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Abstract

Maintaining consistent personas is essential
for dialogue agents. Although tremendous ad-
vancements have been brought, the limited-
scale of annotated persona-dense data are still
barriers towards training robust and consistent
persona-based dialogue models. In this work,
we show how the challenges can be addressed
by disentangling persona-based dialogue gen-
eration into two sub-tasks with a novel BERT-
over-BERT (BoB) model. Specifically, the
model consists of a BERT-based encoder and
two BERT-based decoders, where one decoder
is for response generation, and another is for
consistency understanding. In particular, to
learn the ability of consistency understanding
from large-scale non-dialogue inference data,
we train the second decoder in an unlikeli-
hood manner. Under different limited data set-
tings, both automatic and human evaluations
demonstrate that the proposed model outper-
forms strong baselines in response quality and
persona consistency.

1 Introduction

Various approaches have been explored to intro-
duce explicit personas in dialogue models (Qian
et al., 2018; Song et al., 2019; Zheng et al., 2020;
Liu et al., 2020). The PERSONA can be defined as
a composite of elements of identity, such as profiles
and background personal facts. In persona-based
dialogues, the generated responses are conditioned
not only on the dialogue context but also on some
predefined personas, so the presenting personality
could be more consistent.

Existing persona-based dialogue models heavily
utilize a set of persona-related dialogue data (Wolf
et al., 2019; Golovanov et al., 2019), such as the
PersonaChat (Zhang et al., 2018). This kind of
crowd-sourced dataset covers rich persona features,

∗Wei-Nan Zhang is the corresponding author.

Persona: I've a son who is in junior high school
Query: You have any children?
GPT-2: No kids. I work at home depot so I’m busy.

Figure 1: A 12-layer GPT2 finetuned on PersonaChat
dataset still generates an inconsistent response.

namely “persona-dense”. Nevertheless, the scale
of such crowd-sourced datasets is limited by the
expensive costs: two annotators are asked to act
the part of a given provided persona and chat natu-
rally to get to know each other during the conversa-
tion. On the other hand, conversations in daily
life are not always persona-related. According
to Twitter content analysis, less than 10% mes-
sages on Twitter reveal personal anecdote or ac-
tivities at home or work and even less for person-
ally identifiable information (Naaman et al., 2010;
Humphreys et al., 2014). As a result, the large-scale
data collected from social media would only con-
tain a limited amount of persona-related dialogues,
which is “persona-sparse”. The limited-scale of
crowd-sourced data and the persona-sparsity in
large-scale data present one common challenge:
a model trained on limited personalized data can-
not sufficiently understand persona consistency. As
shown in Figure 1, a 12-layer GPT2 (Radford et al.,
2019) finetuned on the PersonaChat dataset still
shows a lack of consistency.

After rethinking the essence of persona-based
dialogue generation, we can find that it requires
the dialogue agent to own the capabilities to 1) un-
derstand the persona-response consistency and 2)
generate a persona-related response given the dia-
logue context. Obviously, an ideal dataset that sat-
isfies both features are difficult to annotate. How-
ever, once we disentangle persona-based dialogue
generation into two sub-tasks: consistency under-
standing and dialogue generation, it is easy to find
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abundant data resources for them. For consistency
understanding, we may leverage large-scale non-
dialogue inference data, such as SNLI (Bowman
et al., 2015) and MNLI (Williams et al., 2018)
as the training data. As for dialogue generation,
we already have various large-scale persona-sparse
datasets.

Inspired by the aforementioned motivation, in
this work, we explore to learn a consistent persona-
based dialogue model from limited personalized
dialogues, with the assistance of large-scale non-
dialogue inference data. Specifically, the proposed
model consists of an encoder E, an auto-regressive
decoder D1 for response generation, and a bidirec-
tional decoder D2 for consistency understanding.
Given personas P and dialogue query Q, the E
and D1 jointly work in an encoder-decoder man-
ner to capture a typical query to response mapping
FG(S|Q,P ), and generate a coarse response rep-
resentation R1. Then R1 and personas P are fed
into the bidirectional decoder D2 to mapR1 to final
response representations R2: FU (R2|S, P ). Since
the consistency understanding part FU (R|S, P ) is
independent of the dialogue query Q, it can be
learned on non-dialogue inference datasets. Here
an unlikelihood training objective (Welleck et al.,
2019a) is applied to make contradicted cases in the
inference data less likely so that D2 could acquire
the ability of consistency understanding.

We initialize all modules from BERT (Devlin
et al., 2019) and name the proposed model BERT-
over-BERT (BoB). To verify the effectiveness of
our model, we experiment on two limited data
scenarios: 1) a persona-dense scenario (Zhang
et al., 2018) with low-resource settings (Zhao et al.,
2019), and 2) a persona-sparse scenario (Zheng
et al., 2019). Both automatic and human evalua-
tions indicate that our model generalizes well under
different settings and outperforms strong baselines
on most metrics, especially on persona consistency.

Contributions in this work are three-fold:

• We disentangled the task of persona-based di-
alogue generation into two sub-tasks: consis-
tency understanding and dialogue generation.

• A BERT-based generative framework, BoB,
was proposed for training persona-based dia-
logue models from limited data.

• An unlikelihood training method with non-
dialogue inference data was introduced to en-
hance persona consistency understanding.

2 Related Work

Persona-based Dialogues Recent studies on
persona-based dialogue generation focus on a data-
driven manner. They learn persona-related features
directly from personalized dialogue datasets, either
with implicit persona embeddings (Li et al., 2016b)
or with explicit profiles (Qian et al., 2018) and per-
sonal facts (Mazaré et al., 2018). Following this
research line, more sophisticated neural models are
emerging, such as modeling mutual-persona (Liu
et al., 2020) and multi-stage persona-based dia-
logue generation (Song et al., 2020a).

Meanwhile, various pre-training methods have
also been applied in this field. Wolf et al. (2019)
and Golovanov et al. (2019) show that fine-tuning
pre-trained GPT on the persona-dense dataset can
improve the quality of generated responses. Zheng
et al. (2020) propose an attention-routing mecha-
nism in a GPT-based model to control the flow of
persona information. Lin et al. (2020) explore how
to leverage BERT model for dialogue generation.
Different large-scale pretrained chatbots (Roller
et al., 2020; Madotto et al., 2020) also show their
effectiveness on persona-based dialogues.

Disentangled Representation The concept of
“disentangling” can be defined as transformations
that only change some properties of the underly-
ing model while leaving all other properties in-
variant (Higgins et al., 2018). The variational au-
toencoder (Kingma and Welling, 2013) could be
regarded as a disentangled representation learning
framework, and various methods are built within
it (Kim and Mnih, 2018; Locatello et al., 2019).

Unlikelihood Training Likelihood tries to max-
imize the probability of target sequence, while
unlikelihood corrects known biases by minimiz-
ing the probability of negative candidates (Welleck
et al., 2019a). Closely related to our work, Li et al.
(2020) first explored unlikelihood training in ad-
dressing dialogue logical contradictions. They get
contradicted dialogues from PersonaChat accord-
ing to DNLI (Welleck et al., 2019b), a PersonaChat-
oriented dialogue inference dataset. Then unlike-
lihood training is applied to reduce the probabil-
ity of contradicted responses. Different from Li
et al. (2020), with carefully designed decoders, our
model could learn from large-scale non-dialogue
inference datasets, making it generalizable to differ-
ent scenarios, such as persona-dense and persona-
sparse datasets, as will be seen in our experiments.
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Figure 2: (1) The framework of the proposed BoB model, including an encoder (BERT E), a response generation
decoder (BERT D1), and a consistency understanding decoder (BERT D2). The italics denote the inputs and
outputs of each submodule. (2) Transformer attention masks for generation (D1) and understanding (D2), and dark
square means no attention. (3) Training objectives and the utilized data. NLL denotes negative log-likelihood.

3 Model

3.1 Overview

In this work, our goal is to learn a persona-based
dialogue model from limited personalized data. To
address the challenges of consistency understand-
ing brought by limited data, we leverage large-scale
non-dialogue inference data in our model.

Formally, let Q = q1, q2, ..., qn denote the dia-
logue query,R = r1, r2, ..., rm denote the target re-
sponse, and P denote the personas. In addition, let
N denote the non-dialogue inference data, which
consists of premise, hypothesis, and their label.
The premise and hypothesis are both natural sen-
tences. Note that in the following sections, we use
fonts to distinguish between sentences (P , Q, R)
and their vector representations (P , Q, R1, R2).

The task of the proposed model M is to generate
a persona consistent response R̂ = r̂1, r̂2, ..., r̂m,
based on both persona P and query Q, i.e., R̂ =
M(Q,P). As shown in Figure 2, the proposed
model M consists of three BERT-based submod-
ules: an encoder E, a response decoder D1, and
a consistency understanding decoder D2. More
concretely, E encodes the embeddings of persona
and query, i.e., P and Q, into hidden states H . D1

performs cross-attention on H in a typical encoder-
decoder manner, and generate a coarse representa-
tion R1. D2 learns consistency understanding from
non-dialogue inference dataN and further converts
P and R1 into final representations R2. At last, a
consistent response R̂ could be generated from R2.

3.2 Disentangling

For response generation, a typical persona-based di-
alogue model needs persona P and dialogue query
Q to generate a response. For consistency under-
standing, a model needs persona P , response R,
and the consistency labels between P andR. How-
ever, if we entangle generation and understanding,
it is not easy to obtain sufficient annotated data that
satisfy the format of {P , Q,R, Label}.

Instead, in our model, we design the decoder
D2 to disentangle generation and understanding,
where D2 maps R1, rather than Q, to R2. The key
to “disentangling” is we can get R1 without the
participation of Q, as R1 is the representation of
R. As a result, the mapping from R1 to R2 could
be independent of Q. In this way, it becomes possi-
ble to 1) learn persona-based dialogue generation
from {P , Q, R}, i.e., the personalized data, and
2) learn consistency understanding from {P , R,
Label}. Moreover, considering the limited amount
of such annotated data, we could approximate {P ,
R, Label} by the abundant non-dialogue inference
data N={Premise, Hypothesis, Label}, where P
andR corresponds to the Premise and Hypothesis.

Given data P and R, suppose D2 understands
persona consistency, it should maximize the like-
lihood of generatingR ifR is not contradicted to
P . Otherwise, it should minimize the likelihood
of generating R. Motivated by this observation,
we choose to apply unlikelihood training on D2

to make it understand consistency. The detailed
training objectives will be provided in Sec 3.4.
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3.3 BERT-over-BERT

3.3.1 Encoder
The encoder E works like a standard BERT model,
which bidirectionally encodes the input embed-
dings to a sequence of hidden vectors, from which
the downstream tasks will be performed on.

In our model, the input consists of persona P
and dialogue query Q. For persona, whether P is
personal facts (e.g., “I have two dogs”) or profiles
(e.g., “location: Seattle”), we could always con-
vert it into a sequence of words. A special token
is placed between persona sequence and dialogue
query, and the input is formated as:

input = p
(0)
1 , p

(0)
2 , ..., p(t)

ut , [s], q1, q2, ..., qn (1)

Then the embedding layer will convert input into
representations. Following usual practice, the input
representations are the sum of the corresponding to-
ken, type, and position embeddings, where the type
embedding is 0 and 1 for persona and query, re-
spectively. P and Q can also get their independent
representations. The resulted representations are
P and Q, which could be jointly denoted as emb
= ep1, e

p
2, ..., e

q
l , where l is the maximum length of

the input.
Once we get the input representations, encoder

E will perform multi-head attetnion (Vaswani et al.,
2017) on the emb to transform the embeddings into
a sequence of hidden vectors H . The multi-head
attetnion could be denoted as MultiHead(query,
key, value), where scaled dot-product attention is
performed on query, key, and value. There are N
identical layers in E, for each layer:

hi+1 = FNN(MultiHead(hi, hi, hi)), (2)

where h0 = emb, and FNN is a fully connected
feed-forward network containing two linear trans-
formations with a ReLU activation in between. hN

is the final output of encoder E, i.e., H .

3.3.2 Response Generation Decoder
The response generation decoder D1 is initialized
from BERT to inherit its robust language model
but works in an auto-regressive decoder manner.
First, a cross-attention is inserted between E and
D1 to pass the context information. Second, a left-
to-right mask is applied to D1 to preserve the auto-
regressive generation property.

As the cross-attention does not exist in the BERT
model, it is randomly initialized and updated during

training. In the cross-attention, the query comes
from the previous layer of D1, and the key and
value come from H:

ri+1
1 = FNN(MultiHead(ri1, H,H)). (3)

This attention is similar to the typical encoder-
decoder attention mechanism in sequence to se-
quence models (Bahdanau et al., 2015), which at-
tends to all positions in the context representations
H according to the variations of r1. In training,
r0

1 is initialized from the embeddings of the target
response. At each generation step, future tokens
in the target response should not be considered.
Therefore, as shown in Figure 2, a left-to-right
mask is applied to D1 to ensure that the predictions
can only depend on the known outputs.
D1 also has N identical layers. And the output

of the last layer rN1 , i.e., R1, is further fed to D2.

3.3.3 Consistency Understanding Decoder
Like E and D1, the consistency understanding de-
coder D2 is also initialized from BERT, from where
D2 initializes a good semantic representation for
understanding tasks.

In each layer of D2, the multi-head attention is
performed twice:

pi+1 = FNN(MultiHead(ri2, P, P )), (4)

ri+1
2 = FNN(MultiHead(pi+1, R1, R1)). (5)

The resulted ri+1
2 in each layer thus fuses informa-

tion from both P and R1. The output of the last
layer of D2 is the final representations R2. With
an output layer, e.g. linear layers, upon the R2, we
can get the generated response R̂.

3.4 Training Objectives
We employ negative log-likelihood (NLL) loss
and unlikelihood loss for dialogue generation and
consistency understanding. A brief illustration is
shown in the last column of Figure 2 and detailed
descriptions will be provided in this section.

Response Generation In our model, the widely
adopted negative log-likelihood loss is applied in
the training. For E and D1, they read the persona P
and dialogue queryQ to predict the target response
R, which yields the raw representations R1:

LD1
NLL = −log(pθ(R|P,Q))

= −
|R|∑
i=1

log(pθ(ri|P,Q,R<i)).
(6)
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The generation part in D2 is also trained by NLL.
D2 reads persona embeddings P and raw represen-
tations R1 to predict the target responseR:

LD2
NLL = −log(pγ(R|P,R1))

= −
|R|∑
i=1

log(pγ(ri|P,R1,R<i)).
(7)

Unlikelihood Training Given large-scale non-
dialogue inference dataset, we collect positive data
D+ from the entailed category and collect negative
data D− from the contradicted category:

D+ = {(P̄(i), R̄(i)+)}, D− = {(P̄(j), R̄(j)−)},
(8)

where P̄ and R̄ are premise and hypothesis from
the non-dialogue inference data, and their represen-
tations in our model are denoted as P̄ and R̄. For
data from D+, we still apply the NLL loss:

LD
+
2

UL = −
|R̄|∑
i=1

log(pγ(r̄i|P̄ , R̄, R̄<i)), (9)

For data from D−, we apply the unlikelihood ob-
jective to minimize the likelihood of contradictions:

LD
−
2

UL = −
|R̄|∑
i=1

log(1− pγ(r̄i|P̄ , R̄, R̄<i)), (10)

which penalizes every token in the contradicted

target. Therefore, the loss LD
−
2

UL makes generating
contradicted responses less likely.

Training Procedure The training steps can be
summarized as follows:

1) Response Generation. Given P , Q, and R
from personalized dialogue data, we calculate the
response generation loss L1 = LD1

NLL + αLD2
NLL;

2) Consistency Understanding. Given D+ and
D− from non-dialogue inference data, we calculate

the unlikelihood loss L2 = βLD
+
2

UL + (1− β)LD
−
2

UL;
3) Optimization. Sum up L1 and L2. Update

parameters with back-propagation.
We initialize our model from the publicly avail-

able BERT base model, with 12 layers and hidden
size 768. We employ an Adam optimizer with a
learning rate of varying from 5e-6 to 5e-5. Empiri-
cally, we set α to 5e-3 and β to 0.1. The training of
the proposed model was done on an Nvidia Telsa
V100 32G GPU. Other details please refer to the
released projects.

4 Experiments

4.1 Datasets

To evaluate the performance of the proposed model,
we carried out persona-based dialogue generation
experiments in a persona-dense scenario and a
persona-sparse scenario with two publicly avail-
able datasets:

• PersonaChat (Zhang et al., 2018) is a crowd-
sourced dataset covering rich persona features.
The dialogues in this dataset are grounded on
specific personal facts. Here we use the Con-
vAI2 PersonaChat (Dinan et al., 2019), so the
results are comparable to existing methods.

• PersonalDialog (Zheng et al., 2019) is a
large-scale persona-sparse dataset, which is
collected from Chinese social media Weibo.
This dataset provides persona profiles and di-
alogues, but the majority of the dialogues
are not persona-related. Two testsets are pro-
vided: a random testset, which is identically
distributed as the training data, and a biased
testset, which is manually selected to cover
persona-related features.

We summarize the key statistics of two personal-
ized dialogue datasets in Tabel 1.

As aforementioned, we leverage non-dialogue
inference data to address the consistency under-
standing issue brought by limited personalized data.
Here we use the non-dialogue inference dataset
MNLI (Williams et al., 2018) and its Chinese ver-
sion CMNLI (Xu et al., 2020) as our auxiliary data.
Moreover, to better compare models’ performance
on persona consistency, we leverage two dialogue
inference datasets, DNLI (Welleck et al., 2019b)
and KvPI (Song et al., 2020b), for evaluations. The
statistics1 of these inference datasets are summa-
rized in Table2.

4.2 Compared Methods

The following models, including both non-
pretrained and pretrained ones, have been com-
pared in the experiments.

Baselines. Vanilla Transformer (Vaswani et al.,
2017) is employed as baselines for the experiments
on both PersonaChat and PersonalDialog. Personas
are concatenated to the dialogue queries.

1Note that for the DNLI, we only count the tuples that can
be restored as {persona, query, response} in our experiments.
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Dataset # Train # Valid # Test

PersonaChat 121,880 9,558 7,801
PeronalDialog 5,014,349 423,817 10,000 / 521

Table 1: Statistics of persona-based dialogue datasets.

Dataset # Entailed # Neutral # Contra.

MNLI 130,615 130,590 130,590
CMNLI 130,612 130,555 130,616
DNLI 15,495 20,927 16,488
KvPI 33,114 54,426 31,000

Table 2: Statistics of different inference datasets.

Non-Pretrained Models. Meta-learning has re-
cently been explored in addressing the limited
personalized data issue. CMAML (Song et al.,
2020c) is a meta-learning based method that learns
from few shot personas by customizing the model
structures. Besides the meta-learning methods,
GDR (Song et al., 2020a) introduces inference abil-
ity on the PersonaChat with a generate-refine frame-
work. However, the two models are elaborately
designed for the persona-dense dataset and not ap-
pliable for the persona-sparse scenario. Thus we
only employ them for experiments on PersonaChat.

Pre-training Models. In the ConvAI2 chal-
lenge (Dinan et al., 2019), which utilizes Per-
sonaChat as the competition dataset, LIC (Golo-
vanov et al., 2019) is the best performing model.
Thus we compare this model in the experiments
on both PersonaChat and PersonalDialog. Atten-
tionRouting (Zheng et al., 2020) is a pre-training
method specially designed for the persona-sparse
dataset, and it is also the latest model on Personal-
Dialog. We also finetune a GPT2 (Radford et al.,
2019) for a thorough comparison on PersonaChat.

4.3 Evaluation Metrics

We focus on two main aspects of the persona-based
dialogues: response quality and persona consis-
tency. To compare different models, we employ
both automatic metrics and human evaluations.

Automatic Metrics For dialogue quality, we em-
ploy perplexity (PPL.) and distinct 1/2 (Dist.1/2)
following common practice (Zhang et al., 2018;
Zheng et al., 2020). Lower perplexity means better
language modeling. Distinct 1/2 (Li et al., 2016a)
are the ratio of distinct uni-grams / bi-grams, and
higher distinct means better reponse diversity.

For persona consistency, we employ two metrics.
The first is Consistency Score (C.Score) (Madotto
et al., 2019), which leverages a referee model to
predict consistency and can be defined as:

NLI(r, pi) =


−1, if r contradicts pi,

0, if r is irrelevant to pi,

1, if r entails pi.

C.Score(r) =
∑t

i=1
NLI(r, pi).

(11)
Here the NLI is a pre-trained RoBERTa model (Liu
et al., 2019) finetuned with the dialogue inference
datasets, i.e., DNLI and KvPI, as descriped in Ta-
ble 2. The RoBERT model achieves testset ac-
curacy of 89.3% and 88.9% on DNLI and KvPI,
which is aligned to the reported 88.20% (Welleck
et al., 2019b) and 88.0% (Song et al., 2020b).

The second metric is Delta Perplexity (∆P),
which evaluates consistency from model’s inter-
nal distributions. Li et al. (2020) first calculates
the perplexity of entailed (p.Ent) and contradicted
(p.Ctd) dialogues in the inference dataset. A
dialogue model with good understanding ability
should assign lower perplexity to the entailed dia-
logues while higher perplexity to the contradictions.
From this intuition, the ∆P can be defined as:

∆P = PPL(Contradicted)− PPL(Entailed),
(12)

where a larger ∆P means the model has a better
ability to distinguish entailment from contradiction.
In our experiments, we get entailed and contra-
dicted {persona, query, response} tuples from the
dialogue inference datasets DNLI and KvPI.

Human Evaluations We recruit two teams (one
for English and another for Chinese), each consists
of five professional annotators, from a third-party
company. These annotators are proficient in lan-
guage tasks but know nothing about the models.
We sample 100 {persona, query, response} tuples
for each model’s evaluation under every setting.

Human annotators are asked to evaluate dia-
logue quality from three conventional criteria: flu-
ency (Flue.), informativeness (Info.), and rele-
vance (Relv.). Each criterion is rated on a five-
scale, where 1, 3, and 5 indicate unacceptable,
moderate, and perfect performance, respectively.
The annotators are also instructed to label the con-
sistency (Per.C.) between persona and response,
where 1 means persona-related and consistent, 0
means irrelevant, and -1 means contradicted.
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PPL Dist.1 Dist.2 D.AVG p.Ent p.Ctd ∆P C.Score Flue. Info. Relv. Per.C.

Transformer 28.8 3.14 17.80 10.47 31.5 35.5 4.0 1.20 3.05 2.57 2.72 0.05
CMAML 36.7 1.00 2.10 1.55 32.3 37.5 5.2 6.96 3.36 2.40 3.09 0.24

GDR 16.7 3.76 23.10 13.43 19.7 32.3 12.6 7.89 3.38 2.74 3.13 0.21
LIC 17.3 6.29 28.99 17.64 13.7 20.4 6.7 14.12 3.70 3.53 3.47 0.39

GPT2 14.4 7.29 28.12 17.71 12.0 20.2 8.2 15.88 3.79 3.22 3.79 0.47

BoB (Ours) 7.8 8.40 36.08 22.24 7.3 83.4 76.1 17.18 4.12 4.03 4.09 0.60

Table 3: Automatic and human evaluation results on the full PersonaChat dataset. The best results are in bold.

PPL Dist.1 Dist.2 D.AVG p.Ent p.Ctd ∆P C.Score Flue. Info. Relv. Per.C.

Baselines’ Best 14.4 7.29 28.99 17.71 12.0 37.5 12.6 15.88 3.79 3.53 3.79 0.47

Ours 1/8 Data 11.6† 7.49† 27.10 17.30 11.3† 83.6† 72.3† 15.87 4.17† 3.48 4.12† 0.62†

Ours 1/4 Data 9.7 7.97 30.20† 19.09† 11.8 85.8 74.0 16.04† 4.19 3.47 4.17 0.60
Ours 1/2 Data 8.9 8.13 33.08 20.61 8.1 81.9 73.8 16.36 4.03 3.70† 3.94 0.61

Table 4: Automatic and human evaluation results of the low resource settings on the PersonaChat dataset. The †
means the minimum amount of data our model needed to outperform baselines’ best results.

4.4 Persona-Dense Results

Full PersonaChat We first report the full Per-
sonaChat experimental results in Table 3. Our
method achieves better performance consistently
across all automatic and human evaluation metrics,
which shows the effectiveness of our model.

Among all the metrics, our model obtains sig-
nificant improvements on PPL and ∆P. The lowest
testset PPL means our model has learned a good
language model fitting this dataset. Moreover, the
highest ∆P shows that our model could more ef-
fectively distinguish entailment from contradiction
than other baselines, which indicates our model has
a better understanding of persona consistency.

Less Personalized Data Now that our model
achieves better performance with a large margin on
the full PersonaChat dataset, we want to test our
model by simulating a low-resource scenario (Zhao
et al., 2019), where we gradually reduce the num-
ber of examples by halving the training set. We
report the low-resource settings’ results in Table 4.

As we can see, our model can outperform most
of the baselines’ best results even by using only
1/8 of the training data. The performance gains
largely benefit from the powerful language model
of the backbone BERT model. Furthermore, due to
the disentangling of generation and understanding,
our model presents a stable performance on ∆P
regardless of the size of the training set. This is
in line with our expectations because the proposed
model learns consistency understanding from the

non-dialogue inference data rather than the persona-
dense dialogue data. We observe that the method
also improves fluency and informativeness. It is
mainly due to the introduction of the non-dialogue
inference data in the training procedure, which po-
tentially enriches the dialogue language model.

4.5 Validations on Persona-Sparse

We further validate our model on a persona-sparse
scenario. To have a more intuitive understanding
of “sparsity”, we recruit the same annotation team
to annotate whether the dataset response is persona-
related in the sampled random and biased test data.
Results show that only 1% responses are persona-
related in the random test data and 28% in the
biased test data. We calculate the Fleiss’ Kappa
among the five annotators and obtain a kappa of
0.774, which means substantial agreement (Landis
and Koch, 1977). We report the evaluation results
on both random and biased testsets in Table 5.

On the random test set, experimental results
demonstrate that our model has some advantages
over other methods, but no method can consistently
outperform the others. One possible reason is that
the task has degenerated into the ordinary dialogue
generation in the random test set, so our model’s
advantages can not be effectively leveraged. In
contrast, on the biased test set, our model achieves
the best performance on most metrics. The good
performance on the metrics C.Score and Per.C. in-
dicates that our model can be effectively trained
from a dataset with limited personalized dialogues.
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Random Testset Biased Testset KvPI

PPL C.Score Flue. Info. Relv. Per.C. PPL C.Score Flue. Info. Relv. Per.C. ∆P

Trans 43.7 0.95 3.26 2.38 2.72 0.00 83.2 1.04 3.54 2.58 2.84 0.03 3.28
LIC 47.8 4.08 3.68 2.66 2.92 0.02 43.3 8.25 3.72 3.01 3.04 0.08 2.86
AR 34.2 -2.14 3.71 2.58 3.02 -0.03 38.7 11.72 3.78 3.11 3.10 0.13 3.08

Ours 18.5 2.10 3.75 2.69 2.98 0.01 19.5 12.76 3.84 3.13 3.17 0.15 85.40

w/o UL 19.3 -3.13 3.73 2.57 2.93 -0.06 20.1 10.53 3.79 2.92 3.10 0.09 4.10
E+D1 31.7 0.15 3.74 2.68 2.96 -0.01 38.0 9.75 3.74 3.15 3.06 0.08 2.80

E 35.5 1.64 3.67 2.57 2.96 0.01 41.1 7.41 3.72 3.05 3.04 0.04 4.60

Table 5: Automatic and human evaluation results on the random testset and biased testset of PersonalDialog, along
with the ablation results. Trans denotes Transformer, and AR denotes AttentionRouting. Best results in bold.

PPL ∆P Flue. Info. Relv. Per.C.

Ours 7.8 76.1 4.12 4.03 4.09 0.60

w/o UL 8.1 7.8 3.81 3.50 3.80 0.48
E+D1 23.6 4.9 3.65 3.18 3.60 0.45

E 25.7 7.1 3.69 3.28 3.60 0.42

Table 6: Ablation results of automatic metrics and hu-
man evaluations with full PersonaChat dataset.

4.6 Analysis and Ablation Study

In addition to the good performance of the BoB
model, we are also curious about Q1: what is the
key to the BoB model’s understanding ability? Q2:
can the pre-trained models understand persona con-
sistency just through finetuning on the personalized
dialogues? And Q3: does the extremely low PPL
come from the initialization of the BERT model or
the architecture of the proposed BoB model?

To better answer the above questions, we ab-
late the BoB model in the following three ways:
1) w/o UL. It removes the unlikelihood objective.
2) E+D1. It removes the unlikelihood objective
and the second decoder D2. 3) E. It removes the
unlikelihood objective and both decoders and thus
degenerates into a vanilla BERT model. We report
the ablation results on PersonalDialog in Table 5
and full PersonaChat in Table 6. From these results:

Answer to Q1: The key to our model’s under-
standing is the unlikelihood training. In training,
our model assigns large perplexity to the contra-
dictions. In generating, the non-contradicted re-
sponses are more likely to be generated as they are
with much smaller losses. Table 7 shows an exam-
ple. And as presented in the results, after removing
the unlikelihood objective, all ablated models suf-
fer from significant performance degradations in
consistency-related metrics, such as Per.C. and ∆P.

Persona I’ve a son who is in junior high school
Query You have any children?

GPT2 No kids. I work at home depot so I’m busy.
Ours Yes, I have a son in the 8th grade.

Table 7: A generated example from our model.

Answer to Q2: Pretrained models barely un-
derstand consistency from personalized dialogues.
According to the poor performances on ∆P, the
three BERT-based ablated models can hardly dis-
tinguish contradiction from entailment. Although
their Per.C. metric still looks good, it may come
from just mimicking and copying words rather than
understanding. A similar phenomenon also occurs
to the pre-trained GPT2, as shown in Table 3. It is
also this phenomenon that motivates us to introduce
the unlikelihood training into the BoB model.

Answer to Q3: D2 in the BoB architecture con-
tributes most to the PPL. As shown in both datasets’
ablation results, the PPL decreases the most after
removing D2. We can also see an apparent gap
between the models with D2 and the vanilla BERT
on PPL. Nevertheless, the BERT model still offers
a good initialization for the BoB model to achieve
the best performance on different metrics.

4.7 Reproducibility

The implementation for the BoB model is released
at https://github.com/songhaoyu/BoB.

5 Conclusions

In this work, we propose a novel BERT-based di-
alogue model to learn from limited personalized
data by disentangling response generation and con-
sistency understanding. Unlikelihood training with
non-dialogue inference data is introduced to en-
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hance the model’s understanding ability. Experi-
ments on two publicly available datasets demon-
strate that our model can be trained with limited
personalized dialogue data while still obtain signif-
icant improvements over strong methods.
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