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Abstract

Understanding manipulated media, from auto-
matically generated ‘deepfakes’ to manually
edited ones, raises novel research challenges.
Because the vast majority of edited or manipu-
lated images are benign, such as photoshopped
images for visual enhancements, the key chal-
lenge is to understand the complex layers of
underlying intents of media edits and their im-
plications with respect to disinformation.

In this paper, we study Edited Media Under-
standing Frames, a new conceptual formal-
ism to understand visual media manipulation
as structured annotations with respect to the in-
tents, emotional reactions, effects on individu-
als, and the overall implications of disinforma-
tion. We introduce a dataset for our task, EMU,
with 56k question-answer pairs written in rich
natural language. We evaluate a wide vari-
ety of vision-and-language models for our task,
and introduce a new model PELICAN, which
builds upon recent progress in pretrained mul-
timodal representations. Our model obtains
promising results on our dataset, with humans
rating its answers as accurate 48.2% of the
time. At the same time, there is still much
work to be done – and we provide analysis that
highlights areas for further progress.

1 Introduction

The modern ubiquity of powerful image-editing
software has led to a variety of new disinforma-
tion threats. From AI-enabled “deepfakes” to low-
skilled “cheapfakes,” attackers edit media to en-
gage in a variety of harmful behaviors, such as
spreading disinformation, creating revenge porn,
and committing fraud (Paris and Donovan, 2019;
Chesney and Citron, 2019; Kietzmann et al., 2020,
c.f.). Accordingly, we argue that it is important
to develop systems to help spot harmful manipu-
lated media. The rapid growth and virality of social
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Figure 1: Edited Media Understanding Frames.
Given a manipulated image and its source, a model
must generate natural language answers to a set of
open-ended questions. Our questions test the under-
standing of the what and why behind important changes
in the image – like that subject1 appears to be on good
terms with subject2.

media requires as such, especially as social media
trends towards visual content (Gretzel, 2017).

Identifying whether an image or video has been
digitally altered (i.e., “digital forgery detection”)
has been a long-standing problem in the computer
vision and media forensics communities. This has
enabled the development of a suite of detection
approaches, such as analyzing pixel-level statistics
and compression artifacts (Farid, 2009; Bianchi
and Piva, 2012; Bappy et al., 2017) or identifying

http://jeffda.com/edited-media-understanding
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“what” the edit was (Tan et al., 2019).
However, little work has been done on “why”

an edit is made, which is necessary for identifying
harm. Darkening someone’s skin in a family photo
because background light made them seem quite
pale is generally harmless. While such color re-
balancing is common, darkening Barack Obama’s
(or Rafael Warnock’s) skin in campaign ads was
clearly meant as a harmful edit by the editor that did
it.1 We choose to focus on the “why” – we define a
schema for approaching the problem of intent and
provide a rich set of natural language responses.
We also make a significant contribution towards
the “what:” we include a physical-change question,
provide rationales based in physical changes, and
give structured annotations (bounding boxes) on
what was changed in the edit.

We introduce Edited Media Understanding
Frames (EMU), a new conceptual formalism that
captures the notions of “why” and “what” in image
editing for language and vision systems (Figure
1). Following literature on pragmatic frames (Sap
et al., 2017, 2020; Forbes et al., 2020)—derived
from frame semantics (Baker et al., 1998)— we
formalize EMU frames along six dimensions that
cover a diverse range of inferences necessary to
fully capture the scope of visual disinformation.
We delve into the concept of intention as discussed
by the fake news literature (Rashkin et al., 2017;
Shu et al., 2017; Zhou and Zafarani, 2020) to cap-
ture editor’s intent such as motivation for edit and
intent to deceive, as well as the resulting implica-
tions of the edited content. For every dimension we
collect both a classification label and a free-form
text explanation. For example, for frame intent,
a model must classify the intent of the edit, and
describe why this classification is selected.

We then introduce a new dataset for our task,
EMU, with 56k annotations over 8k image pairs.
To kickstart progress on our task, we introduce a
new language and vision model, PELICAN, that
leverages recent progress in pretrained multimodal
representations of images and text (Tan and Bansal,
2019; Lu et al., 2019; Li et al., 2019). We compare
our model to a suite of strong baselines, including a
standard VLP model (Zhou et al., 2019), and show
key improvement in terms of ability to reason about
co-referent subjects in the edit. Nevertheless, our
task is far from solved: a significant gap remains

1How Georgia’s Senate race pits the Old South against
the New South. https://www.politico.com/news/2020/12/05
/georgia-senate-old-new-south-442423

between the best machine and human accuracy.
Our contributions are thus as follows. First, we

introduce a new task of Edited Media Understand-
ing Frames, which requires a deep understanding
of why an image was edited, and a corresponding
dataset, EMU, with 56k captions that cover diverse
inferences. In addition, we introduce a new model,
PELICAN, improving over competitive language-
and-vision transformer baselines. Our empirical
study demonstrates promising results, but signifi-
cant headroom remains. We release our dataset at
jeffda.com/edited-media-understanding

to encourage further study in discovering pragmatic
markers of disinformation.

2 Defining Edited Media Understanding
Frames

Through an edit e on source image i (e.g. “e = x
is edited into a room full of drugs”), an editor can
cause harm to the subject x’s mental state (mental
state: “x is angry about e”) and effect x’s image (ef-
fect: “e makes x seem dishonest”) (Rashkin et al.,
2016). The editor does this through the intention of
the edit (intent: “e intends to harm x’s image”) and
changing the implications of the image (implica-
tion: “e frames x as a drug cartel member”) (Forbes
et al., 2020; Sap et al., 2020; Paris and Donovan,
2019).

To this end, we collect edits e and source
images i from Reddit’s r/photoshopbattles com-
munity. There is no readily available (large)
central database of harmful image edits, but
r/photoshopbattles is replete with suitable com-
plex and culturally implicative edits (e.g., reference
to politics or pop culture). This provides us with
relevant image edits at a reasonable cost without
advocation for dangerous training on real harmful
image edits. Keeping the source image i in the
task allows us to sustain the tractability of the im-
age edit problem (Tan et al., 2019; Jhamtani and
Berg-Kirkpatrick, 2018).

2.1 Edited Media Understanding Frames:
Task Summary

Given an edit e: IS → IE , we define an edited
media understanding frame F (∗) as a collection
of typed dimensions and their polarity assign-
ments: (i) physical P(IS → IE): the changes from
IS → IE , (ii) intent N(E → IE): whether the Ed-
itor E implied malicious intent in IS → IE , (iii)
implication M(E → IE): how E might use IE to

https://www.politico.com/news/2020/12/05/georgia-senate-old-new-south-442423
https://www.politico.com/news/2020/12/05/georgia-senate-old-new-south-442423
https://www.politico.com/news/2020/12/05/georgia-senate-old-new-south-442423
https://reddit.com/r/photoshopbattles
https://reddit.com/r/photoshopbattles
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Figure 2: An example from EMU. Given a source image and its edit, and a list of main subjects in the image,
we collect a label l and natural language responses (reponse to frame y and rationale r to applicable open-ended
questions q covering each of five frames f ∈ F . We also collect structural annotations ai highlighting the edited
sections of the image.

mislead, (iv) mental state S (IE → si): whether
the predicate IE impacts the emotion of a role si,
(v) effect E(IE → si): the effect of IE on si. We
assume frames can be categorized as harmful or
not harmful with polarity l ∈ {+,−}. Each polarity
l can be interpreted with reason y, and that each
reason can be supported with rationale r.

Technically, a model is given the following as
input:

• A source image IS , and an edited image IE .
• A list of important subjects: expressed as bound-

ing boxes bi for each subject.
• An open-ended question q associated with F (∗);

e.g., “How might subject3 feel upon seeing this
edit?”
• A list of annotated boxes ai ∈ IE marking the

objects in the image that were introduced and
modified, and a true/false label denoting if the
background was changed.

A model must produce the polarity classification
l′ ∈ {+,−}, interpretation of the polarity (response
y′) and rationale for interpolation r′. (For the phys-
ical frame, only y needs to be generated). Figure 2
shows an example of our task configuration. The
lexicon of the label is fixed for each F(∗) (e.g. for
N(∗), − → harmful, +→ harmless).

3 EMU: A Corpus of Edited Media
Understanding Frames

Sourcing Image Edits We source our image ed-
its from the r/photoshopbattles community on
Reddit which hosts regular Photoshop competi-
tions, where given a source photo, members submit
a comment with their own edited photo.

We collect 8K image edit pairs (source and
edited photo pairs) from this community by, first,
manually curating a list of more than 100 terms de-
scribing people frequently appearing in Photoshop
battles posts. Then, we screen over 100k posts for
titles that contain one or more of these search terms
resulting in 20k collected image pairs. Addition-
ally, we run an object detector (He et al., 2017) to
ensure that is at least one person present in each
image as a means for ensuring that annotators do
not see image pairs without any subjects.

Annotating Image Edits We ask a group of vet-
ted crowd workers to identify the main subjects in
an image edit and answer open-ended questions in
natural language. Each image is annotated by 3
independent crowd workers.

Crowd workers are first presented with a num-
bered set of people bounding boxes (produced by
Mask R-CNN (He et al., 2017)) over the edited

https://reddit.com/r/photoshopbattles
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Frame Notation Related Question
Physical P(IS → IE) What changed in this image

edit?
Intent N(E → IE) Why would someone create

this edit?
Implication M(E → IE) How might this edit be used to

mislead?
Mental State
[of subjectX]

S (IE → si) How might this image edit
make subjectX feel?

Effect [on
subjectX]

E(IE → si) How could this edit mislead
public perception of subjectX?

Table 1: Questions for each of the frames in Edited Me-
dia Understanding Frames. Each frame is associated
with a question that allows human annotators to address
the frame, and models to generate l, y, r for the given
frame.

image and are asked to select subjects that are sig-
nificant to the edits (as opposed, say, a crowd in the
background). Once subjects are selected, the anno-
tators are asked to assign classification labels for
each of the five possible question types and provide
free-form text answers for each question (when
applicable). For the classification label, we retain
the majority vote (Fleiss κ = 0.67). In a separate
and final pass, we explicitly identify which portions
of the modified image is introduced or altered by
asking the workers to to label the most important
sections of the modified image and selecting one
of the two labels. The statistics of the dataset are
shown in Figure 3.

4 Modeling Edited Media Understanding
Frames

In this section, we present a new model for Edited
Media Understanding Frames, with a goal of kick-
starting research on this challenging problem. As
described in Section 2, our task differs from many
standard vision-and-language tasks both in terms of
format and required reasoning: a model must take
as input two images (a source image and its edit),
with a significant change of implication added by
the editor. A model must be able to answer ques-
tions, grounded in the main subjects of the image,
describing these changes. The answers are either
boolean labels, or open-ended natural language –
including explainable rationales.

4.1 Our model: PELICAN
For Edited Media Understanding Frames, not all
image regions are created equal. Not only is the
subject referred to in the question (e.g. subject1)
likely important, so too are all of the regions in

Figure 3: Statistics for EMU. We consider five ques-
tion types, which in aggregate require a strong under-
standing of the image edit. The first three types are
subject agnostic, though annotations refer explicitly to
subjects through subject tags; two (with subjectX) are
subject-specific.

the image edit that are introduced or altered. We
propose to use the annotations that collected for
these regions as additional signal for the model
to highlight where to attend.2 Not only should a
model likely attend to these important regions, it
should prioritize attending to regions nearby (such
as objects that an edited person is interacting with).

We propose to model the (likely) importance of
an image region through graph propagation. We
will build a directed graph with all regions of the
image, rooted at a subject mentioned by the ques-
tion (e.g. subject1). We will then topologically
sort this graph; each region is then given an embed-
ding corresponding to its sorted position – similar
to the position embedding in a Transformer. This
will allow the model to selectively attend to im-
portant image regions in the image edit. We use a
different position embedding for the image source,
and do not perform the graph propagation here (as
we do not have introduced or altered annotations);
this separate embedding captures the inductive bias
that the edited is more important than the source.

2These annotations are collected from workers, but in the-
ory, it would be possible to train a model to annotate regions
as such. To make our task as accessible and easy-to-study as
possible, however, we use the provided labels in place of a
separate model however.
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Figure 4: Overview of PELICAN. Our model takes as input all regions s from the source image and e from
the edited image. We order the regions in e using a topological sort of overlapping boxes, rooted at subject1.
The green regions marked with an asterisk are additional regions that were introduced, and were labeled through
annotators. This ordering allows the model to selectively attend to important image regions in generating an answer
to the visual question about subject1.

4.2 Model details and Transformer
integration

In this section, we describe integrating our impor-
tance embeddings with a multimodal transformer.

Let the source image be IS and IE . We use the
backbone feature extractor φ ( Faster-RCNN fea-
ture extractor (Ren et al., 2015; Anderson et al.,
2018) to extract N regions of interest for each re-
gion:

[s1, ... , sN] = φ(IS ) [e1, ... , eN] = φ(IE). (1)

We note that some of these regions in e1, ... , eN are
provided to the model (as annotated regions in the
image); the rest are detected by φ. These, plus the
language representation of the question, are passed
to the Transformer backbone T :

[z1 ... zN+L] = T ([s1 ... sN], [e1, ... , eN] , [x1 ... xL])
(2)

Important for EMU, z2N+1, ... , z2N+L serve as
language representations. Training under a left-to-
right language modeling objective, we can predict
the next next token xL+1 using the representation
zN+L.

4.2.1 Prioritization Embeddings from
Topological Sort

Transformers require position embeddings to be
added to each image region and word – enabling
it to distinguish which region is which. We sup-
plement the position embeddings of the regions

{e1...eN} in the edited image IE with the result of a
topological sort.

Graph definition. We define the graph over im-
age regions in the edited image as follows. We
begin by sourcing a seed region s ∈ {e1...eN}. Let
G = (V, E), where each v ∈ V represents meta-
data of some ri ∈ φ(IE), defined as vi ∈ m(IE) for
simplicity, s.t.:

vi = {x1, y1, x2, y2, si, li} (3)

where x1, y1, x2, y1 represents the bounding box
of ri, si ∈ {1, 0} denoting if ri is a subject of IE , and
li ∈ {introduced, altered} denoting the label of ri.

We build the graph iteratively: for each iteration,
we define an edge e = {v, u}; u ∈ V s.t.:

∀v ∈ m(IE),∀u ∈ V, E = E ∪ (u, v) ∈ E′ (4)

We define E′ as the set of edges (u, v) in which
u and v are notationally similar. We define three
cases in which this is true: if si ∈ ui ∧ s j ∈ v j,
if li ∈ ui = l j ∈ v j, and if x1, y1, x2, y2 ∈ ui and
x3, y3, x4, y4 ∈ ui overlaps, in which the percentage
overlap is defined by standard intersection-over-
union:

min{x4, x2} −max{x3, x1}

min{y4, y2} −max{y3, y1}
(5)

We cap the number of outgoing edges at 3, and
prevent cycles by allowing edges only to unseen
image regions. In cases where there are more than
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three possible edges, we add edges in the order de-
fined in the previous paragraph, and break overlap
ties via maximum overlap.

To produce embeddings, we run topological sort
over the directed graph to assign each image region
an embedding, then assign an embedding to each
image region based on the ordered index. The
embedding is zeroed out for image regions that are
missing from the DAG, and from the source image
(which are unlabeled). We include bounding box
and class labels. To generate text and classification
labels, we attach the embeddings onto the input for
an encoder-decoder structure.

5 Experimental Results on EMU

In this section, we evaluate a variety of strong
vision-and-language generators on EMU. Similar
to past work on VQA, we rebalance our test set
split ensuring a 50/50 split per question type of ma-
liciously labeled captions. We provide two human
evaluation metrics – head-to-head, in which gener-
ated responses are compared to human responses,
and accuracy, in which humans are asked to label if
generated responses are accurate in regards to the
given edit.

5.1 Baselines

In addition to evaluating PELICAN, we compare
and evaluate the performance of various potentially
high-performing baselines on our task.

a. Retrieval. For a retrieval baseline, which
generally performs well for generation-based tasks,
we use features from ResNet-158 (He et al., 2016),
defined as φ, to generate vectors for each IE in the
test set. We then find the most similar edited image
IT in the training set T via cosine similarity:

argmax
IT∈T

φ(IE) · φ(IT )
‖φ(IE)‖ × ‖φ(IT )‖

(6)

We use the captions associated with the most
similar image in the training set.

b. GPT-2 (Radford et al., 2019). As a text-only
baseline, we use the 117M parameter model from
GPT-2, fine-tuned on the captions from our dataset.
Since the images are not taken into consideration,
we generate from the seeds associated with each
question type and use the same captions for all
images in the test set.

c. Cross-Modality GPT-2. We test a unified
language-and-vision model on our dataset. Simi-
lar to (Alberti et al., 2019), we append the visual

features φ(IS ) and φ(IE) to the beginning of the
token embeddings from GPT-2 (117M). For the
questions involving a subject, we append an ad-
ditional vector φ(r), where r is the region defined
by the bounding box for that subject.

d. Dynamic Relational Attention (Tan et al.,
2019). We test the best model from previous work
on image edits on our task, Dynamic Relational
Attention. We train the model from scratch on our
dataset, using the same procedure as (Tan et al.,
2019). We seed each caption with the relevant
question.

e. VLP (Zhou et al., 2019). We test VLP, a
pre-trained vision-and-language transformer model.
For image captioning, VLP takes a single image as
input and uses an off-the-shelf object detector to ex-
tract regions, generation a caption using sequence-
to-sequence decoding and treating the regions as a
sequence of input tokens.

To generate a caption for a particular question
type, we fix the first few generated tokens to match
the prefix for that question type. We fine-tune VLP
starting from weights pre-trained on Conceptual
Captions (3.3m image-caption pairs) (Sharma et al.,
2018) and then further trained on COCO Captions
(413k image-caption pairs) (Lin et al., 2014).

5.2 Quantitative Results and Ablation Study

We present our results in Table 2. We calculate
generative metrics (e.g. METEOR) by appending
the rationale to the response. Generations from
PELICAN are preferred over human generations
14.0% of the time, with a 0.86 drop in perplexity
compared to the next best model. To investigate
the performance of the model, we run an ablation
study on various modeling attributes, detailed in
Table 3. First, we investigate the effect of pretrain-
ing (on Conceptual Captions (Sharma et al., 2018;
Zhou et al., 2019)). We find that performance drops
without pretraining (53.47%), but surprisingly still
beats other baselines. This suggests that the task re-
quires more pragmatic inferences than the semantic
learning typically gained from pre-training tasks.
Second, we ablate the importance of including an-
notated (ai) features from the dataset when creating
the directed graph, relying on a seed from a random
R-CNN region (54.44%). We also ablate our use of
topological sort and a directed graph by suggesting
a simple (but consistent) order for image regions
(54.91%). Finally, we ablate including the visual
regions from the source image. The performance is
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Figure 5: Generation examples from PELICAN, marked with results from human evaluation. PELICAN is able to
correctly reference marked figures and is able to infer intent accordingly across each question type.

Automated metrics Human evaluation

Model Perplexity ↓ ROUGE-L ↑ METEOR ↑ Accuracy ↑ Head-to-
Head ↑ Accurate % ↑

Humans n/a n/a n/a 89.8 50.0 95.2

Retrieval Baseline n/a 11.5 7.2 51.9 4.4 20.6
GPT-2 (Radford et al., 2019) 26.6 10.3 6.2 50.0 0.0 3.0
Cross-Modality GPT-2 22.1 12.0 7.9 51.0 4.1 10.4
Dynamic RA (Tan et al., 2019) 23.1 13.2 8.9 51.8 5.3 12.4
VLP (Zhou et al., 2019) 12.3 18.5 10.5 53.2 9.3 20.3
PELICAN REAL (ours) 11.6 19.5 10.8 54.1 11.3 25.5
PELICAN (ours) 11.0 22.1 11.6 55.4 14.6 48.2

Table 2: Experimental results on EMU. We compare our model, PELICAN, with several strong baseline ap-
proaches. We calculate generative metrics (e.g. METEOR) by appending the rationale to the response. PELICAN
REAL describes a version of PELICAN trained on EMU without additional human annotation (6.1).

Auto Eval Human Eval

Model Accuracy ↓ Accuracy ↑

PELICAN 55.40 48.2

physical n/a 60.5
intent 55.2 43.0
implication 60.1 49.9
mental state [of subjectx] 54.6 42.5
effect [on subjectx] 53.7 41.1

− pretraining 54.6 44.0
− annotated features 54.4 40.1
− directed graph 54.9 45.2
− source image 55.3 47.5

Table 3: Ablation study for PELICAN. We also explore
the performance of PELICAN across each frame type.

similar (55.35%), suggesting that PELICAN would
be able to perform in real-world settings in which
only the edited image is present (e.g. social media
posts).

5.3 Qualitative Results

Last, we present qualitative examples in Figure
5. PELICAN is able to correctly understand im-
age pairs which require mostly surface level un-
derstanding - for example, in the top example, it
is able to identify that the gun and action implies
negative context, but misunderstands the response
with regards to the situation. In the bottom ex-
ample, we show that PELICAN is able to refer to
subject1 correctly, but misinterprets the situation
to be non-negative.
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Figure 6: Failure cases from PELICAN, trained on
EMU. Commonsense is the largest differentiator be-
tween human understanding and model-based analysis
of disinformation.

6 Future Implications

6.1 EMU in the Real World

To study if EMU is helpful in real-world settings,
we train a model of PELICAN on EMU with only
the edited image. In this setting, the model must hy-
pothesize which parts of the image were edited and
discern the main subjects in the image. At test time,
we generate captions for each of the 5 intention-
based question types. Results of this version of
PELICAN is in Table 2.

While this evaluation scheme is crude, we find
that this version of PELICAN is still able to outper-
form previous models without usage of the source
image. This suggests potential for generations from
EMU-trained models in human-assisted settings.
In an initial human study (given PELICAN REAL
captions, classify the edit as disinformation – were
the captions helpful in your decision?) we find that
annotators label as helpful 71.5% of the time. Ad-
ditionally, annotators tended more often to pick the
gold label (89.1%→ 95.2%).

6.2 Failure Cases in Current Models and
Avenues for Future Research

EMU also helps us understand what current vision-
and-language models are missing for use on dis-
information , by analyzing the reasons and ratio-
nales generated. We ask annotators to compare
PELICAN-generated captions marked as “worse”

and human captions. Category details are in-
cluded in the appendix. Figure 6 shows our results.
Overall, current models primarily lack the com-
monsense (event-based and social) to accurately
describe disinformation. Geographical (location-
based) and political (e.g. knowledge about the job
of a president) external knowledge is also a missing
component.

PELICAN also still makes mistakes in
description-related attributes: describing some-
thing other than the important change and an
inaccuracy (e.g. wrong color) are the most com-
mon. Specific information – such as information
relating to a specific person in the image (i.e.
requiring a model to identify the person in the
image), and information about a past event – are
the least critical, suggesting that efforts should be
focused first on general intelligence rather than
named-entity lookup.

7 Related Work

Language-and-Vision Datasets Datasets involv-
ing images and languages cover a variety of tasks,
including visual question answering (Agrawal et al.,
2015; Goyal et al., 2017), image caption generation
(Lin et al., 2014; Young et al., 2014; Krishna et al.,
2016), visual storytelling (Park and Kim, 2015;
Bosselut et al., 2016), machine translation (Elliott
et al., 2016), visual reasoning (Johnson et al., 2017;
Hudson and Manning, 2019; Suhr et al., 2019), and
visual common sense (Zellers et al., 2019).

Two-image tasks Though most computer vision
tasks involve single images, some work has been
done on exploring image pairs. The NLVR2 dataset
(Suhr et al., 2019) involves yes-no question answer-
ing over image pairs. Neural Naturalist (Forbes
et al., 2019) tests fine-grained captioning of bird
pairs; (Jhamtani and Berg-Kirkpatrick, 2018) iden-
tifies the difference between two similar images.

Image Edits There has been some computer vi-
sion research studying image edits. Unlike our
EMU dataset, however, much of this work has fo-
cused on modeling lower-level image edits wherein
the cultural implications do not change signifi-
cantly between images. For example, (Tan et al.,
2019) predicts image editing requests (generate
‘change the background to blue’ from a pair of
images). Past work has also studied learning to
perform image adjustments (like colorization and
enhancement) from a language query (Chen et al.,
2017; Wang et al., 2018). Hateful Meme Challenge
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(Kiela et al., 2020) is a recent work challenging
models to classify a meme as hateful or not.

8 Conclusion

We present Edited Media Understanding Frames–
a language-and-vision task requiring models to an-
swer open-ended questions that capture the intent
and implications of an image edit. Our model, PEL-
ICAN, kickstarts progress on our dataset – beating
all previous models and with humans rating its an-
swers as accurate 48.2% of the time. At the same
time, there is still much work to be done – and we
provide analysis that highlights areas for further
progress.
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9 Ethical Considerations

In constructed the EMU dataset, great care was
taken to ensure that crowd-workers are compen-
sated fairly for their efforts. To this end, we
monitored median HIT completion times for each
published batch, adjusting the monetary reward
such that at least 80% of workers always received
>$15/hour, which is roughly double the minimum
wage in the United States (the country of residence
for most Amazon Mechanical Turk workers). This
included the qualification and evaluation rounds.
The following data sheet summarized relevant as-
pects of the data collection process (Bender and
Friedman, 2018):

A. Curation Rationale: Selection criteria for the
edits included in the presented dataset are discussed
Section 3. We selected the highest-rated posts on
Reddit, and collected metadata data from annota-
tors marking if the edit is NSFW or offensive.

B. Language Variety: The dataset is available
in English, with mainstream US Englishes being
the dominant variety, as per the demographic of
Amazon Mechanical Turk workers.

C. Speaker Demographic: N/A

D. Annotator Demographic: N/A
E. Speech Situation: All frames were collected

and validated over a period of about 12 weeks, be-
tween November and January 2020, through the
Amazon AMT platform. Workers were given regu-
lar, detailed feedback regarding the quality of their
submissions and were able to address any questions
or comments to the study’s main author via Email
or Slack.

F. Text Characteristics: In line with the in-
tended purpose of the dataset, the included edits
describe social interactions related (but not limited
to) platonic and romantic relationships, political
situations, as well as cultural and social contexts.

G. Recording Quality: N/A
H. Other: N/A
Lastly, we want to emphasize that our work is

strictly scientific in nature, and serves the explo-
ration of machine reasoning alone. It was not de-
veloped to offer guidance on misinformation or to
train models to classify social posts as misinfor-
mation. Consequently, the inclusion of malicious
image edits could allow adversaries to train mali-
cious agents to produce visual misinformation. We
are aware of this risk, but also want to emphasize
that the utility of these agents allow useful negative
training signal for minimizing harm that may be
cased by agents operating in visual information. It
is, therefore, necessary for future work that uses
our dataset to specify how the collected examples
of both negative and positive misinformation are
used, and for what purpose.
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A Appendices

A.1 Reproducibility of Experiments

We provide downloadable source code of all scripts,
and experiments, at to-be-provided. We use
two Titan X GPUs to train and evaluate all models,
except Dynamic Relational Attention (Tan et al.,
2019), which was trained on a single Titan Xp
GPU. For GPT-2 (Radford et al., 2019), we use
the 117M parameter model, taking 5 hours to train.
Our configuration of VLP (Zhou et al., 2019) has
138,208,324 parameters, taking 6 hours to train.
Our model, PELICAN, has 138,208,324 parame-
ters, taking 6 hours to train. Our Dynamic Rela-
tional Attention model has 55,165,687 parameters,
taking 10 hours to train.

A.2 Reproducibility of Hyperparameters

For models using GPT-2 as their underlying infras-
tructure, we use a maximum sequence length of
1024, 12 hidden layers, 12 heads for each attention
layer, and 0.1 dropout in all fully connected lay-
ers. For Dynamic Relational Attention (Tan et al.,
2019), we use a batch size of 95, hidden dimension
size of 512, embedding dimension size of 256, 0.5
dropout, Adam optimizer, and a 1e-4 learning rate.
We used early stopping based on the BLEU score
on the validation set at the end of every epoch;
the test scores reported are for a model trained
for 63 epochs. For all models relying on VLP as
their underlying infrastructure, we use 30 training
epochs, 0.1 warmup proportion, 0.01 weight decay,
64 batch size.

A.3 Reproducibility of Datasets

Our dataset has 39338 examples in the training set
and 4268 and 3992 examples in the development
and test sets respectively. All training on additional
datasets (e.g. (Zhou et al., 2019)) matches their
implementation exactly. Our train/val/test splits
were chosen at random, during the annotation pe-
riod. No data was excluded, and no additional
pre-processing was done. A downloadable link is
available at to-be-provided after publication.

A.4 Data Collection

For reference and reproducibility, we show the full
template used to collect data in Figure 9.

We also show our human evaluation process in
Figure 10.

Figure 7: Subject distribution. To highlight our deci-
sion for a 3 subject limit, we show that the majority of
images contains 1-2 subjects.

A.5 Additional Annotation Details

For an image pair (consisting of an image edit and
a source image), we 1) ask the annotator to iden-
tify and index the main subjects in the image, 2)
prime the annotator by asking them to describe the
physical change in the image, 3) ask a series of
questions for each main person they identified, and
4) ask a series of questions about the image as a
whole. For each question we require annotators
to provide both an answer to the question and a
rationale (e.g. the physical change in the image
edit that alludes to their answer). This is critical,
as the rationales prevent models from guessing a
response such as “would be harmful” without pro-
viding the proper reasoning for their response. We
ask annotators to explicitly separate the rationale
from the response by using the word “because” or
“since” (however, we find that the vast majority of
annotators naturally do this, without being explic-
itly prompted). For the main subjects, we limit the
number of subjects to 3. This also mitigates a large
variation in workload between image pairs, which
was gathered as potentially problematic from an-
notator feedback. We limit the number of captions
per type to 3. We find that a worker chooses to
provide more than one label for a type in only a
small proportion of cases, suggesting that usually,
one caption is needed to convey all the information
about the image edit relating to that type .
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Figure 8: Language sentence length distribution,
measured in words, across other language-and-vision
datasets. The natural language answers in EMU show
a high degree of complexity, with an average sentence
length of 26.45 words.

A.6 Lexical Analysis

Word-Level Statistics We analyze the lexical
statistics of this dataset. We remove stop words
as words such as “him”. We show that different
types require different language in their response.
In addition, we highlight that many of the rationales
involve people, suggesting that understanding so-
cial implications is critical to solving this task.

A.7 Motivation for EMU Task Definition

We begin by motivating and contextualising our
problem. A key insight is that we need to think into
the future – since the task is important but difficult,
we aim to structure EMU such that it can help mod-
els learn how to understand misinformation (by
providing the source image, grounding captions,
and additional annotations) without oversimplify-
ing the task.

Frames. We ask models a series of questions
about the what and why of the image edit. We
arrived on these questions by first asking annota-
tors to explain the image edits without prompting.
Then, we bucketed the responses into similar cat-
egories, motivating us to create questions based
on the parts of edits humans naturally focused on.
In our task, we consider six open-ended question
types – physical, intent, implication, emotion [of
SubjectX], attack [on SubjectX], and disinforma-
tion. Descriptions of each are in Figure 2. Each
type focuses on a different aspect of the image edit,
and is related one-to-one with an open-ended ques-
tion q. Each question type may also reference a
specific entity b. In these cases, the answer to the
question would differ based on the main subject

Figure 9: Example of our annotation process.

Figure 10: Example of our evaluation process.

referred.
Labels. For each q, we ask models to provide

both a classification label l and a generated answer
(response y and rationale r) for a given image edit.
Visual misinformation is not a closed form problem
– the potential label-space and responses for an
malicious edit are ever-changing with recent events.
Thus, we suggest that models need to produce a
generated answer. However, we also want models
to go beyond simple answering – we want them to
answer for the right reasons, in an explainable way.
Thus, we require models to generate a rationale
explaining why its answer is true. For example,
a good rationale explains that the perception of
subject1 could be injured because a gun was added
to subject1’s hand. Our evaluation recruits human
raters to compare generated answers and rationales
y/r to those written by annotators. To account for
the current difficulty of evaluating generation, we
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Responses
Rationales intent implication disinformation emotion [of SubjectX] attack [on SubjectX]

holding 4.21% fun 4.83% public 3.07% movie 2.93% confused 7.62% likes 3.00%
face 4.09% powerful 1.13% think 2.12% woman 2.12% amused 4.38% hates 2.21%
wearing 3.17% funny 1.09% man 1.75% new 1.92% embarrassed 3.88% loves 1.36%
man 2.64% hero 1.02% fun 1.68% game 1.23% upset 3.50% wants 1.35%
appears 2.41% movie 1.01% disgrace 1.25% real 1.23% proud 2.61% doesn’t 1.31%

Table 4: Lexical statistics. Statistics for each dimension represent omit the rationale, and statistics for the rationale
are reported separately.

Figure 11: Our template for human evaluations. Each
annotator is shown an edited image, the source image,
and is asked to compare a human annotated captions
and a machine annotated caption.

include a binary classification label l for each of
the “why” answers to allow for a simple checkpoint
evaluation metric of model progress.

Grounding. Each explanation is grounded to
bounding boxes ai of the people in the edited im-
age. Similar to past work in vision-and-language
(Zellers et al., 2019), annotators write captions
that refer to the bounding box (for example,
subject1would be angry). This allows precise ref-
erence in visually complex edits.

Additional annotations. Finally, we provide
annotators for bounding boxes of introduced and
modified regions in edited images. These bounding
boxes provide the syntax of the change in a machine
digestible format (bounding boxes + labels). We
conduct initial exploration of the empirical benefit

of these labels in our modeling section.


