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Abstract

Recent work on non-autoregressive neural ma-
chine translation (NAT) aims at improving the
efficiency by parallel decoding without sac-
rificing the quality. However, existing NAT
methods are either inferior to Transformer or
require multiple decoding passes, leading to
reduced speedup. We propose the Glancing
Language Model (GLM) for single-pass par-
allel generation models. With GLM, we de-
velop Glancing Transformer (GLAT) for ma-
chine translation. With only single-pass par-
allel decoding, GLAT is able to generate
high-quality translation with 8×-15× speedup.
Note that GLAT does not modify the net-
work architecture, which is a training method
to learn word interdependency. Experiments
on multiple WMT language directions show
that GLAT outperforms all previous single
pass non-autoregressive methods, and is nearly
comparable to Transformer, reducing the gap
to 0.25-0.9 BLEU points.

1 Introduction

Transformer has been the most widely used ar-
chitecture for machine translation (Vaswani et al.,
2017). Despite its strong performance, the decod-
ing of Transformer is inefficient as it adopts the
sequential auto-regressive factorization for its prob-
ability model (Figure 1a). Recent work such as
the non-autoregressive transformer (NAT), aims to
decode target tokens in parallel to speed up the gen-
eration (Gu et al., 2018). However, the vanilla NAT
still lags behind the Transformer in translation qual-
ity – with a gap of about 7.0 BLEU points. NAT
assumes the conditional independence of the target
tokens given the source sentence. We suspect that
NAT’s conditional independence assumption pre-
vents learning word interdependency in the target
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(a) Sequential LM
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(b) Cond. Independent LM

̂y1
̂y2

̂y4
̂y5

̂y3

h1
h2
h3
h4
h5

NAT DecodingH H′�Glancing Sampling

Hamming 
Distance

N( ̂Y, Y ) = 3

y1
y2
y3
y4
y5

̂y1
̂y2

̂y4
̂y5

̂y3

y1

y3

y5

Replace 
Inputs

0.8

0.5

0.7

0.6

0.9

h2

h4

y1 y2

y1 y2 y5

Decoder

Encoder

x1 x2 x3 x4

y3 y4

y3 y4

[BOS]

y1 y2 y5

Decoder

Encoder

x1 x2 x3 x4

y3 y4

h2 h4h1 h3 h5

 a
tt

en
tio

n

R
an

do
m

 
M

as
ki

ng

Decoder

Encoder

x1 x2 x3 x4

y1 y4 y5[MASK] [MASK]

y2 y3y1 y5y4

 a
tt

en
tio

n

an  apple  in    the   car

ein    Apfel    im     Auto 

Decoder

Encoder

x1 x2 x3 x4

y1 h2 y5h4y3

y2 y4

G
la

nc
in

g 
Sa

m
pl

in
g

y3y1 y5

ein    Apfel    im     Auto 

an  apple  in    the   car

 a
tt

en
tio

n

ein    Apfel    im     Auto ein    Apfel    im     Auto 

      apple  in         apple         the  

an                    the   car

an  apple  in    the

an             in            car

 a
tt

en
tio

n
(c) Masked LM (MLM)
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(d) Glancing LM (GLM)

Figure 1: Probabilistic models for machine translation
methods. (b) Vanilla NAT uses conditional indepe-
dent LM. (c) Mask-Predict NAT uses MLM and re-
quires multiple passes of decoding. (d) Our proposed
GLM leverages the decoder prediction to decide glanc-
ing sampling policy during training and only requires
one pass of decoding during inference.

sentence. Notice that such word interdependency
is crucial, as the Transformer explicitly captures
that via decoding from left to right (Figure 1a).

Several remedies are proposed (Ghazvininejad
et al., 2019; Gu et al., 2019) to capture word inter-
dependency while keeping parallel decoding. Their
common idea is to decode the target tokens itera-
tively while each pass of decoding is trained using
the masked language model (Figure 1c). Since
these methods require multiple passes of decod-
ing, its generation speed is measurably slower than
the vanilla NAT. With single-pass generation only,
these methods still largely lag behind the autore-
gressive Transformer.
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One open question is whether a complete par-
allel decoding model can achieve comparable ma-
chine translation performance to the Transformer.
It should be non-autoregressive and take only one
pass of decoding during the inference time.

To address the quest, we propose glancing lan-
guage model (GLM), a new method to train a prob-
abilistic sequence model. Based on GLM, we de-
velop the glancing Transformer (GLAT) for neural
machine translation. It achieves parallel text gener-
ation with only single decoding. Yet, it outperforms
previous NAT methods and achieves comparable
performance as the strong Transformer baseline in
multiple cases. Intuitively, GLM adopts a adaptive
glancing sampling strategy, which glances at some
fragments of the reference if the reference is too
difficult to fit in the training of GLAT. Correspond-
ingly, when the model is well tuned, it will adap-
tively reduce the percentage of glancing sampling,
making sure that the resulting model could learn
to generate the whole sentence in the single-pass
fashion. The gradual learning process smooths the
learning curve of single-pass parallel generation.

Specifically, our proposed GLM differs from
MLM in two aspects. Firstly, GLM proposes an
adaptive glancing sampling strategy, which enables
GLAT to generate sentences in a one-iteration way,
working by gradual training instead of iterative in-
ference (see Figure 1d). Generally, GLM is quite
similar to curriculum learning (Bengio et al., 2009)
in spirit, namely first learning to generate some
fragments and gradually moving to learn the whole
sentences (from easy to hard). To achieve the adap-
tive glancing sampling, GLM performs decoding
twice in training. The first decoding is the same as
the vanilla NAT, and the prediction accuracy indi-
cates whether the current reference is “difficult” for
fitting. In the second decoding, GLM gets words
of the reference via glancing sampling according
to the first decoding, and learn to predict the re-
maining words that are not sampled. Note that
only the second decoding will update the model pa-
rameters. Secondly, instead of using the [MASK]
token, GLM directly uses representations from the
encoder at corresponding positions, which is more
natural and could enhance the interactions between
sampled words and signals from the encoder.

Note that GLAT does not modify the network ar-
chitecture, which is a training method to explicityly
learn word interdependency. Experimental results
show that GLAT obtains significant improvements

(about 5 BLEU) on standard benchmarks compared
to the vanilla NAT, without losing inference speed-
up. GLAT achieves competitive results against iter-
ative approaches like Mask-Predict (Ghazvininejad
et al., 2019), even outperforming the Mask-Predict
model on WMT14 DE-EN and WMT16 RO-EN.
Compared to the strong AT baseline, GLAT can
still close the performance gap within 0.9 BLEU
point while keeping 7.9× speed-up. Empirically,
we even find that GLAT outperforms AT when the
length of the reference is less than 20 on WMT14
DE-EN. We speculate this is because GLM could
capture bidirectional context for generation while
its left-to-right counterpart is only unidirectional,
which indicates the potential of parallel generation
approaches like GLAT.

2 Probability Models of Machine
Translation

We state and compare different probability mod-
els for machine translation. A machine translation
task can be formally defined as a sequence to se-
quence generation problem: given the source sen-
tence X = {x1, x2, ..., xN}, to generate the target
sentence Y = {y1, y2, ..., yT } according to the con-
ditional probability P (Y |X; θ), where θ denotes
the parameter set of a network. Different methods
factorize the conditional probability differently.

The Transformer uses the autoregressive factor-
ization to maximize the following likelihood:

LAT = logP (Y |X; θ) =

T∑
t=1

log p(yt|y<t, X; θ),

where y<t = {[BOS], y1, ..., yt−1}. For simplic-
ity, we omit the number of samples in the equation.
Note the training of AT adopts left-to-right teacher
forcing on the target tokens (Vaswani et al., 2017).
The word interdependency is learned in a unidi-
rectional way. During inference, the preceding
predicted token is fed into the decoder to generate
the next token.

The vanilla NAT consists of the same encoder as
the Transformer and a parallel decoder with layers
of multi-head attention (Gu et al., 2018). During
training, it uses the conditional independent factor-
ization for the target sentence:

LNAT =

T∑
t=1

logP (yt|X; θ).
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Figure 2: The training procedure with glancing sampling in GLAT. H is the representation computed by the
encoder. ŷ’s are the initial predicted tokens of the parallel decoder. y’s are the ground-truth target tokens. H ′ is
fed into the decoder again to calculate the training loss.

Notice that, NAT’s log-likelihood is an approxima-
tion to the full log-likelihood logP (Y |X; θ). Dur-
ing inference, the encoder representation is copied
as the input to the decoder, therefore all tokens on
the target side can be generated in parallel. Such
a conditional independence assumption does not
hold in general, which explains the inferior perfor-
mance of NAT.

Multi-pass iterative decoding approaches such as
Mask-Predict (Ghazvininejad et al., 2019) extends
the vanilla NAT. It still uses the conditional inde-
pendent factorization, together with the random
masking scheme:

LMLM =
∑

yt∈RM(Y )

log p
(
yt|Φ

(
Y,RM(Y )

)
, X; θ

)
,

where RM(Y ) is a set of randomly selected words
from Y , and Φ(·) replaces these selected words
in Y with the [MASK] token. For example in
Figure 1c, RM(Y ) = {y2, y3}, Φ

(
Y,RM(Y )

)
=

{y1,[MASK],[MASK], y4, y5}. The number of
masked tokens distributes uniformly from 1 to the
total number of tokens in the target sequence. Such
training objective is used to learn a refinement
model θ that can predict the masked tokens given
the source sentence X and words generated in the
previous iteration.

The vanilla NAT breaks word interdependency,
while MLM requires multiple passes of decoding to
re-establish the word interdependency. Our goal in
this work is to design a better probability model and
a training objective to enable word interdependency
learning for single-pass parallel generation.

3 Glancing Transformer

In this section, we present GLAT in detail. GLAT
uses the same encoder-decoder architecture as the
vanilla NAT (Gu et al., 2018). GLAT differs from
the vanilla NAT in that it explicitly encourages
word interdependency via training with glancing
language model (GLM). It differs from the iterative
NAT with MLM in that it is trained to produce
single pass parallel decoding while MLM is used
for prediction refinement.

3.1 The Glancing Language Model
Given the input source sentence X =
{x1, x2, ..., xN}, the task is to predict
Y = {y1, y2, ..., yT }. The glancing Trans-
former (GLAT) formulates a glancing language
model (GLM) during training. It maximizes the
following:

LGLM =
∑

yt∈GS(Y,Ŷ )

log p(yt|GS(Y, Ŷ ), X; θ)

(1)
Where, Ŷ is the initial predicted tokens, and
GS(Y, Ŷ ) is a subset of tokens selected via the
glancing sampling strategy (Figure 2, described in
detail in the next section). The glancing sampling
strategy selects those words from the target sen-
tence by comparing the initial prediction against
the ground-truth tokens. It selects more tokens and
feeds the embeddings of these tokens into the de-
coder input if the network’s initial prediction is
less accurate. GS(Y, Ŷ ) is the remaining subset of
tokens within the target Y but not selected. The
training loss above is calculated against these re-
maining tokens.



1996

GLAT adopts similar encoder-decoder archi-
tecture as the Transformer with some modifica-
tion (Figure 1d). Its encoder fencis the same multi-
head attention layers. Its decoder fdec include
multiple layers of multi-head attention where each
layer attends to the full sequence of both encoder
representation and the previous layer of decoder
representation.

During the initial prediction, the input to the
decoder H = {h1, h2, ..., hT } are copied from
the encoder output using either uniform copy or
soft copy (Wei et al., 2019). The initial tokens
Ŷ are predicted using argmax decoding with
fdec(fenc(X; θ), H; θ).

To calculate the loss LGLM, we compare the ini-
tial prediction Ŷ against the ground-truth to select
tokens within the target sentence, i.e. GS(Y, Ŷ ).
We then replace those sampled indices of h’s with
corresponding target word embeddings, H ′ =
RP(Embyt∈GS(Y,Ŷ )(yt), H), where RP replaces
the corresponding indices. Namely, if a token in
the target is sampled, its word embedding replaces
the corresponding h. Here the word embeddings
are obtained from the softmax embedding matrix
of the decoder. The updated H ′ is then fed into
the decoder fdec again to calculate the output token
probability. Specifically, the output probabilities of
remaining tokens p(yt|GS(Y, Ŷ ), X; θ) are com-
puted with fdec(H

′, fenc(X; θ); θ).

3.2 The Glancing Sampling Strategy

One important component of GLM is to adaptively
select the positions of tokens from the target sen-
tence. Those selected tokens provide “correct” in-
formation from the ground-truth target, therefore it
helps training the decoder to predict the rest non-
selected tokens. Intuitively, our adaptive sampling
strategy guides the model to first learn the gener-
ation of fragments and then gradually turn to the
whole sentences. Our glancing sampling strategy
selects many words at the start of the training, when
the model is not yet well tuned. As the model gets
better progressively, the sampling strategy will sam-
ple fewer words to enable the model to learn the
parallel generation of the whole sentence. Note
that the sampling strategy is crucial in the training
of GLAT.

As illustrated in Figure 2, the glancing sampling
could be divided into two steps: first deciding a
sampling number S, and then randomly selecting
S words from the reference. The sampling number

S will be larger when the model is poorly trained
and decreases along the training process. Note that
we choose to randomly select the S words from the
reference. The random reference word selection is
simple and yields good performance empirically.

Formally, given the input X , its predicted sen-
tence Ŷ and its reference Y , the goal of glancing
sampling function GS(Y, Ŷ ) is to obtain a subset
of words sampled from Y :

GS(Y, Ŷ ) = Random(Y, S(Y, Ŷ )) (2)

Here, Random(Y, S) is randomly selecting S to-
kens from Y , and S is computed by comparing
the difference between Ŷ and Y , S(Y, Ŷ ) = λ ·
d(Y, Ŷ ). The sampling ratio λ is a hyper-parameter
to more flexibly control the number of sampled to-
kens. d(Y, Ŷ ) is a metric for measuring the differ-
ences between Y and Ŷ . We adopt the Hamming
distance (Hamming, 1950) as the metric, which
is computed as d(Y, Ŷ ) =

∑T
t=1(yt 6= ŷt). With

d(Y, Ŷ ), the sampling number can be decided adap-
tively considering the current trained model’s pre-
diction capability. For situations that Y and Ŷ have
different lengths, d(Y, Ŷ ) could be other distances
such as Levenshtein distance (Levenshtein, 1966).

Alternative glancing sampling strategy can be
adopted as well. For example, one simple alterna-
tive strategy is to set the number of sampled tokens
to be proportional to the target sentence length, i.e.
S = λ ∗ T . We will evaluate the effects of these
variations in the experiment.

3.3 Inference

GLAT only modifies the training procedure. Its in-
ference is fully parallel with only a single pass. For
parallel generation, we need to decide the output
lengths before decoding. A simple way to decide
the output lengths is predicting length with repre-
sentations from the encoder.

In GLAT, the length prediction is implemented
as in Ghazvininejad et al. (2019). An additional
[LENGTH] token is added to the source input, and
the encoder output for the [LENGTH] token is
used to predict the length.

We also use two more complex methods to bet-
ter decide the output lengths: noisy parallel decod-
ing (NPD) and connectionist temporal classifica-
tion (CTC). For NPD (Gu et al., 2018), we first
predict m target length candidates, then generate
output sequences with argmax decoding for each
target length candidate. Then we use a pre-trained
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Models Idec
WMT14 WMT16 Speed UpEN-DE DE-EN EN-RO RO-EN

AT Models Transformer (Vaswani et al., 2017) T 27.30 / / / /
Transformer (ours) T 27.48 31.27 33.70 34.05 1.0×†

Iterative NAT

NAT-IR (Lee et al., 2018) 10 21.61 25.48 29.32 30.19 1.5×
LaNMT (Shu et al., 2020) 4 26.30 / / 29.10 5.7×
LevT (Gu et al., 2019) 6+ 27.27 / / 33.26 4.0×
Mask-Predict (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31 1.7×
JM-NAT (Guo et al., 2020b) 10 27.31 31.02 / / 5.7×

Fully NAT

NAT-FT (Gu et al., 2018) 1 17.69 21.47 27.29 29.06 15.6×
Mask-Predict (Ghazvininejad et al., 2019) 1 18.05 21.83 27.32 28.20 /
imit-NAT (Wei et al., 2019) 1 22.44 25.67 28.61 28.90 18.6×
NAT-HINT (Li et al., 2019) 1 21.11 25.24 / / /
Flowseq (Ma et al., 2019) 1 23.72 28.39 29.73 30.72 1.1×
NAT-DCRF (Sun et al., 2019) 1 23.44 27.22 / / 10.4 ×

w/ CTC NAT-CTC (Libovickỳ and Helcl, 2018) 1 16.56 18.64 19.54 24.67 /
Imputer (Saharia et al., 2020) 1 25.80 28.40 32.30 31.70 18.6×

w/ NPD

NAT-FT + NPD (m=100) 1 19.17 23.20 29.79 31.44 2.4×
imit-NAT + NPD (m=7) 1 24.15 27.28 31.45 31.81 9.7×
NAT-HINT + NPD (m=9) 1 25.20 29.52 / / /
Flowseq + NPD (m=30) 1 25.31 30.68 32.20 32.84 /
NAT-DCRF + NPD (m=9) 1 26.07 29.68 / / 6.1×

Ours

NAT-base† 1 20.36 24.81 28.47 29.43 15.3×†
CTC† 1 25.52 28.73 32.60 33.46 14.6 ×†
GLAT 1 25.21 29.84 31.19 32.04 15.3×†
GLAT + CTC 1 26.39 29.54 32.79 33.84 14.6 ×†
GLAT + NPD (m=7) 1 26.55 31.02 32.87 33.51 7.9×†

Table 1: Results on WMT14 EN-DE/DE-EN and WMT16 EN-RO/RO-EN benchmarks. Idec is the number of
decoding iterations and m is the number of length reranking candidates. NPD represents noisy parallel decoding,
CTC represents connectionist temporal classification. † indicate the results are obtained by our implementation.
Note that our work and previous work may use different hardware settings and implementation, the speed-up may
not be fair to compare directly.

transformer to rank these sequences and identify
the best overall output as the final output. For
CTC (Graves et al., 2006), following Libovickỳ
and Helcl (2018), we first set the max output length
to twice the source input length, and remove the
blanks and repeated tokens after generation.

4 Experiments

In this section, we first introduce the settings of our
experiments, then report the main results compared
with several strong baselines. Ablation studies and
further analysis are also included to verify the ef-
fects of different components used in GLAT.

4.1 Experimental Settings

Datasets We conduct experiments on three ma-
chine translation benchmarks: WMT14 EN-DE
(4.5M translation pairs), WMT16 EN-RO (610k
translation pairs), and IWSLT16 DE-EN (150K
translation pairs). These datasets are tokenized
and segmented into subword units using BPE en-
codings (Sennrich et al., 2016). We preprocess
WMT14 EN-DE by following the data preprocess-
ing in Vaswani et al. (2017). For WMT16 EN-RO

and IWSLT16 DE-EN, we use the processed data
provided in Lee et al. (2018).

Knowledge Distillation Following previous
work (Gu et al., 2018; Lee et al., 2018; Wang et al.,
2019), we also use sequence-level knowledge
distillation for all datasets. We employ the
transformer with the base setting in Vaswani et al.
(2017) as the teacher for knowledge distillation.
Then, we train our GLAT on distilled data.

Baselines and Setup We compare our method
with the base Transformer and strong representa-
tive NAT baselines in Table 1. For all our tasks,
we obtain other NAT models’ performance by di-
rectly using the performance figures reported in
their papers if they are available.

We adopt the vanilla model which copies
source input uniformly in Gu et al. (2018) as
our base model (NAT-base) and replace the Uni-
formCopy with attention mechanism using po-
sitions. Note that the output length does not
equal the length of reference in models using
CTC. Therefore, for GLAT with CTC, we adopt
longest common subsequence distance for compar-
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Figure 3: The trade-off between speed-up and BLEU
on WMT14 DE-EN

ing Y and Ŷ , and the glancing target is the tar-
get alignment that maximize the output probability
argmaxa∈B−1(Y ) P (a|X; θ). B−1 is the mapping
proposed in (Graves et al., 2006), which expand
the reference to the length of output by inserting
blanks or repeating words.

For WMT datasets, we follow the hyperparam-
eters of the base Transformer in Vaswani et al.
(2017). And we choose a smaller setting for
IWSLT16, as IWSLT16 is a smaller dataset. For
IWSLT16, we use 5 layers for encoder and decoder,
and set the model size dmodel to 256. Using Nvidia
V100 GPUs, We train the model with batches
of 64k/8k tokens for WMT/IWSLT datasets, re-
spectively. We set the dropout rate to 0.1 and
use Adam optimizer (Kingma and Ba, 2014) with
β = (0.9, 0.999). For WMT datasets, the learning
rate warms up to 5e− 4 in 4k steps and gradually
decays according to inverse square root schedule
in Vaswani et al. (2017). As for IWSLT16 DE-EN,
we adopt linear annealing (from 3e− 4 to 1e− 5)
as in Lee et al. (2018). For the hyper-parameter λ,
we adopt linear annealing from 0.5 to 0.3 for WMT
datasets and a fixed value of 0.5 for IWSLT16. The
final model is created by averaging the 5 best check-
points chosen by validation BLEU scores. We re-
port tokenized BLEU for all the datasets used in
experiment. We measure the average latency per
sentence on a single Nvidia 1080TI GPU.

4.2 Main Results

The main results on the benchmarks are presented
in Table 1. GLAT significantly improves the trans-
lation quality and outperforms strong baselines by a
large margin. Our method introduces explicit word
interdependency modeling for the decoder and
gradually learns simultaneous generation of whole
sequences, enabling the model to better capture the
underlying data structure. Compared to models
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Figure 4: Performance under different source input
length on WMT14 DE-EN

with iterative decoding, our method completely
maintains the inference efficiency advantage of
fully non-autoregressive models, since GLAT gen-
erate with a single pass. Compared with the base-
lines, we highlight our empirical advantages:

• GLAT is highly effective. Compared with the
vanilla NAT-base models, GLAT obtains sig-
nificant improvements (about 5 BLEU) on EN-
DE/DE-EN. Additionally, GLAT also outper-
forms other fully non-autoregressive models
with a substantial margin (almost +2 BLEU
points on average). The results are even very
close to those of the AT model, which shows
great potential.

• GLAT is simple and can be applied to other
NAT models flexibly, as we only modify the
training process by reference glancing while
keeping inference unchanged. For compari-
son, NAT-DCRF utilizes CRF to generate se-
quentially; NAT-IR and Mask-Predict models
need multiple decoding iterations.

• CTC and NPD use different approaches to de-
termine the best output length, and they have
their own advantages and disadvantages. CTC
requires the output length to be longer than
the exact target length. With longer output
lengths, the training will consume more time
and GPU memory. As for NPD, with a certain
number of length reranking candidates, the
inference speed will be slower than models
using CTC. Note that NPD can use pretrained
AT models or the non-autoregressive model
itself to rerank multiple outputs.

We also present a scatter plot in Figure 3, dis-
playing the trend of speed-up and BLEU with dif-
ferent NAT models. It is shown that the point of
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Model WMT14
EN-DE DE-EN

NAT-base 8.32% 7.10%
GLAT 1.19% 1.05%
GLAT w/ NPD 0.32% 0.16%

Table 2: Token repetition ratio on WMT14 EN-DE and
WMT14 DE-EN

GLAT is located on the top-right of the competing
methods. Obviously, GLAT outperforms our com-
petitors in BLEU if speed-up is controlled, and in
speed-up if BLEU is controlled. This indicates that
GLAT outperforms previous NAT methods. Al-
though iterative models like Mask-Predict achieves
competitive BLEU scores, they only maintain mi-
nor speed advantages over AT. In contrast, fully
non-autoregressive models remarkably improve the
inference speed.

4.3 Analysis
Effect of Source Input Length To analyze the
effect of source input length on the models’ per-
formance, we split the source sentences into differ-
ent intervals by length after BPE and compute the
BLEU score for each interval. The histogram of
results is presented in Figure 4. NAT-base’s perfor-
mance drops sharply for long sentences, while the
gradual learning process enables GLAT to boost
the performance by a large margin, especially for
long sentences. We also find that GLAT outper-
forms autoregressive Transformer when the source
input length is smaller than 20.

GLAT Reduces Repetition We also measure
the percentage of repeated tokens on test set of
WMT14 EN-DE and WMT14 DE-EN. Table 2
presents the token repetition ratio of sentences gen-
erated by NAT-base and GLAT. The results show
that GLAT significantly reduces the occurrence of
repetition, and the repetition ratio can be further

Sampling Number λ BLEU

Fixed

0.0 24.66
0.1 24.91
0.2 27.12
0.3 24.98
0.4 22.96

Adaptive - 29.61

Table 3: Performances on IWSLT16 with fixed sam-
pling ratio.

Sampling Number λs λe BLEU

Decreasing
0.5 0 27.80
0.5 0.1 28.21
0.5 0.2 27.15
0.5 0.3 23.37

Adaptive - 29.61

Table 4: Performances on IWSLT16 with decreasing
sampling ratio.

reduced with NPD. We think an important cause
of the improvement is better interdependency mod-
eling. Since GLAT explicitly encourages word
interdependency modeling to better capture the de-
pendency between target tokens, wrong generation
patterns, such as repetition, can be largely avoided.

GLAT Achieves Strong Results without Multi-
ple Iterations We conduct experiments of GLAT
with more than one decoding iteration in inference.
We adopt the inference algorithm in Mask-Predict
for multiple-iteration decoding. The results are
shown in Figure 5. We find that GLAT can achieve
decent performances with only one decoding iter-
ation, while further iterations only obtain minor
improvements of 0.2∼0.3 BLEU.

4.4 Ablation Study
Effectiveness of the Adaptive Sampling Num-
ber To validate the effectiveness of the adap-
tive sampling strategy for the sampling number
S(Y, Ŷ ), we also introduce two fixed approaches
for comparison. The first one decides the sampling
number with λ∗T , where T is the length of Y , and
λ is a constant ratio. The second one is relatively
flexible, which sets a start ratio of λs and an end
ratio λe, and linearly reduces the sampling number
from λs ∗ T to λe ∗ T along the training process.

As shown in Table 3 and Table 4, our adaptive
approach (Adaptive in the table) outperforms the
baseline models with big margins. The results con-
firm our intuition that the sampling schedule affects
the generation performance of our NAT model. The
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Selection Strategy GLAT GLAT w/ NPD

random 25.21 26.55
pref 24.87 25.83
1− pref 25.37 26.52
most certain 24.99 26.22
most uncertain 24.86 26.13

Table 5: Performance on WMT14 EN-DE with differ-
ent reference word selection strategies.

Method Distance WMT14
EN-DE DE-EN

GLAT Levenshtein 24.56 28.96
Hamming 25.21 29.84

GLAT w/ NPD Levenshtein 26.21 30.85
Hamming 26.55 31.02

Table 6: Performance on WMT14 EN-DE and
WMT14 DE-EN with different distances.

sampling strategy, which first offers relatively easy
generation problems and then turns harder, bene-
fits the final performance. Besides, even with the
simplest constant ratio, GLAT still achieves remark-
able results. When set λ = 0.2, it even outperforms
the baseline λ = 0.0 by 2.5 BLEU points.

The experiments potentially support that it is ben-
eficial to learn the generation of fragments at the
start and gradually transfer to the whole sequence.
The flexible decreasing ratio method works better
than the constant one, and our proposed adaptive
approaches achieve the best results.

Influence of Reference Word Selection To ana-
lyze how the strategies of selecting reference words
affect glancing sampling, we conduct experiments
with different selection strategies. By default, we
assume all the words in the reference are equally
important and randomly choose reference words
for glancing. Besides the random strategy, we de-
vise four other selection methods considering the
prediction of first decoding. For pref and 1−pref, the
sampling probability of each reference word is pro-
portional to the output probability for the reference
word pref and the probability 1− pref, respectively.
Similar to the word selection strategy for masking
words during inference in Mask-Predict, we also
add two strategies related to the prediction confi-
dence: "most certain" and "most uncertain." We
choose the positions where predictions have higher
confidence for "most certain", and vise versa for
"most uncertain." The results for different selection
methods are listed in Table 5.

In comparisons, the model with the selection

Method WMT14
EN-DE DE-EN

GLAT w/ uniform sampling 19.16 23.56
GLAT w/ [MASK] inputs 24.99 29.48
GLAT 25.21 29.84

Table 7: Ablation study for comparing GLAT and
Mask-Predict on WMT14 EN-DE and DE-EN.

strategy 1− pref outperforms the one with pref, in-
dicating that words hard to predict are more im-
portant for glancing in training. And we find that
the random strategy performs a little better than
the two confidence-based strategies. We think this
indicates that introducing more randomness in sam-
pling enable GLAT to explore more interdepen-
dency among target words. We adopt the random
strategy for its simplicity and good performance.

Comparison of Different Distances for Glanc-
ing Sampling We conduct experiments with two
distances for comparing the predictions of the first
decoding and references, and the results are pre-
sented in Table 6. Experimental results show that
both distances can be used to improve the quality of
one-iteration generation, and GLAT with Hamming
distance is better than GLAT with Levenshtein dis-
tance. Especially when there is no target length
reranking, GLAT with Hamming distance outper-
forms GLAT with Levenshtein distance by about
0.7 BLEU and 0.9 BLEU on WMT14 EN-DE and
DE-EN respectively. We think Hamming distance
is more strict than Levenshtein distance because
only the same words on the corresponding positions
are regarded as correct, which is more consistent
with the training of GLAT.

Advantages of GLAT over Mask-Predict To
study the effects of sampling strategy and decoder
inputs of GLAT, we conduct experiments for re-
placing these two modules in GLAT with the corre-
sponding part in Mask-Predict, respectively. The
results are presented in Table 7. GLAT employs
glancing sampling strategy instead of the uniform
sampling strategy used in Mask-Predict, and re-
places the [MASK] token inputs with source rep-
resentations from the encoder. The results show
that the glancing sampling strategy outperforms the
uniform sampling strategy by 5∼6 BLEU points,
and feeding representations from the encoder as
the decoder input could still improve the strong
baseline by 0.2∼0.3 BLEU points after adopting
glancing sampling. To sum up, the adaptive glanc-
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ing sampling approach contributes the most to the
final improvement, and the use of representations
from the encoder also helps a bit.

5 Related Work

Fully Non-Autoregressive Models A line of
work introduces various forms of latent variables
to reduce the model’s burden of dealing with de-
pendencies among output words (Gu et al., 2018;
Ma et al., 2019; Bao et al., 2019; Ran et al., 2019;
Bao et al., 2021). Another branch of work consid-
ers transferring the knowledge from autoregressive
models to non-autoregressive models (Wei et al.,
2019; Li et al., 2019; Guo et al., 2020a; Sun and
Yang, 2020). Besides, there are also some work
that apply different training objectives to train non-
autoregressive models (Libovickỳ and Helcl, 2018;
Shao et al., 2020; Ghazvininejad et al., 2020a), add
regularization terms (Wang et al., 2019; Guo et al.,
2019).

Non-Autoregressive Models with Structured
Decoding To model the dependencies between
words, Sun et al. (2019) introduces a CRF inference
module in NAT and performs additional sequential
decoding after the non-autoregressive computation
in inference. Deng and Rush (2020) proposes cas-
caded CRF decoding. Since GLAT only performs
single-pass non-autoregressive generation, our ap-
proach is orthogonal to the method proposed in Sun
et al. (2019). We can also combine our approach
with the structured decoding methods.

Non-Autoregressive Models with Iterative Re-
finement A series of work are devoted to semi-
autoregressive models that refine the outputs with
multi-pass iterative decoding (Lee et al., 2018;
Miao et al., 2019; Gu et al., 2019; Ghazvinine-
jad et al., 2019, 2020b; Kasai et al., 2020; Li et al.,
2020). Lee et al. (2018) proposed a method of it-
erative refinement based on denoising autoencoder.
Gu et al. (2019) utilized insertion and deletion to
refine the outputs in inference. Ghazvininejad et al.
(2019) trained the model with the masked language
model, and the model iteratively replaces masked
tokens with new outputs. (Li et al., 2020) first pre-
dict the left token and right token for each position,
and decode the final token at the current position
conditioned on the left-and-right tokens predicted
before. Despite the relatively better accuracy, the
multiple decoding iterations reduce the inference
efficiency of non-autoregressive models.

Scheduled Sampling To alleviate exposure bias
in autoregressive models, previous work attempts
to close the gap between training and inference
by scheduled sampling (Bengio et al., 2015; Mi-
haylova and Martins, 2019). Although scheduled
sampling also modifies decoder inputs in training,
there are mainly two differences between our work
and scheduled sampling. Firstly, scheduled sam-
pling mixes up the predicted sequence and the
gold target sequence, and our method does not
mix predicted sequences into decoder inputs. Be-
sides, GLAT aims to learn word interdependency
for single-pass parallel generation and scheduled
sampling is designed for alleviating exposure bias.

6 Conclusion

In this paper, we propose Glancing Transformer
with a glancing language model to improve the per-
formance of single-pass parallel generation models.
With the glancing language model, the model starts
from learning the generation of sequence fragments
and gradually moving to whole sequences. Experi-
mental results show that our approach significantly
improves the performance of non-autoregressive
machine translation with single-pass parallel gener-
ation. As GLAT achieves competitive performance
compared with autoregressive models, applying our
approach to other generation tasks is a promising
direction for future work.
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