderson
et al., 2020). We apply their method directly for all
the models in our dataset. Note that their method
is a fully-defined estimation model with a fixed set
of parameters without any training. For IrEne ex-
periments, we report cross-validated evaluation on
the energy prediction dataset — leaving data from
one model out of training set and evaluating on it,
and then repeating the same for all the models.

based on the US national average as of May 2021
according to https://www.electricchoice.com/
electricity-prices-by-state.
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Figure 3: The CDF of model’s predicted energy errors.
We see that for 99% of the cases, the error is under 16%

IrEne is accurate Table 5 shows the energy pre-
diction errors at the model-level for all the models
on the two PCs. The existing software-based base-
line method from Strubell et al. (2019) incurs large
energy prediction errors of over 50%.

IrEne on the other hand incurs substantially
lower errors, with at most 7.6% errors across the
models, showing its value for reliable and accurate
energy analysis. As seen from the cumulative dis-
tribution function for the model errors in Figure 3,
all of IrEne’s errors are below 17% and nearly half
of its errors are below 10%. We note here that our
leave-one-model-out cross validation specifically
evaluates the generalizability of IrEne.

ML and Module Levels Errors are also low. Ta-
ble 7, 6 show a break down of the IrEne errors at
the ML and module levels respectively. Accurately
predicting ML level energy is key to accurate pre-
dictions for at the module level and higher, as the
errors will accumulate up the model tree in IrEne.
It turns out that we can indeed predict ML level
energy with high-levels of accuracy — errors are
lower than 1%, providing reliable values for the
module level predictions. Note that even unseen
models (ie ones evaluated in the test partition) will
be made up of the same set of ML primitives (per-
haps with different input and batch sizes). The
results here cannot be directly generalized to un-
seen ML-primitives. Module level errors are higher
and vary in range (5.4% to 16.7%) across different
models. Module level errors also turn out to be
higher than the model level errors. This is mainly
because the module level errors are averages across
all intermediate module level nodes in the model
tree; some modules might have bigger errors, but
these get calibrated by our End2End energy re-
gressor. We further characterize these effects in
IrEne ablation and validation analysis.

5.4 Feature Ablations

Table 8 shows the contribution of model and re-
source features in IrEne energy prediction. We
observe that resource features provide most of the
benefits for energy estimation IrEne for all levels,
confirming that resource information is important
for energy prediction. Model features do not reduce
ML level error because the error is already small,
but they help further reduce the prediction errors
for module and model levels and combining model
and resource features together brings the average
estimation errors further down to 8.5% and 5.5%.

5.5 Modeling Ablations

To understand the impact of learning and the ar-
chitectural choices of aggregating ML level energy
into module level energy in IrEne affect the model
accuracy, we build three (ablated) models:

Is end-to-end learning necessary? To test this,
we build a StepWise regressor that simply learns to
predict the energy of parent node from the ground-
truth energy of its child nodes at the training time.
At the test time, it uses predicted energy generating
predictions from ground up.

P.(n) = Z a(c) * Ge(c) Training
c € child(n)
Pon)= > a(¢c)xPefc) Testing (5)

¢ € child(n)

Here, o(c) and loss are still as defined in equa-
tion 3 and 4 respectively. However, unlike the IrEne
(End2End) regressor, the errors in the prediction
of root node, do not backpropogate to its predic-
tion of descendant nodes i.e. there is no end-to-end
training.

Is tree-structure necessary? To test this, we build
an Unstructured regressor that ignores the tree
structure completely, and directly predicts the en-
ergy from the feature representation of nodes (Mod-
ule and Model level) using linear regression as in
equation (1). Unlike ML-level regressor though,
here we need to use single set of parameters for
common across the nodes.

Is learning necessary? To test this, we use the
PredictedSum model (equation 2). Recall this
model also aggregates energy predictions over the
tree-structure but has no parameters to train.

Table 9 shows the ablation of IrEne with respect
to different algorithmic choices of the module level
energy aggregation. First, we find that the regres-
sor that ignores the tree structure (Unstructured)
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Machine System BERT-base DistilBERT RoBERTa-base GPT2 DistilGPT2 OpenaiGPT Average

PC1 Strubell et al., 2019 57.9 56.3 62.5 62.6 559 61.8 57.8
IrEne 5.8 11.6 7.1 35 22 2.7 5.5

PC2 Strubell et al., 2019 55.1 52.6 58.9 546 49.8 60.6 55.6
IrEne 10.0 9.4 7.1 61 49 5.9 7.2

Table 5: Energy Prediction Errors at Model level: Comparing IrEne and a software measurement baseline for the
two PCs. IrEne is significantly more accurate than Strubell et al., 2019.

Machine  BERT-base = DistiiBERT = RoBERTa-base = GPT2  DistilGPT2  OpenaiGPT  Average
PC1 5.37 5.93 5.44 1492  14.73 13.98 8.54
PC2 6.78 7.96 6.69 16.65 16.41 16.07 10.16

Table 6: Energy Prediction Errors at module levels using IrEne on two PCs. Note that in Table 11 at the appendix,
we also show a subset of the module level energy errors using Strubell et al., 2019.

Machine ~ Embedding  LayerNorm  Linear = Tanh  MatMul Softmax ConvlD  Average
PC1 0.65 0.89 0.60 0.82 0.61 1.0 0.58 0.70
PC2 0.38 0.66 0.55 0.43 0.43 0.67 0.41 0.53

Table 7: Energy Prediction Errors at ML levels using IrEne on two PCs. Note that the evaluation for these operation-

specific (eg. Embedding) regressors is done using the leave-one-model out setting as before.

ML Module Model
IrEne 0.70 8.54 5.52

w/o resource features 5.76 11.54 7.08
w/o model features  0.63 8.87 7.32

Table 8: Energy Prediction Errors of IrEne with ablated
features. Both model and resource features help the
IrEne’s performance at model and module levels, while
resource features are sufficient for ML-level.

5.6 Interpretable Energy Analysis

In this section, we use the interpretable energy anal-
ysis from IrEne to show energy bottlenecks for
given Transformer models, how energy varies for
different model architectures, and how it can be
used to effectively pick accuracy-energy trade-offs.
Finding energy bottlenecks: We use IrEne to ana-

lyze the energy bottlenecks in Transformer models.
For simplicity of analysis, we predict the energy for

Module Model modules that are immediate parents of the ML level

IrEne (End2End) 8.54 5.52 nodes and use it calculate the percentage of energy
StepWise 008 1484 it contributes to the model overall. Table 10 shows
PredictSum 16.4 17.69 the energy breakdown of two models: RoBERTa-
Unstructured 278.0 39.79 base and GPT2. We observe that self-attention

Table 9: Energy Prediction Errors of IrEne using differ-
ent module/model level regressors on PC1. Tree struc-
ture of the regressor crucial, and end-to-end optimisa-
tion on tree helps IrEne to get lower errors.

performs significantly worse than all other regres-
sors that do consider it. Interestingly, learning
without structure even performs worse than Pre-
dictedSum regressor that naively adds child en-
ergy without any learning, highlighting the impor-
tance of tree-structure. Further, learnt weighted
sum outperforms PredictedSum regressor. In par-
ticular, End2End regressor performs better than
StepWise regressor showing the importance of op-
timizing on whole tree in an end-to-end fashion.

layers in ROBERTa-base model consume 31% of
the total energy while it is the feed forward layers
in GPT2 that consume more than 59% of the energy.
The module level energy breakdown of all models
in Table 12 in Appendix C. We also present the full
energy breakdown of the BERT-base model and an-
notate each node with predicted energy percentage
in Figure 5 in the Appendix.

Task accuracy versus energy tradeoffs:

We fine-tune BERT-24 models (Turc et al.,
2019) on the Stanford Sentiment Treebank V2
(SST2) (Socher et al., 2013) using the default exam-
ples in the HuggingFace Transformers (Wolf et al.,
2020) without any hyperparameter tuning. We eval-
uate the accuracy on the dev set of SST2. These

2152



Module Energy %  Module Energy %
RobertaSelfAttention  31.24 MLP 59.13
Robertalntermediate =~ 30.57 Attention 37.94
RobertaOutput 28.64 LayerNorm  2.84
RobertaSelfOutput 09.11 Embedding 0.1
RobertaEmbeddings  00.41

RobertaPooler 00.03

(a) RoBERTa-base (b) GPT2

Table 10: Module level predicted energy breakdown
of two Transformer models. We average the energy of
these modules across all input sizes for each model ar-
chitecture. Self-attention is the energy bottleneck in
RoBERTa-base, but for GPT2, the bottleneck is feed
forward layers (MLP module).

20 I
® True Energy * Predicted Energy

15

/
| /

Energy (J)

80 82 84 86 88 90
SST2 Accuracy

Figure 4: Ground-truth and predicted energy vs accu-
racy on SST2 task for BERT-24 models. Energy data is
collected with batch size 16 and sequence length 128.
Because our energy predictions are accurate, we can
use energy consumption vs NLP model accuracy trade-
offs to select a model.

models are not part of our energy prediction train-
ing data. We additionally exclude BERT-base from
training data to show the extensibility of IrEne.

Given an energy budget, IrEne allows for selec-
tion of an optimal architecture that gets the highest
accuracy for a task. In Figure 4, we see that it is
possible for models to use more energy but return
lower accuracy than other models which might use
less energy. Similarly, given an accuracy target, we
can choose an architecture with the lowest energy
use. For example, for a target of 88% accuracy or
above, there are many such models ranging from
4] all the way to 12]J. Last, we point out that the
trade-off curve based on the predicted energy mir-
rors that of the ground-truth well enough to be used
as an accurate proxy.

6 Discussion

This work focused on inference energy predic-
tions of Transformers on a target hardware device.

The model tree abstraction is general and not tied
to Transformer architectures nor to specific deep
learning frameworks, it is extensible to other neu-
ral networks like LSTM and frameworks like Ten-
sorFlow. The abstraction is built from the com-
putational graph and knowledge about the model
architecture and underlying software. As long as
these are available we can apply our methodology
to other architectures as well.

Predicting the training energy is an important
and a more challenging problem. We believe our
methodology can be extended. However, it will re-
quire tracking the energy of both forward and back-
ward processes and even modeling other aspects
training dynamics, for example, time to converge
to specific accuracy.

Scaling to unseen hardware is an important and
challenging area that needs further research. It
requires both measuring the ground truth energy
for a more diverse collection of hardware and de-
signing proper hardware-specific features (i.e., L1
cache size, CPU cores, etc.). We believe IrEne’s
methodology can be extended to calibrate software
reported energy as a way to scale how we collect
ground truths (as weak-supervision). In the future,
we plan to study workloads on more hardware to
choose proper features that capture the hardware
energy differences.

7 Conclusions

Energy consumption of NLP models is an impor-
tant consideration from a cost perspective and in-
creasingly, from an environmental impact perspec-
tive as well. Designing energy efficient and cost-
effective models requires both accurate and inter-
pretable energy modeling. In this work, we showed
that by carefully combining resource utilization
with model description based features, we can de-
velop a multi-level energy prediction model that
is not only highly accurate but is also able to pro-
vide a break-down of how its different components
contribute to its overall energy.
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A IrEne Implementation Details

In this section, we provide the implementation de-
tails of IrEne. IrEne is implemented for PyTorch
(Paszke et al., 2019), but can be extended to Ten-
sorFlow (Abadi et al., 2016) in future.

A.1 Constructing the model tree

The first step to extracting the model tree is to run
the model on the target hardware. We run the ver-
sion of the model on HuggingFace Transformers
library v4.2.2 (Wolf et al., 2020) for random data
of different input sizes. Once run, we have both the
execution graph and the JIT trace that provides run-
time information. We use existing PyTorch APIs
to obtain module level nodes, ML primitives, and
the relationships between them, from the execu-
tion graph. In some cases, the NLP model may
use customized ML primitives. To extract infor-
mation about these custom primitives, we combine
information from the JIT trace and the execution
graph. Once we obtain all the component, we can
construct the model tree.

The following ML primitives are used in
Transformers: Linear, LayerNorm, Embedding,
BatchNorm1d, Convld, MaxPoolld, AvgPoolld,
LSTM, Tanh, Conv1D, LogSigmoid, ReL.U, Sig-
moid, GELU, and LeakyReLU. Two custom
primitives: matrix multiplications (including
torch.matmul, torch.bmm and torch.einsum), soft-
max (torch.softmax).

Machine PC1
BERT-base 32.54
DistilBERT 62.80
RoBERTa-base 13.36
GPT2 24.96
DistilGPT2 35.93
OpenaiGPT 42.37
Average 35.33

Table 11: Energy Prediction Errors at Module levels
using Strubell et al., 2019 methodology on PC1.

A.2 Model features

The model features reflect hardware-independent
compute and memory information for a given
model. We use the model execution to extract
model features used by IrEne for energy predic-
tion. We add forward hooks to each node in the

model to track the shape and input data of each
module and ML primitive. PyTorch hooks only
support tuple arguments, but we extend these to
also support keyword based arguments. The JIT
trace contains information about the number of
FLOPs and memory bytes for each module and ML
primitive. By combining JIT information and the
information obtained from our hooks, we get the
model features.

A.3 Resource features

Resource features capture how the models use hard-
ware resources and cause energy activities. Exist-
ing work (Henderson et al., 2020) uses the OS
resource profiler to log the resource utilization of
CPU, memory and GPU events. However, this in-
curs high profiling overhead, and profiling is only
done at a low rate of once every second. Instead, to
monitor resources, we obtain the CPU utilization by
directly reading /proc/stat and memory usage
by reading /proc/meminfo via a C program.
We simultaneously log the GPU utilization, GPU
memory usage, GPU Streaming processor (SM)
clock frequency and GPU memory frequency using
the Nvidia NVML API (Nvidia, 2021). To main-
tain low monitoring overhead, we log resources
every 170 ms, resulting in less than 0.5% increase
in CPU utilization and < 15 MB memory footprint.

Note that both model and resource features are
extensible, meaning that one can add more either
hardware-specific features or new model features
for newer deep learning frameworks or emerging
hardware like customized deep learning accelera-
tors.

A.4 Regressor Training Procedures

We’ve implemented IrEne using SciKit Learn (Pe-
dregosa et al., 2011a) and PyTorch (Paszke et al.,
2019). We learn linear regressors for ML-level in
SciKit Learn (Pedregosa et al., 2011b), and module
and model level regressor in PyTorch, which allows
easily optimizing on dynamic tree-structured com-
putation graphs. We use Adam optimizer (Kingma
and Ba, 2014) with 0.001 learning rate. In our
experiments 7 in equation 3 is fixed value of 10.
We normalize all the features to have 0 mean and
1 standard deviation, learning mean and standard
deviation from the training set and applying it on
the test set.
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Figure 5: Abridged view of a BERT-base-uncased model annotated with predicted energy from our prediction
method. The root contains the absolute energy of the model while every other node is annotated with its respective
energy percentage share. Darker colors represent nodes that consume a higher percentage of energy. There are 12
BertLayer modules in the actual model. We show just one for brevity. The shown energy is an average of energy
of the node across all (batch size, sequence length) models of BERT-base-uncased type.

B Software Measurements Results

We use experiment-impact-tracker (Henderson
et al., 2020) to estimate software-based energy mea-
surements for the models at a module level as well
as ML level. Table 11 shows the percentage er-
ror in software based measurements for module
level operations. We calculate a model’s module
level error as average percentage error over runs
for batch sizes 24 and 38, and sequence length
32 and 128. Getting granular ML level software
energy corresponding to Strubell et al. (2019) re-
quires modifying the existing framework which is
non-trivial. We leave this to future work.

C Energy Breakdowns

We show module level predicted energy breakdown
of four Transformer models in Table 12, and show
an abridged view of BERT-base-uncased tree an-
notated with predicted energy and distribution in
Figure 5.
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Module Energy %
BertOutput 31.89
BertSelfAttention 29.26
BertIntermediate 27.97
BertSelfOutput 09.74
BertEmbeddings 00.34
BertPooler 00.11
(a) BERT-base
Module Energy %
MLP
Attention 35.70
LayerNorm 2.79
Embedding 0.11
(b) OpenAI-GPT
Module Name Energy %
FFN 57.23
MultiHeadSelfAttention 39.46
LayerNorm 2.69
Embeddings 0.62
(c) DistilBERT
Module Name Energy %
FFN
MultiHeadSelfAttention 39.43
LayerNorm 2.86
Embeddings 0.21
(d) DistilGPT2

Table 12: Module level predicted energy breakdown of
four Transformer models. We average the energy of
these modules across all available input sizes for each
model architecture. Interestingly, we find that even
models with similar architecture have different types of
energy bottlenecks. For example, BERT-base has simi-
ar architecture to DistilBERT but has different energy
ottlenecks.



