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Abstract

Transfer learning has yielded state-of-the-art
(SoTA) results in many supervised NLP tasks.
However, annotated data for every target task
in every target language is rare, especially for
low-resource languages. We propose UXLA a
novel unsupervised data augmentation frame-
work for zero-resource transfer learning sce-
narios. In particular, UXLA aims to solve cross-
lingual adaptation problems from a source
language task distribution to an unknown
target language task distribution, assuming
no training label in the target language. At
its core, UXLA performs simultaneous self-
training with data augmentation and unsuper-
vised sample selection. To show its effective-
ness, we conduct extensive experiments on
three diverse zero-resource cross-lingual trans-
fer tasks. UXLA achieves SoTA results in all
the tasks, outperforming the baselines by a
good margin. With an in-depth framework dis-
section, we demonstrate the cumulative contri-
butions of different components to its success.

1 Introduction

Self-supervised learning in the form of pretrained
language models (LM) has been the driving force
in developing state-of-the-art NLP systems in re-
cent years. These methods typically follow two
basic steps, where a supervised task-specific fine-
tuning follows a large-scale LM pretraining (Rad-
ford et al., 2019). However, getting labeled data
for every target task in every target language is
difficult, especially for low-resource languages.
Recently, the pretrain-finetune paradigm has
also been extended to multi-lingual setups to train
effective multi-lingual models that can be used
for zero-shot cross-lingual transfer. Jointly trained
deep multi-lingual LMs like mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) coupled
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with supervised fine-tuning in the source language
have been quite successful in transferring linguistic
and task knowledge from one language to another
without using any task label in the target language.
The joint pretraining with multiple languages al-
lows these models to generalize across languages.

Despite their effectiveness, recent studies (Pires
et al., 2019; K et al., 2020) have also highlighted
one crucial limiting factor for successful cross-
lingual transfer. They all agree that the cross-
lingual generalization ability of the model is limited
by the (lack of) structural similarity between the
source and target languages. For example, for trans-
ferring mBERT from English, K et al. (2020) report
about 23.6% accuracy drop in Hindi (structurally
dissimilar) compared to 9% drop in Spanish (struc-
turally similar) in cross-lingual natural language
inference (XNLI). The difficulty level of transfer
is further exacerbated if the (dissimilar) target lan-
guage is low-resourced, as the joint pretraining step
may not have seen many instances from this lan-
guage in the first place. In our experiments (§3.2),
in cross-lingual NER (XNER), we report F1 reduc-
tions of 28.3% in Urdu and 30.4% in Burmese for
XLM-R, which is trained on a much larger multi-
lingual dataset than mBERT.

One attractive way to improve cross-lingual
generalization is to perform data augmentation
(Simard et al., 1998), and train the model on exam-
ples that are similar but different from the labeled
data in the source language. Formalized by the Vic-
inal Risk Minimization (VRM) principle (Chapelle
et al., 2001), such data augmentation methods have
shown impressive results in vision (Zhang et al.,
2018; Berthelot et al., 2019). These methods en-
large the support of the training distribution by
generating new data points from a vicinity distri-
bution around each training example. For images,
the vicinity of a training image can be defined by
a set of operations like rotation and scaling, or by
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linear mixtures of features and labels (Zhang et al.,
2018). However, when it comes to text, such unsu-
pervised augmentation methods have rarely been
successful. The main reason is that unlike images,
linguistic units are discrete and a smooth change
in their embeddings may not result in a plausible
linguistic unit that has similar meanings.

In NLP, to the best of our knowledge, the most
successful augmentation method has so far been
back-translation (Sennrich et al., 2016) which para-
phrases an input sentence through round-trip trans-
lation. However, it requires parallel data to train
effective machine translation systems, acquiring
which can be more expensive for low-resource lan-
guages than annotating the target language data.
Furthermore, back-translation is only applicable in
a supervised setup and to tasks where it is possible
to find the alignments between the original labeled
entities and the back-translated entities, such as in
question answering (Yu et al., 2018). Other related
work includes contextual augmentation (Kobayashi,
2018), conditional BERT (Wu et al., 2018) and
AUG-BERT (Shi et al., 2019). These methods use
a constrained augmentation that alters a pretrained
LM to a label-conditional LM for a specific task.
Since they rely on labels, their application is lim-
ited by the availability of enough task labels.

In this work, we propose UXLA, a robust
unsupervised cross-lingual augmentation frame-
work for improving cross-lingual generalization of
multilingual LMs. UXLA augments data from the
unlabeled training examples in the target language
as well as from the virtual input samples gener-
ated from the vicinity distribution of the source
and target language sentences. With the augmented
data, it performs simultaneous self-learning with
an effective distillation strategy to learn a strongly
adapted cross-lingual model from noisy (pseudo)
labels for the target language task. We propose
novel ways to generate virtual sentences using a
multilingual masked LM (Conneau et al., 2020),
and get reliable task labels by simultaneous multi-
lingual co-training. This co-training employs a two-
stage co-distillation process to ensure robust trans-
fer to dissimilar and/or low-resource languages.

We validate the effectiveness and robustness of
UXLA by performing extensive experiments on
three diverse zero-resource cross-lingual transfer
tasks—XNER, XNLI, and PAWS-X, which posit
different sets of challenges, and across many (14
in total) language pairs comprising languages that

are similar/dissimilar/low-resourced. UXLA yields
impressive results on XNER, setting SoTA in all
tested languages outperforming the baselines by a
good margin. The relative gains for UXLA are par-
ticularly higher for structurally dissimilar and/or
low-resource languages: 28.54%, 16.05%, and
9.25% absolute improvements for Urdu, Burmese,
and Arabic, respectively. For XNLI, with only
5% labeled data in the source, it gets compara-
ble results to the baseline that uses all the la-
beled data, and surpasses the standard baseline
by 2.55% on average when it uses all the labeled
data in the source. We also have similar find-
ings in PAWS-X. We provide a comprehensive
analysis of the factors that contribute to UXLA’s
performance. We open-source our framework at
https://ntunlpsg.github.io/project/uxla/ .

2 UXLA Framework

While recent cross-lingual transfer learning efforts
have relied almost exclusively on multi-lingual
pretraining and zero-shot transfer of a fine-tuned
source model, we believe there is a great poten-
tial for more elaborate methods that can leverage
the unlabeled data better. Motivated by this, we
present UXLA, our unsupervised data augmenta-
tion framework for zero-resource cross-lingual task
adaptation. Figure 1 gives an overview of UXLA.

Let Dy = (X5, Ys) and D = (A;) denote the
training data for a source language s and a tar-
get language ¢, respectively. UXLA augments data
from various origins at different stages of train-
ing. In the initial stage (epoch 1), it uses the aug-
mented training samples from the target language
(D) along with the original source (D;). In later
stages (epoch 2-3), it uses vicinal sentences gen-
erated from the vicinity distribution of source and
target examples: 9(Z5|z5) and 9(z|x), where
18 ~ Xgand zt, ~ X,. It performs self-training
on the augmented data to acquire the correspond-
ing pseudo labels. To avoid confirmation bias with
self-training where the model accumulates its own
errors, it simultaneously trains three task models
to generate virtual training data through data aug-
mentation and filtering of potential label noises via
multi-epoch co-teaching (Zhou and Li, 2005).

In each epoch, the co-teaching process first per-
forms co-distillation, where two peer task models
are used to select “reliable” training examples to
train the third model. The selected samples with
pseudo labels are then added to the target task
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Figure 1: Training flow of UXLA. After training the base task models 9(1), 9(2), and 0® on source labeled data Ds (WarmUp),
we use two of them (), %)) to pseudo-label and co-distill the unlabeled target language data (D)). A pretrained LM
(Gen-LM) is used to generate new vicinal samples for both source and target languages, which are also pseudo-labeled and
co-distilled using the two task models 09, 6%y to generate D, and D;. The third model 0¥ is then progressively trained on
these datasets: {Ds, D;} in epoch 1, D; in epoch 2, and all in epoch 3.

model’s training data by taking the agreement from
the other two models, a process we refer to as co-
guessing. The co-distillation and co-guessing mech-
anism ensure robustness of UXLA to out-of-domain
distributions that can occur in a multilingual setup,
e.g., due to a structurally dissimilar and/or low-
resource target language. Algorithm 1 gives a pseu-
docode of the overall training method. Each of the
task models in UXLA is an instance of XLLM-R fine-
tuned on the source language task (e.g., English
NER), whereas the pretrained masked LM param-
eterized by O (i.e., before fine-tuning) is used
to define the vicinity distribution (%, |y, Omim)
around each selected example x,,. In the following,
we describe the steps in Algorithm 1.

2.1 Warm-up: Training Task Models

We first train three instances of the XLM-R model
O, 62 93)) with an additional task-specific lin-
ear layer on the source language (English) labeled
data. Each model has the same architecture (XLM-
R large) but is initialized with different random
seeds. For token-level prediction tasks (e.g., NER),
the token-level representations are fed into the clas-
sification layer, whereas for sentence-level tasks
(e.g., XNLI), the [CLS] representation is used as
input to the classification layer.

Training with confidence penalty Our goal is
to train the task models so that they can be used
reliably for self-training on a target language that
is potentially dissimilar and low-resourced. In such
situations, an overly confident (overfitted) model
may produce more noisy pseudo labels, and the
noise will then accumulate as the training pro-
gresses. Overly confident predictions may also im-

pose difficulties on our distillation methods (§2.3)
in isolating good samples from noisy ones. How-
ever, training with the standard cross-entropy (CE)
loss may result in overfitted models that produce
overly confident predictions (low entropy), espe-
cially when the class distribution is not balanced.
We address this by adding a negative entropy term
—7H to the CE loss as follows.

c
Z [ — y°log pg(x) + ps(x) 1ogpg(x)] (1)

=1 CE -H

L(0)

where x is the representation that goes to the output
layer, and 3 and p{(x) are respectively the ground
truth label and model predictions with respect to
class c. Such regularizer of output distribution has
been shown to be effective for training large models
(Pereyra et al., 2017). We also report significant
gains with confidence penalty in §3. Appendix B
shows visualizations on why confidence penalty is
helpful for distillation.

2.2 Sentence Augmentation

Our augmentated sentences come from two dif-
ferent sources: the original target language sam-
ples A}, and the virfual samples generated from
the vicinity distribution of the source and target
samples: 9(Z2 |2, Oim) and 9(ZL | 2L, Omim) With
x5 ~ Xg and x!, ~ AX;. It has been shown that
contextual LMs pretrained on large-scale datasets
capture useful linguistic features and can be used to
generate fluent grammatical texts (Hewitt and Man-
ning, 2019). We use XLM-R masked LM (Conneau
et al., 2020) as our vicinity model Oy, which is
trained on massive multilingual corpora (2.5 TB
of Common-Crawl data in 100 languages). The
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Algorithm 1 UXLA: a robust unsupervised data augmentation framework for cross-lingual NLP

Input: source (s) and target (t) language datasets: Dy = (Xs, Vs), Dy = (X;); task models: 81, 6® | 63 pre-trained masked
LM 6mim, mask ratio P, diversification factor §, sampling factor «, and distillation factor 7

Output: models trained on augmented data

1: 0 9@ 96 = WarMUP(Ds, 0V, 62 9
2: fore € [1: 3] do

3: for k € {1,2,3} do

> warm up with conf. penalty.
> e denotes epoch.

4: Xt(k), fk) = DISTIL( X, 7e, O(k)) > infer and select tgt training data for augmentation.
5: for j € {1,2,3} do

6: if kK == j then Continue

7: /* source language data augmentation =/

8: Xs = GEN-LM(Xs, Omim, P, 9) > vicinal example generation.
9: xP YF = DIsTIL(XS, 76, 6F)); X9 Y9 = DISTIL(X,, e, 69))

10: D, = AGREEMENT (D = (X", 9"y, D = (29, y))

11: /+ target language data augmentation (no vicinity) =/

12: x9 YY) = DISTIL(X;, e, 09))

13: D} = AGrReeMENT(D® = (XM, Yy, DY) = (x), YY) > see line 4
14: /* target language data augmentation =*/

15: X = GEN-LM(X;, Omlm, P, §) > vicinal example generation.
16 ™ Y* = DISTIL(X, 0, 0%)); X9, YY) = DISTIL(X,, e, 69))

17: D, = AGREEMENT(D® = (XM, ), DY) = (2, YY)

18: /* train new models on augmented data =*/

19: for! € {1,2,3} do
20: if | # jand ! # k then
21: with sampling factor «, train §) on D, > train progressively
22: where D = {D,1(e € {1,3}) UD;1(e € {1,3}) UD;1(e = 3)UD:1(e € {2,3})}

23: Return {#V) 9@ 93}

vicinity model is a disjoint pretrained entity whose
parameters are not trained on any task objective.

In order to generate samples around each se-
lected example, we first randomly choose P% of
the input tokens. Then we successively (one at a
time) mask one of the chosen tokens and ask XLM-
R masked LM to predict a token in that masked
position, i.e., compute ¢ (Z, |x, Omim) With m be-
ing the index of the masked token. For a specific
mask, we sample S candidate words from the out-
put distribution, and generate novel sentences by
following one of the two alternative approaches.

(i) Successive max In this approach, we take
the most probable output token (S = 1) at each pre-
diction step, o}, = arg max, 9(Zn, = 0|z, Omim)-
A new sentence is constructed by P% newly gener-
ated tokens. We generate J (diversification factor)
virtual samples for each original example x, by
randomly masking P% tokens each time.

(ii) Successive cross In this approach, we di-
vide each original (multi-sentence) sample z into
two parts and use successive max to create two sets
of augmented samples of size ; and s, respec-
tively. We then take the cross of these two sets to
generate 01 X 0o augmented samples.

Augmentation of sentences through successive
max or cross is carried out within the GEN-LM

(generate via LM) module in Algorithm 1. For
tasks involving a single sequence (e.g., XNER),
we directly use successive max. Pairwise tasks like
XNLI and PAWS-X have pairwise dependencies:
dependencies between a premise and a hypothe-
sis in XNLI or dependencies between a sentence
and its possible paraphrase in PAWS-X. To model
such dependencies, we use successive cross, which
uses cross-product of two successive max applied
independently to each component.

2.3 Co-labeling through Co-distillation

Due to discrete nature of texts, VRM based aug-
mentation methods that are successful for images
such as MixMatch (Berthelot et al., 2019) that gen-
erates new samples and their labels as simple linear
interpolation, have not been successful in NLP. The
meaning of a sentence can change entirely even
with minor variations in the original sentence. For
example, consider the following example generated
by our vicinity model.

Original: EU rejects German call to boycott british lamb.
Masked: <mask> rejects german call to boycott british lamb.

XLM-R: Trump rejects german call to boycott british lamb.

Here, EU is an Organization whereas the newly
predicted word Trump is a Person (different name
type). Therefore, we need to relabel the augmented
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sentences no matter whether the original sentence
has labels (source) or not (target). However, the
relabeling process can induce noise, especially for
dissimilar/low-resource languages, since the base
task model may not be adapted fully in the early
training stages. We propose a 2-stage sample distil-
lation process to filter out noisy augmented data.

Stage 1: Distillation by single-model The first
stage of distillation involves predictions from a sin-
gle model for which we propose two alternatives:

(i) Distillation by model confidence: In this ap-
proach, we select samples based on the model’s
prediction confidence. This method is similar
in spirit to the selection method proposed by
Ruder and Plank (2018a). For sentence-level
tasks (e.g., XNLI), the model produces a sin-
gle class distribution for each training exam-
ple. In this case, the model’s confidence is
computed by p* = max.q;. ¢} py(x). For
token-level sequence labeling tasks (e.g., NER),
the model’s confidence is computed by: p* =
% Zthl {maxce{lmc} pg(xt)}, where T is the
length of the sequence. The distillation is then done
by selecting the top 7% samples with the highest
confidence scores.

(i) Sample distillation by clustering: We pro-
pose this method based on the finding that large
neural models tend to learn good samples faster
than noisy ones, leading to a lower loss for good
samples and higher loss for noisy ones (Han et al.,
2018; Arazo et al., 2019). We use a 1d two-
component Gaussian Mixture Model (GMM) to
model per-sample loss distribution and cluster the
samples based on their goodness. GMMs provide
flexibility in modeling the sharpness of a distri-
bution and can be easily fit using Expectation-
Maximization (EM) (See more on Appendix C).
The loss is computed based on the pseudo labels
predicted by the model. For each sample x, its
goodness probability is the posterior probability
p(z = g|x, 0gmm ), where ¢ is the component with
smaller mean loss. Here, distillation hyperparame-
ter 7 is the posterior probability threshold based on
which samples are selected.

Stage 2: Distillation by model agreement In
the second stage of distillation, we select sam-
ples by taking the agreement (co-guess) of two
different peer models 6 and %) to train the
third (). Formally, AGREEMENT (D¥), DU)) =

{(x® yE)Y): y®E) = YD) st k£

2.4 Data Samples Manipulation

UXLA uses multi-epoch co-teaching. It uses Dy
and D; in the first epoch. In epoch 2, it uses D, (tar-
get virtual), and finally it uses all the four datasets -
Ds, Dj, Dy, and D, (line 22 in Algorithm 1). The
datasets used at different stages can be of differ-
ent sizes. For example, the number of augmented
samples in D, and D, grow polynomially with
the successive cross masking method. Also, the
co-distillation produces sample sets of variable
sizes. To ensure that our model does not overfit on
one particular dataset, we employ a balanced sam-
pling strategy. For N number of datasets {D;}
with probabilities, {p; }¥_;, we define the following
multinomial distribution to sample from:

f n;
———, where f; = ———

N W ‘ N
Zj:l i Zj:l nj

where « is the sampling factor and n; is the total
number of samples in the i'* dataset. By tweaking
«, we can control how many samples a dataset can
provide in the mix.

Di = ()

3 Experiments

We consider three tasks in the zero-resource cross-
lingual transfer setting. We assume labeled training
data only in English, and transfer the trained model
to a target language. For all experiments, we re-
port the mean score of the three models that use
different seeds.

3.1 Tasks & Settings

XNER: We use the standard CoNLL datasets
(Sang, 2002; Sang and Meulder, 2003) for English
(en), German (de), Spanish (es) and Dutch (nl).
We also evaluate on Finnish (fi) and Arabic (ar)
datasets collected from Bari et al. (2020). Note
that Arabic is structurally different from English,
and Finnish is from a different language family. To
show how the models perform on extremely low-
resource languages, we experiment with three struc-
turally different languages from WikiANN (Pan
et al., 2017) of different (unlabeled) training data
sizes: Urdu (ur-20k training samples), Bengali (bn-
10K samples), and Burmese (my-100 samples).

XNLI We use the standard dataset (Conneau
et al., 2018). For a given pair of sentences, the task
is to predict the entailment relationship between
the two sentences, i.e., whether the second sentence
(hypothesis) is an Entailment, Contradiction, or
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Model en es nl de ar fi

Supervised Results

LSTM-CRF (Bari et al., 2020) 89.77 84.71 85.16 78.14 7549 8421
XLM-R (Conneau et al., 2020) 9292 89.72 92.53 85.81 - -

XLM-R (our imp.) 929 892 929 862 86.8 924

Zero-Resource Baseline
MBERT 4eq (Our imp.) 91.13 7476 79.58 70.99 4548 65.95
XLM-R (our imp.) 92.23 79.29 80.87 7340 49.04 75.57
XLM-R (ensemble) 92.76 80.62 81.46 7540 5230 76.85
Our Method

MBERT 44 +con-penalty 90.81 75.06 79.26 72.31 47.03 66.72
XLM-R+con-penalty 9249 8045 81.07 73.76 49.94 76.05
UXLA - 83.05 85.21 80.33 57.35 79.75
UXLA (ensemble) - 83.24 85.32 80.99 5829 79.87

Table 1: F1 scores in XNER on the datasets from CoNLL and (Bari et al., 2020). "-" represents no results were reported.

Neutral with respect to the first one (premise). We Model ur  bn  my

experiment with Spanish, German, Arabic, Swabhili
(sw), Hindi (hi) and Urdu.

PAWS-X The Paraphrase Adversaries from
Word Scrambling Cross-lingual task (Yang et al.,
2019) requires the models to determine whether
two sentences are paraphrases. We evaluate on all
the six (typologically distinct) languages: fr, es, de,
Chinese (zh), Japanese (ja), and Korean (ko).

Evaluation setup Our goal is to adapt a task
model from a source language distribution to an
unknown target language distribution assuming no
labeled data in the target. In this scenario, there
might be two different distributional gaps: (i) the
generalization gap for the source distribution, and
(if) the gap between the source and target language
distribution. We wish to investigate our method in
tasks that exhibit such properties. We use the stan-
dard task setting for XNER, where we take 100%
samples from the datasets as they come from vari-
ous domains and sizes without any specific bias.
However, both XNLI and PAWS-X training data
come with machine-translated texts in target lan-
guages. Thus, the data is parallel and lacks enough
diversity (source and target come from the same
domain). Cross-lingual models trained in this setup
may pick up distributional bias (in the label space)
from the source. Artetxe et al. (2020) also argue
that the translation process can induce subtle arti-
facts that may have a notable impact on models.
Therefore, for XNLI and PAWS-X, we exper-
iment with two different setups. First, to ensure
distributional differences and non-parallelism, we
use 5% of the training data from the source lan-
guage and augment a different (nonparallel) 5%

Supervised Results

XLM-R (our-impl) 97.1 97.8  76.8

Zero-Resource Results

XLM-R (XTREME) 564 78.8 54.3
XLM-R (our imp.) 56.45 78.17 54.56
UXLA 84.99 82.68 70.61

Table 2: XNER results on WikiANN.

data for the target language. We used a different
seed each time to retrieve this 5% data. Second, to
compare with previous methods, we also evaluate
on the standard 100% setup. The evaluation is done
on the entire test set in both setups. We will refer to
these two settings as 5% and 100% . More details
about model settings are in Appendix D.

3.2 Results

XNER Table 1 reports the XNER results on the
datasets from CoNLL and (Bari et al., 2020), where
we also evaluate an ensemble by averaging the prob-
abilities from the three models. We observe that af-
ter performing warm-up with conf-penalty (§2.1),
XLM-R performs better than mBERT on average
by ~3.8% for all the languages. UXLA gives abso-
lute improvements of 3.76%, 4.34%, 6.94%, 8.31%,
and 4.18% for es, nl, de, ar, and fi, respectively. In-
terestingly, it surpasses supervised LSTM-CRF for
nl and de without using any target language labeled
data. It also produces comparable results for es.

In Table 2, we report the results on the three low-
resource langauges from WikiANN. From these
results and the results of ar and fi in Table 1, we
see that UXLA is particularly effective for lan-
guages that are structurally dissimilar and/or low-
resourced, especially when the base model is weak:
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Model en es de ar SW hi ur
Supervised Results (TRANSLATE-TRAIN-ALL)

XLM-R 89.1 86.6 857 83.1 78.0 81.6  78.1
Zero-Resource Baseline for Full (100%) English labeled training set
XLM-R (XTREME) 88.7 837 825 772 71.2 756 717
XLM-R (our imp.) 88.87 8434 8278 7844 72.08 7640 72.10
XLM-R (ensemble)  89.24 84.73 8327 79.06 73.17 77.23 73.07
XLM-R+con-penalty 88.83 84.30 82.86 7820 71.83 7624 71.62
UXLA - 85.65 84.15 8050 7470 7874 73.35
UXLA (ensemble) - 86.12 84.61 80.89 74.89 78.98 73.45
Zero-Resource Baseline for 5% English labeled training set
XLM-R (our imp.) 83.08 7848 77.54 7204 673 7041 66.72
XLM-R (ensemble)  84.65 79.56 7838 7222 6693 71.00 66.79
XLM-R+con-penalty 84.24 79.23 7847 7243 67.72 71.08 67.63
UXLA - 81.53 80.88 77.42 7231 7470 70.84
UXLA (ensemble) - 8235 8193 7856 73.53 7520 71.15

Table 3: Results in accuracy for XNLI.

28.54%, 16.05%, and 9.25% absolute improve-
ments for ur, my and ar, respectively.

XNLI-5% From Table 3, we see that the perfor-
mance of XLM-R trained on 5% data is surpris-
ingly good compared to the model trained on full
data (see XLM-R (our imp.)), lagging by only 5.6%
on average. In our single GPU implementation of
XNLI, we could not reproduce the reported results
of Conneau et al. (2020). However, our results re-
semble the reported XLM-R results of XTREME
(Hu et al., 2020). We consider XTREME as our
standard baseline for XNLI-100%.

We observe that with only 5% labeled data in
the source, UXLA gets comparable results to the
XTREME baseline that uses 100% labeled data
(lagging behind by only ~0.7% on avg.); even for
ar and sw, we get 0.22% and 1.11% improvements,
respectively. It surpasses the standard 5% baseline
by 4.2% on average. Specifically, UXLA gets abso-
lute improvements of 3.05%, 3.34%, 5.38%, 5.01%,
4.29%, and 4.12% for es, de, ar, sw, hi, and ur, re-
spectively. Again, the gains are relatively higher for
low-resource and/or dissimilar languages despite
the base model being weak in such cases.

XNLI-100% Now, considering UXLA’s perfor-
mance on the full (100%) labeled source data in
Table 3, we see that it achieves SoTA results for
all of the languages with an absolute improvement
of 2.55% on average from the XTREME baseline.
Specifically, UXLA gets absolute improvements of
1.95%, 1.68%, 4.30%, 3.50%, 3.24%, and 1.65%
for es, de, ar, sw, hi, and ur, respectively.

PAWS-X Similar to XNLI, we observe sizable
improvements for UXLA over the baselines on
PAWS-X for both 5% and 100% settings (Table 4).
Specifically, in 5% setting, UXLA gets absolute
gains of 5.33%, 5.94%, 5.04%, 6.85%, 7.00%, and
5.45% for de, es, fr, ja, ko, and zh, respectively,
while in 100% setting, it gets 2.21%, 2.36%, 2.00%,
3.99%, 4.53%, and 4.41% improvements respec-
tively. In general, we get an average improvements
of 5.94% and 3.25% in PAWS-X-5% and PAWS-
X-100% settings respectively. Moreover, our 5%
setting outperforms 100% XLM-R baselines for
es, ja, and zh. Interestingly, in the 100% setup, our
UXLA (ensemble) achieves almost similar accura-
cies compared to supervised finetuning of XLM-R
on all target language training dataset.

4 Analysis

In this section, we analyze UXLA by dissecting it
and measuring the contribution of its each of the
components. For this, we use the XNER task and
analyze the model based on the results in Table 1.

4.1 Analysis of distillation methods

Model confidence vs. clustering We first ana-
lyze the performance of our single-model distilla-
tion methods (§2.3) to see which of the two alter-
natives works better. From Table 5, we see that
both perform similarly with model confidence be-
ing slightly better. In our main experiments (Tables
1-4) and subsequent analysis, we use model confi-
dence for distillation. However, we should not rule
out the clustering method as it gives a more general
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Model en de es fr ja ko zh
Supervised Results (TRANSLATE-TRAIN-ALL)
XLM-R (our impl.) 95.8 925 928 935 855 86.6 87.6

Zero-Resource Baseline for Full (100% ) English labeled training set

XLM-R (XTREME) 947 89.7 90.1 904 787 79.0 823
XLM-R (our imp.) 9546 90.06 89.92 90.85 79.89 79.74 82.49
XLM-R (ensemble)  96.10 90.75 90.55 91.80 80.55 80.70 83.45

XLM-R+con-penalty 9538 90.75 90.72 91.71 81.77 82.07 84.25
UXLA - 9227 9228 92.85 83.88 84.27 86.90
UXLA (ensemble) - 92.55 9235 9335 8430 84.35 86.95

Zero-Resource Baseline for 5% English labeled training set

XLM-R (our imp.) 91.15 83.72 8432 85.08 73.65 7260 7722
XLM-R (ensemble) ~ 92.05 84.05 84.65 85.75 7430 7195 77.50

XLM-R+con-penalty 91.85 86.15 86.38 8598 76.03 7543 79.15
UXLA - 89.05 90.27 90.12 80.50 79.60 82.65
UXLA (ensemble) - 89.25 90.85 90.25 81.15 80.15 82.90

Table 4: Results in accuracy for PAWS-X.

solution to consider other distillation features (e.g.,

sequence length, language) than model prediction n  Agreement es nl de  ar fi
scores, which we did not explore in this paper. Distillation by clustering

0.7 n 8228 8325 78.86 52.64 7847
Distillation factor » We next show the results 03 ; 9235 8311 7516 5420 7828

for different distillation factor (n) in Table 5. Here
100% refers to the case when no single-model dis-

Distillation by model confidence

0% n 82.52 8246 7595 5200 77.51

. . . 0 .

tillation is done based on model confidence. We ¢ 81.66 8226 77.19 5297 7777

notice that the best results for each of the languages 30% n 82.33 8353 7850 5448 7843
. L é 81.61 8303 77.08 5331 78.34

are obtained for values other than 100%, which in-

) A . 90% n 81.90 8280 79.03 5241 78.66
dicates that distillation is indeed an effective step o ¢ 8121 8277 7728 5220 77.93
in UXLA. See Appendix B for more analysis on 7. 100% n 82.50 8235 77.06 5258 77.51

¢ ¢ 81.89 8215 7697 5268 78.01

Two-stage distillation We now validate whether
the second-stage distillation (distillation by model
agreement) is needed. In Table 5, we also compare
the results with the model agreement (shown as
M) to the results without using any agreement (¢).

Table 5: Analysis of distillation on XNER. Results after
epoch-1 training that uses {D;, D} }.

We observe better performance with model agree- ®
ment in all the cases on top of the single-model ® D —
distillation which validates its utility. Results with : s I :
n = 100, Agreement = N can be considered as 0| —
the tri-training (Ruder and Plank, 2018b) baseline. ni

A .
4.2 Augmentation in Stages soore” —

— —— es

Figure 2 presents the effect of different types of i
augmented data used by different epochs in our o e gf
multi-epoch co-teaching framework. We observe ® — fi
that in every epoch, there is a significant boost in R T T

F1 scores for each of the languages. Arabic, being

structural dissimilar to English, has a lower base Figure 2: Validation F1 results in XNER for multi-epoch
. co-teaching training of UXLA.

score, but the relative improvements brought by

UXLA are higher for Arabic, especially in epoch 2
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Tgt Zero shot + UXxLA

lang con-penalty es nl de ar fi
en 92.88 92.92 92.87 9291 92.80 92.68
es 81.42 83.24 82.01 77.71 8029 81.97
nl 81.27 81.22 85.32 80.54 8236 84.20
de 75.20 73.63 75.03 80.03 7697 73.77
ar 50.88 52.66 53.08 5252 5829 53.80
fi 76.97 77.02 77.06 76.69 77.13 80.11

Table 6: F1 scores on XNER. Each column (e.g., es) under
UXLA represents results in all target languages for a UXLA
trained with the augmented data in a specific language (e.g.,
es). The Zero shot+con-penalty column represents the zero-
shot results for the model after WarmUp.

when it gets exposed to the target language virtual
data (D;) generated by the vicinity distribution.

4.3 Effect of Confidence Penalty & Ensemble

For all the three tasks, we get reasonable improve-
ments over the baselines by training with confi-
dence penalty (§2.1). Specifically, we get 0.56%,
0.74%, 1.89%, and 1.18% improvements in XNER,
XNLI-5%, PAWS-X-5%, and PAWS-X-100% re-
spectively (Table 1,3,4). The improvements in
XNLI-100% are marginal and inconsistent, which
we suspect due to the balanced class distribution.
From the results of ensemble models, we see that
the ensemble boosts the baseline XLM-R. However,
our regular UXLA still outperforms the ensemble
baselines by a sizeable margin. Moreover, ensem-
bling the trained models from UXLA further im-
proves the performance. These comparisons ensure
that the capability of UXLA through co-teaching
and co-distillation is beyond the ensemble effect.

4.4 Robustness & Efficiency

Table 6 shows the robustness of the fine-tuned
UXLA model on XNER task. After fine-tuning in a
specific target language, the F1 scores in English
remain almost similar (see first row). For some
languages, UXLA adaptation on a different lan-
guage also improves the performance. For example,
Arabic gets improvements for all UXLA-adapted
models (compare 50.88 with others in row 5). This
indicates that augmentation of UXLA does not over-
fit on a target language. More baselines, analysis
and visualizations are added in Appendix.

5 Related Work

Recent years have witnessed significant progress in
learning multilingual pretrained models. Notably,
mBERT (Devlin et al., 2019) extends (English)
BERT by jointly training on 102 languages. XLM

(Lample and Conneau, 2019) extends mBERT with
a conditional LM and a translation LM (using paral-
lel data) objectives. Conneau et al. (2020) train the
largest multilingual language model XLM-R with
RoBERTa (Liu et al., 2019). Wu and Dredze (2019),
Keung et al. (2019), and Pires et al. (2019) evaluate
zero-shot cross-lingual transferability of mBERT
on several tasks and attribute its generalization ca-
pability to shared subword units. Pires et al. (2019)
also found structural similarity (e.g., word order)
to be another important factor for successful cross-
lingual transfer. K et al. (2020), however, show that
the shared subword has a minimal contribution; in-
stead, the structural similarity between languages
is more crucial for effective transfer.

Older data augmentation approaches relied on
distributional clusters (Tdckstrom et al., 2012). A
number of recent methods have been proposed
using contextualized LMs (Kobayashi, 2018; Wu
et al., 2018; Shi et al., 2019; Ding et al., 2020;
Liu et al., 2021). These methods rely on labels
to perform label-constrained augmentation, thus
not directly comparable with ours. Also, there are
fundamental differences in the way we use the pre-
trained LM. Unlike them our LM augmentation is
purely unsupervised and we do not perform any
fine-tuning of the pretrained vicinity model. This
disjoint characteristic gives our framework the flex-
ibility to replace 6;,, even with a better monolin-
gual LM for a specific target language, which in
turn makes UXLA extendable to utilize stronger
LMs that may come in the future. In a concurrent
work (Mohiuddin et al., 2021), we propose a con-
textualized LM based data augmentation for neural
machine translation and show its advantages over
traditional back-translation gaining improved per-
formance in low-resource scenarios.

6 Conclusion

We propose a novel data augmentation framework,
UXLA, for zero-resource cross-lingual task adap-
tation. It performs simultaneous self-training with
data augmentation and unsupervised sample selec-
tion. With extensive experiments on three different
cross-lingual tasks spanning many language pairs,
we have demonstrated the effectiveness of UXLA.
For the zero-resource XNER task, UXLA sets a new
SoTA for all the tested languages. For both XNLI
and PAWS-X tasks, with only 5% labeled data in
the source, UXLA gets comparable results to the
baseline that uses 100% labeled data.
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Appendix

A FAQ: Justifications for design
methodology of UXLA

Here are our justifications for various design prin-
ciples of the UXLA framework.

Is masked language model pre-training with
cross-lingual training data from task dataset
useful? In Table 7, We perform language model
finetuning on XLM-R large model with multilin-
gual sentences of NER dataset and perform adap-
tation with only English language. With the LM-
finetuned XLM-R model, we didn’t see any signif-
icant increase in cross-lingual transfer. For Span-
ish, Arabic language, the score even got decreased,
which indicates possible over-fitting. However, ro-
bustness experiment in table 6 (see in the main
paper, sec 4.4) indicates that our proposed method
doesn’t overfit on target language rather than aug-
ment the new knowledge base.

Model es nl de ar fi

XLM-R 80.45 81.07 73.76 49.94 76.05
XLM-R + ens 81.42 8127 7520 50.93 76.97
UXLA 83.05 85.21 80.33 57.35 79.75
UXLA + ens 83.24 8532 80.99 58.29 79.87
Finetuned XLM-R 78.11 81.61 76.33 48.04 76.63

Table 7: Some additional baseline results on XNER
task. Here, ens reefers to emsemble.

Is using three models with different initializa-
tion necessary? Yes, different initialization en-
sures different convergence paths, which results
in diversity during inference. Co-labeling (Section
3.3) utilizes this property. There could be some
other ways to achieve the same thing. Our initial
attempt with three different heads (sharing a back-
bone network) didn’t work well.

Is using three epochs necessary? We utilize dif-
ferent types of datasets in different epochs. While
pseudo-labeling may induce noise, the model’s pre-
dictions for in-domain cross-lingual samples are
usually better. Because of this, for a smooth tran-
sition, we apply the vicinal samples in the second
epoch. Finally, inspired by the joint training of the
cross-lingual language model, in the third epoch
we use all four datasets. We also include the labeled
source data which ensures that our model does not
overfit on target distribution as well as persists the
generalization capability of the source distribution.

Need for the combination of co-teaching, co-
distillation and co-guessing? The combination
of these helps to distill out the noisy samples better.

Efficiency of the method and expensive extra
costs for large-scale pretrained models It is a
common practice in model selection to train 3-5
disjoint LM-based task models (e.g., XLM-R on
NER) with different random seeds and report the
ensemble score or score of the best (validation set)
model. In contrast, UXLA uses 3 different models
and jointly trains them where the models assist each
other through distillation and co-labeling. In that
sense, the extra cost comes from distillation and
co-labeling, which is not significant and is compen-
sated by the significant improvements that UXLA
offers.

B Visualization of confidence penalty

B.1 Effect of confidence penalty in
classification

In Figure 3 (a-b), we present the effect of the confi-
dence penalty (Eq. 1 in the main paper) in the target
language (Spanish) classification on the XNER dev.
data (i.e., after training on English NER). We show
the class distribution from the final logits (on the
target language) using t-SNE plots. From the fig-
ure, it is evident that the use of confidence penalty
in the warm-up step makes the model more robust
to unseen out-of-distribution target language data
yielding better predictions, which in turn also pro-
vides a better prior for self-training with pseudo
labels.

B.2 Effect of confidence penalty in loss
distribution

Figures 3(c) and 3(d) present the per-sample loss
(i.e., mean loss per sentence w.r.t. the pseudo la-
bels) distribution in histogram without and with
confidence penalty, respectively. Here, accurate-
2 refers to the sentences which have at most two
wrong NER labels, and sentences containing more
than two errors are referred to as noisy samples. It
shows that without confidence penalty, there are
many noisy samples with a small loss which is not
desired. In addition to that, the figures also sug-
gest that the confidence penalty helps to separate
the clean samples from the noisy ones either by
clustering or by model confidence.

Figures 4(a) and 4(b) present the loss distribution
in a scatter plot by sorting the sentences based
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Figure 3: (a-b) Effect of training with confidence penalty in the warm-up step on target (Spanish) language XNER
classification using t-SNE plots. From the visualization, it can be seen that the model trained with confidence
penalty shows better inter-class separation which exhibits robustness of the multilingual model. (c-d) Histogram

of loss distribution on target (Spanish) language XNER classification.

on their length in the x-axis; y-axis represents the
loss. As we can see, the losses are indeed more
scattered when we train the model with confidence
penalty, which indicates higher per-sample entropy,
as expected. Also, we can see that as the sentence
length increases, there are more wrong predictions.
Our distillation method should be able to distill out
these noisy pseudo samples.

Finally, Figures 4(c) and 4(d) show the length
distribution of all vs. the selected sentences (by
Distillation by model confidence) without and with
confidence penalty. Bari et al. (2020) shows that
cross-lingual NER inference is heavily dependent
on the length distribution of the samples. In gen-
eral, the performance of the lower length samples
is more accurate. However, if we only select the
lower length samples we will easily overfit. From
these plots, we observe that the confidence penalty
also helps to perform a better distillation as more
sentences are selected (by the distillation proce-
dure) from the lower length distribution, while still
covering the entire lengths. This shows that using
the confidence penalty in training, model becomes
more robust.

In summary, comparing the Figures 3(c-d) - 4(c-
d), we can conclude that training without confi-
dence penalty can make the model more prone to
over-fitting, resulting in more noisy pseudo labels.
Training with confidence penalty not only improves
pseudo labeling accuracy but also helps the distilla-
tion methods to perform better noise filtering.

C Details on distillation by clustering

One limitation of the confidence-based (single-
model) distillation is that it does not consider task-

specific information. Apart from classifier confi-
dence, there could be other important features that
can distinguish a good sample from a noisy one. For
example, for sequence labeling, sequence length
can be an important feature as the models tend to
make more mistakes (hence noisy) for longer se-
quences Bari et al. (2020). One might also want to
consider other features like fluency, which can be
estimated by a pre-trained conditional LM like GPT
Radford et al. (2020). In the following, we intro-
duce a clustering-based method that can consider
these additional features to separate good samples
from bad ones.

Here our goal is to cluster the samples based
on their goodness. It has been shown in computer
vision that deep models tend to learn good sam-
ples faster than noisy ones, leading to a lower loss
for good samples and higher loss for noisy ones
Han et al. (2018), Arpit et al. (2017). We propose
to model per-sample loss distribution (along with
other task-specific features) with a mixture model,
which we fit using an Expectation-Maximization
(EM) algorithm. However, contrary to those ap-
proaches which use actual (supervised) labels, we
use the model predicted pseudo labels to compute
the loss for the samples.

We use a two-component Gaussian Mixture
Model (GMM) due to its flexibility in modeling
the sharpness of a distribution Li et al. (2020a). In
the following, we describe the EM training of the
GMM for one feature, i.e., per-sample loss, but it is
trivial to extend it to consider other indicative task-
specific features like sequence length or fluency
score (see any textbook on machine learning).
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Figure 4: (a-b)Scatter plot of loss distribution on target (Spanish) language XNER classification. (c-d) Distribution
of selected sentence lengths on target (Spanish) language XNER classification.

EM training for two-component GMM Let
z; € IR denote the loss for sample x; and z; €
{0,1} denote its cluster id. We can write the 1d
GMM model as:

1
= N(@ilp, or)7

k=0

p(zilf, ) 3)

where 0, = {ux, o7} are the parameters of the -
th mixture component and 7, = p(z; = k) is the
probability (weight) of the k-th component with
the condition 0 < 7, < land ), 7 = 1.

In EM, we optimize the expected complete data
log likelihood Q (6, 6'~!) defined as:

Q0,0'")
=E( Zlog (x4, 2i|0)])

ZZH
= ZZE
= ZZp 2 = ki, 0'~1) log[p(z|0x)mi]
—sz (0'~1Y log p(|Ox) + 74 (6"

k) log[p(zi|0r)mk])

) log[p(xi|0k) k]

“4)

where 7; ;(6'1) is the responsibility that cluster
k takes for sample x;, which is computed in the E-
step so that we can optimize Q(6,6*~ 1) (Eq. 4) in
the M-step. The E-step and M-step for a 1d GMM
can be written as:

E-step:

N ()05
>k N(mi\%‘l)w};‘l

M-step: Optimize Q(6,6'~1) w.rt.  and

Compute 7 ,(0"71)

Z Ti,k
. — — = .
Th = S = N Tk
D i TikTi 2 _ Yk (@mi—p)?
. _ KT, _ ,
Hik 2Tk Tk 2iTik

Inference For a sample x, its goodness proba-
bility is the posterior probability p(z = g|x,6),
where g € {0, 1} is the component with smaller
mean loss. Here, distillation hyperparameter 7 is
the posterior probability threshold based on which
samples are selected.

Relation with distillation by model confidence
Astute readers might have already noticed that
per-sample loss has a direct deterministic relation
with the model confidence. Even though they are
different, these two distillation methods consider
the same source of information. However, as men-
tioned, the clustering-based method allows us to
incorporate other indicative features like length,
fluency, etc. For a fair comparison between the two
methods, we use only the per-sample loss in our
primary (single-model) distillation methods.

D Hyperparameters

We present the hyperparameter settings for XNER
and XNLI tasks for the XLLA framework in Ta-

) log 7 ble 8. In the warm-up step, we train and validate

the task models with English data. However, for
cross-lingual adaptation, we validate (for model
selection) our model with the target language devel-
opment set. We train our model with respect to the
number of steps instead of the number of epochs.
In the case of a given number of epochs, we convert
it to a total number of steps.

We observe that learning rate is a crucial hyperpa-
rameter. In table 8, [r-warm-up-steps refer to the
warmup-step from triangular learning rate schedul-
ing. This hyperparameter is not to be confused with
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Hyperparameter XNER XNLI PAWS-X
Warm-up step  X-lingual adaptation Warm-up step  X-lingual adaptation =~ Warm-up step  X-lingual adaptation
Training-hyperparameters
model-type xlm-r L warm-up-ckpt xlm-r L warm-up-ckpt xlm-r L warm-up-ckpt
sampling-factor - 0.7 - 0.7 - 0.7
drop-out 0.1 0.1 0.1 0.1 0.1 0.1
max-seq-length 280 280 128 128 128 128
per-gpu-train-batch-size 4 4 16 16 16 16
grad-accumulation-steps 5 4 2 2 2 2
logging-step 50 50 50 25 50 25
learning-rate (Ir) 3e7® 5¢76 le le le 6 le
Ir-warm-up-steps 200 10% of train 10% of train 10% of train 10% of train 10% of train
weight-decay 0.01 0.01 - - - -
adam-epsilon le=8 le=8 le=8 le~8 le=8 le=8
max-grad-norm 1.0 1.0 1.0 1.0 1.0 1.0
num-of-train-epochs - 1 - 1 - 1
UXLA-epochs - 3 6 3 10 6
max-steps 3000 - - - -
train-data-percentage 100 100 5 5 5 5
conf-penalty True False True False True False
Distillation-hyperparameters
#mixture-component - .2 - - - -
posterior-threshold - 0.5 - - - -
covariance-type - Full - - - -
distilation-factor 7 - 80, 100, 100 - 50, 80, 100 - 80, 90, 80
distillation-type - confidence - confidence - confidence
Augmentation-hyperparameters
do-lower-case False False False False False
aug-type - successive-max - successive-cross - successive-cross
aug-percentage P - 30 - 30 - 40
diversification-factor § - 3 - 2x2 - 2x2

Table 8: Hyperparameter settings for XNER, XNLI, and PAWS-X task. Total number of parameter for each of the
model is 550M. We used V100 GPUs to do the experiments. Average run-time for each of the languages may differ
based on total number of augmented samples. In an average, for per million augmentation requires .5-2 days based
of various settings of training mechanism (ie., fp16 training, gradient accumulation etc).

Warm-up step of the UXLA framework. In our ex-
periments, effective batch-size is another crucial
hyperparameter that can be obtained by gradient
accumulation steps. We fix the maximum sequence
length to 280 for XNER and 128 tokens for XNLI.
For each of the experiments, we report the average
score of three task models, (1), 9 (3 which
are initialized with different seeds. We perform
each of the experiments in a single GPU setup with
float32 precision.

E Additional Related Work

Vicinal risk minimization. One of the funda-
mental challenges in deep learning is to train mod-
els that generalize well to examples outside the
training distribution. The widely used Empirical
Risk Minimization (ERM) principle where models
are trained to minimize the average training error
has been shown to be insufficient to achieve gener-
alization on distributions that differ slightly from
the training data (Szegedy et al., 2014; Zhang et al.,
2018). Data augmentation supported by the Vici-
nal Risk Minimization (VRM) principle (Chapelle
etal., 2001) can be an effective choice for achieving
better out-of-training generalization.

In VRM, we minimize the empirical vicinal risk
defined as:

1 N
ﬁy(e) = NZZ(fO(in%gn)

where fy denotes the model parameterized by
0, and D¢ = {(Z,,Tn)}2_, is an augmented
dataset constructed by sampling the vicinal dis-
tribution ¥(Z, g|x;, y;) around the original training
sample (z;, y;). Defining vicinity is however chal-
lenging as it requires to extract samples from a
distribution without hurting the labels. Earlier meth-
ods apply simple rules like rotation and scaling of
images (Simard et al., 1998). Recently, Zhang et al.
(2018); Berthelot et al. (2019) and Li et al. (2020)
show impressive results in image classification with
simple linear interpolation of data. However, to our
knowledge, none of these methods has so far been
successful in NLP due to the discrete nature of
texts.
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