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Abstract

Learning discrete dialog structure graph from
human-human dialogs yields basic insights
into the structure of conversation, and also pro-
vides background knowledge to facilitate dia-
log generation. However, this problem is less
studied in open-domain dialogue. In this pa-
per, we conduct unsupervised discovery of
discrete dialog structure from chitchat cor-
pora, and then leverage it to facilitate coher-
ent dialog generation in downstream systems.
To this end, we present an unsupervised model,
Discrete Variational Auto-Encoder with Graph
Neural Network (DVAE-GNN), to discover
discrete hierarchical latent dialog states (at the
level of both session and utterance) and their
transitions from corpus as a dialog structure
graph. Then we leverage it as background
knowledge to facilitate dialog management in
a RL based dialog system. Experimental re-
sults on two benchmark corpora confirm that
DVAE-GNN can discover meaningful dialog
structure graph, and the use of dialog structure
as background knowledge can significantly im-
prove multi-turn coherence.

1 Introduction

With the aim of building a machine to converse
with humans naturally, some work investigate neu-
ral generative models (Shang et al., 2015; Serban
et al., 2017). While these models can generate lo-
cally relevant dialogs, they struggle to organize in-
dividual utterances into globally coherent flow (Yu
et al., 2016; Xu et al., 2020b). The possible reason
is that it is difficult to control the overall dialog
flow without background knowledge about dialog
structure.! However, due to the complexity of open-
domain conversation, it is laborious and costly to
annotate dialog structure manually. Therefore, it is
*Equal contribution.

t Corresponding author: Wanxiang Che.
'Dialog structure means dialog states and their transitions.

of great importance to discover open-domain dia-
log structure from corpus in an unsupervised way
for coherent dialog generation.

Some studies tried to discover dialog structure
from task-oriented dialogs (Shi et al., 2019). How-
ever, the number of their dialog states is limited to
only dozens or hundreds, which cannot cover fine-
grained semantics in open-domain dialogs. Fur-
thermore, the dialog structures they discovered
generally only contain utterance-level semantics
(non-hierarchical), without session-level semantics
(chatting topics) that are essential in open-domain
dialogs (Wu et al., 2019; Kang et al., 2019; Xu
et al., 2020c).? Thus, in order to provide a full pic-
ture of open-domain dialog structure, it is desirable
to discover a two-layer directed graph that contains
session-level semantics in the upper-layer vertices,
utterance-level semantics in the lower-layer ver-
tices, and edges among these vertices.

In this paper, we propose a novel discrete vari-
ational auto-encoder with graph neural network
(DVAE-GNN) to discover a two-layer dialog struc-
ture from chitchat corpus. Intuitively, since dis-
crete dialog states are easier to capture transitions
for dialog coherence, we use discrete variables to
represent dialog states (or vertices in the graph)
rather than dense continuous ones in most VAE-
based dialog models (Serban et al., 2017; Zhao
et al., 2017). Specifically, we employ an RNN En-
coder with softmax function as vertex recognition
module in DVAE, and an RNN decoder as recon-
struction module in DVAE, as shown in Figure
3. Furthermore, we integrate GNN into DVAE to
model complex relations among discrete variables
for more effective discovery. The parameters of
DVAE-GNN can be optimized by minimizing a re-
construction loss, without the requirement of any
annotated datasets.

2A session refers to a dialog fragment about one topic.
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Figure 1: The procedure of dialog structure discovery. Figure (d) shows the discovered dialog structure graph.
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Figure 2: Response generation grounded on a dialog
structure graph.

As shown in Figure 1, with well-trained DVAE-
GNN, we build the dialog structure graph by
three steps. First, we map all dialog sessions
to utterance-level and session-level vertices, as
shown in Figure 1 (b); Second, we calculate co-
occurrence statistics of mapped vertices for all dia-
log sessions, as shown in Figure 1 (c).3 Finally, we
build edges among vertices based on all collected
co-occurrence statistics to form the dialog structure
graph, as shown in Figure 1 (d).

To prove the effectiveness of the discovered
structure, we propose a hierarchical reinforcement
learning (RL) based graph grounded conversational
system (GCS) to leverage it for conversation gener-
ation. As shown in Figure 2, given a dialog context,
GCS first maps it to a utterance-level vertex, and
then learns to walk over graph edges, and finally se-
lects a contextual appropriate utterance-level vertex
to guide response generation at each turn.

Our contribution includes: (1) we identify the
task of unsupervised dialog structure graph discov-
ery in open-domain dialogs. (2) we propose a novel
model, DVAE-GNN, for hierarchical dialog struc-

3Co-occurrence means that two utterance-level vertices are
mapped by two adjacent utterances in a session.

ture graph discovery. Experimental results on two
benchmark corpora demonstrate that we can dis-
cover meaningful dialog structure, the use of GNN
is crucial to dialog structure discovery, and the
graph can improve dialog coherence significantly.

2 Related Work

2.1 Dialog structure learning for
task-oriented dialogs

There are previous work on discovering human-
readable dialog structure for task-oriented dialogs
via hidden Markov models (Chotimongkol, 2008;
Ritter et al., 2010; Zhai and Williams, 2014) or
variational auto-encoder (Shi et al., 2019). How-
ever, the number of their dialog states is limited
to only dozens or hundreds, which cannot cover
fine-grained semantics in chitchat. Moreover, our
method can discover a hierarchical dialog structure,
which is different from the non-hierarchical dialog
structures in most previous work.

2.2 Knowledge aware conversation
generation

There are growing interests in leveraging knowl-
edge bases for generation of more informative re-
sponses (Moghe et al., 2018; Dinan et al., 2019;
Liu et al., 2019; Xu et al., 2020c,a). In this work,
we employ a dialog-modeling oriented graph built
from dialog corpora, instead of a external knowl-
edge base, in order to facilitate multi-turn dialog
modeling.

2.3 Latent variable models for chitchat

Recently, latent variables are utilized to improve
diversity (Serban et al., 2017; Zhao et al., 2017; Gu
et al., 2019; Gao et al., 2019; Ghandeharioun et al.,
2019), control responding styles (Zhao et al., 2018;
Li et al., 2020) and incorporate knowledge (Kim
et al., 2020) in dialogs. Our work differs from

*ai.baidu.com/tech/nlp_basic/dependency_parsing
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Figure 3: Overview of our algorithm “DVAE-GNN” for discovering a dialog structure graph from dialog dataset.
FFN denotes feed-forword neural networks and Emb refers to embedding layers

Algorithm 1 Phrase extraction

Input: An utterance U
Output: A set of phrases E extracted from U
1: Obtain a dependency parse tree T for U;*
2: Get all the head words HED that are connected to ROOT
node, and all the leaf nodes in I" (denoted as L);
3: for each leaf node in |L| do
4:  Extract a phrase consisting of words along the tree
from HED to current leaf node, denoted as e;;
If e; is a verb phrase, then append it into F;
: end for
: return E

theirs in that: (1) we focus on open-domain dia-
log structure discovery. (2) we use discrete latent
variables to model dialog states instead of dense
continuous ones in most previous work.

3 Our Approach
3.1 Problem Definition

Given a corpus D that contains | D| dialog sessions
{X1, Xa, ..., X|p|}, where each dialog session X
consists of a sequence of ¢ utterances, and X =
[1, ..., z¢]. The objective is to discover a two-layer
dialog structure graph G = {V, £} from all dialog
sessions in D, where V is the vertex set and £ is the
edge set. Specifically, V consists of two types, vy,
(1 < m < M) for session-level vertices (topics)
and vy, (1 < n < N) for utterance-level vertices.
£ contains three types: edges between two session-
level vertices (denoted as Sess-Sess edges), edges
between two utterance-level vertices (denoted as
Utter-Utter edges), and edges between an utterance-
level vertex and its parent session-level vertices
(denoted as Sess-Utter edges).

Figure 3 shows the proposed DVAE-GNN frame-
work. It contains two procedures, vertex recogni-
tion that maps utterances and sessions to vertices

(as the role of recognition module in VAE (Kingma
and Welling, 2014)), and utterance reconstruction
that regenerates all utterances in sessions (as the
role of decoding module in VAE).

3.2 Graph Initialization

Vertex Initialization. Theoretically, we can cold
start the representation learning of vertices in dia-
log structure graph. In practice, to accelerate the
learning procedure, we warm start each utterance-
level vertex representation with the combination
of two parts: one discrete latent variable and
one distinct phrase. The associated phrase with
each utterance-level vertex provides prior seman-
tic knowledge for utterance-level vertex represen-
tation, which is beneficial for reducing the learn-
ing difficulty. Specifically, we first extract distinct
phrases from all dialog utterances with Algorithm 1.
Then we choose the top-N most frequent extracted
phrases (the same number as utterance-level ver-
tices), and then randomly match utterance-level
vertices and the phrases in pairs during initializa-
tion. Notice that the association relations are not
changed afterwards.

Formally, we use A, and A, to represent the
hidden representation matrix of discrete session-
level and utterance-level vertices respectively. The
calculation can be shown as follows:

Ag[m] = Wi}, (1)
Azln] = [e(phn); W vy], 2)
where A¢[m] denotes the representation vector of
m-th session-level vertex, A, [n]| denotes the rep-
resentation vector of n-th utterance-level vertex,
v, and v} are one-hot vectors of discrete vertices,
e(phy,) denotes the representation vector of the
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associated phrase ph,, with v%, W* and W?* are
parameters, and ““;” denotes concatenation opera-
tion. Specifically, for phrase representation, we
first feed word sequence in the phrase to an RNN
encoder and obtain their hidden vectors. Then we
compute the average pooling value of these hidden
vectors as e(phy,).

Edge Initialization We build an initial Utter-Utter
edge between two utterance-level vertices when
their associated phrases can be extracted sequen-
tially from two adjacent utterances in the same
dialog session.

3.3 Vertex Recognition

Utterance-level Vertex Recognition. For each ut-
terance z; in a dialog session, we map it to an
utterance-level vertex. Specifically, we first encode
the utterance x; with an RNN encoder to obtain its
representation vector e(x;). Then, we calculate the
posterior distribution of the mapped utterance-level
vertex, z;, by a feed-forward neural network (FFN):

zi ~ q(z|z;) = softmax(A e(z;)). (3)

Finally, we obtain the mapped utterance-level

vertex, z;, by sampling from the posterior distri-
bution with Gumbel-Softmax (Jang et al., 2017).
Here, we can obtain an utterance-level vertex se-
quence after mapping each utterance in one dialog
session, where the sequence is utilized for session-
level vertex recognition.
Session-level Vertex Recognition. We assume
that each session-level vertex corresponds to a
group of similar utterance-level vertex sequences
that are mapped by different dialog sessions. And
these similar sequences might have overlapped
utterance-level vertices. To leverage this lo-
cally overlapping vertex information for encour-
aging mapping similar utterance-level vertex se-
quences to similar session-level vertices, we em-
ploy graph neural network to model complex rela-
tions among vertices for session-level vertex recog-
nition. Specifically, we utilize a three-layer graph
convolution network (GCN) over Utter-Utter edges
to calculate structure-aware utterance-level seman-
tics. The calculation is defined by:

> k) @)

'UZ/ EN(vy)

h{;g = o’

where hiu denotes the j-th layer structure-aware
representation for the n-th utterance-level vertex

v¥. o is the sigmoid activation function for

the j-th layer, and N (vY) is the set of utterance-
level neighbors of v in the graph. Here, we
can obtain a structure-aware semantic sequence
[h3u 3 s ..., hiu 1, where hi. represents the fi-
nal sltructuzre—awaré representatié)n of i-th mapped
utterance-level vertex, vy .

Then, we feed the structure-aware semantic se-
quence to an RNN encoder, denoted as the vertex-
sequence encoder, to obtain the structure-aware
session representation e(z;,. ). We calculate the
posterior distribution of the mapped session-level
vertex, g, as follows:

g~ q(glz,.. ) = softmax(Ase(z1,. ). (5)

Then, we obtain the mapped session-level vertex,
g, by sampling from the session-level posterior
distribution with Gumbel-Softmax.

3.4 Utterance Reconstruction

We reconstruct all utterances in the dialog session
by feeding these mapped vertices into an RNN
decoder (denoted as the reconstruction decoder).
Specifically, to regenerate utterance x;, we concate-
nate the representation vector of mapped utterance-
level vertex A;[z;] and the representation vector
of the mapped session-level vertex As[g|, as the
initial hidden state of the reconstruction decoder.

Finally, we optimize the DVAE-GNN model by
maximizing the variational lower-bound (ELBO)
(Kingma and Welling, 2014). Please refer to Ap-
pendix D for more details.

3.5 Graph Construction

After training DVAE-GNN, we construct the dialog
structure graph with well-trained DVAE-GNN by
three steps, as shown in Figure 1. Specifically, we
first map all dialog sessions in corpus to vertices
by Equation 3 and 5.

Then, we collect co-occurrence statistics of these
mapped vertices. Specifically, we count the total
mapped times for each session-level vertex, de-
noted as #(v; ), and those for each utterance-level
vertex, denoted as #(U;“-‘). Furthermore, we collect
the co-occurrence frequency of a session-level ver-
tex and an utterance-level vertex that are mapped
by a dialog session and an utterance in it respec-
tively, denoted as #(v;, v}/). Moreover, we collect
the co-occurrence frequency of two utterance-level
vertices that are sequentially mapped by two ad-
jacent utterances in a dialog session, denoted as

#(vj, vg)-
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Finally, we build edges between vertices based
on these co-occurrence statistics. We first build a di-
rected Utter-Utter edge from v}’ to vy if the bi-gram
transition probability # (v}, vy!)/#(v}) is above a
threshold o**. Then, we build a bidirectional Sess-
Utter edge between v and vy, if the probability
#(v7, vj)/#(v}) is above a threshold o™ More-
over, we build a directed Sess-Sess edge from v;
to v, if #(v], v3)/#(v]) is above a threshold o*%,
where the first item #(v],v3) is the number of
utterance-level vertices that are connected to both
session-level vertices. Here, Sess-Sess edges are
dependent on Sess-Utter edges.

3.6 Graph Grounded Dialog Generation

To prove the effectiveness of the discovered struc-
ture for coherent dialog generation, we utilize a
graph grounded conversation system (GCS) follow-
ing (Xu et al., 2020a). Different from single-layer
policy in Xu et al.(Xu et al., 2020a), we present a
hierarchical policy for two-level vertex selection.
The GCS contains three modules: (1) a dialog
context understanding module that maps given di-
alog context (the previous two utterances) to an
utterance-level vertex (called as hit utterance-level
vertex) in the graph with well-trained DVAE-GNN,
(2) a hierarchical policy that learns to walk over
one-hop graph edges (for dialog coherence) to se-
lect an utterance-level vertex to serve as response
content, and (3) a response generator that gener-
ate an appropriate response based on the selected
utterance-level vertex. Specifically, a session-level
sub-policy first selects a session-level vertex as
current dialog topic. Then, an utterance-level sub-
policy selects an utterance-level vertex from current
dialog topic’s child utterance-level vertices.
Session-level sub-policy Let A7, denote the set
of session-level candidate actions at time step . It
consists of all parent session-level vertices of the
hit utterance-level vertex. Given current RL state
s; at the time step [, the session-level sub-policy
19 selects an appropriate session-level vertex from
A¢, as the current dialog topic. Specifically, p9 is
formalized as follows:
g sy eXP(ESzTAS[Cg])
I3 (Sl7 Vs ) - N9 ’
T Xkl exp(es, T As[cf])
where ey, is the aforementioned RL state represen-
tation, c? the j-th session-level vertex in Agl, and
N} is the number of session-level vertices in AY,.
Utterance-level sub-policy Let A{ denote the
set of utterance-level candidate actions at time step

l. Tt consists of utterance-level vertices that are con-
nected to the vertex of current dialog topic. Given
current state s; at the time step [, the utterance-
level sub-policy p* selects an optimal utterance-
level vertex from Ay . Specifically, u* is defined
as follows:

exp(es, TA, [Cﬂ )

N¥ '
Z}él eXP(eslTA:E [c%])

Here, e, is the aforementioned RL state rep-
resentation, ¢} is the j-th utterance-level vertex
in A7, and N;* is the number of utterance-level
candidate vertices in Ay, . With the distribution cal-
culated by the above equation, we utilize Gumbel-
Softmax to sample an utterance-level vertex from
A, to provide response content for response gen-
erator, which is a Seq2Seq model with attention
mechanism.

To train RL, we use a set of rewards including
utterance relevance, utter-topic closeness, and rep-
etition penalty. For the session-level sub-policy, its
reward r9 is the average rewards from the utterance-
level sub-policy during current dialog topic. The
reward for the utterance-level sub-policy, 7", is a
weighted sum of the below-mentioned factors. The

default values of weights are set as [60, 0.5, -0.5].
5

1, o) =

i) Utterance relevance We choose the classi-
cal multi-turn response selection model, DAM in
(Zhou et al., 2018), to calculate utterance relevance.
We expect the generated response is coherent to
dialog context.

ii) Utter-topic closeness The selected utterance-
level vertex v} should be closely related to current
topic v;. And we use the # (v}, v})/#(v}) in Sec-
tion 3.5 as the utter-topic closeness score.

iii) Repetition penalty This factor is 1 when
the selected utterance-level vertex shares more than
60% words with one of contextual utterance, other-
wise 0. We expect that the selected utterance-level
vertices are not only coherent, but also diverse.

Further implementation details can be found in
the Appendix C.

4 Experiments for Dialog Structure
Graph Discovery

4.1 Datasets and Baselines

We evaluate the quality of dialog structure graph
discovered by our method and baselines on two

SWe optimize these weights by grid search.
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Datasets | Methods Automatic Evaluation ‘ Human Evaluation
S-U Appr.  U-U Appr. | Sess.V.-Qual.
NLL BLEU-1/2. | (Multi-turn  (Single-turn | (Multi-turn
coherence)  coherence) coherence)
Weibo DVRNN 29.187 0.427/0.322 - 0.16 -
Phrase Graph - -/- - 0.63 -
DVAE-GNN 20.969 0.588/0.455 0.85 0.79 1.44
DVAE-GNN w/o GNN | 23.364 0.560/0.429 0.53 0.78 1.06
DVAE-GNN w/o phrase | 24.282  0.468/0.355 0.43 0.27 0.95
Douban | DVRNN 72.744  0.124/0.093 - 0.14 -
Phrase Graph - -/- - 0.34 -
DVAE-GNN 35.975 0.525/0.412 0.60 0.70 0.93
DVAE-GNN w/o GNN | 37.415 0.504/0.394 0.38 0.54 0.48
DVAE-GNN w/o phrase | 49.606 0.254/0.206 0.28 0.19 0.27

Table 1: Evaluation results for dialog structure graphs extracted from Weibo corpus or Douban corpus. As DVRNN
learns only utterance-level states, its results in terms of S-U Appr. and Sess.V.-Qual. are not available.

benchmark datasets: (1) Weibeo (Li and Yan, 2018):
this is a Chinese multi-turn tweet-style corpora. Af-
ter data cleaning, we obtain 3.1 million sessions
for training, 10k sessions for validation and 10k
sessions for testing. (2) Douban (Wu et al., 2017):
we use the original multi-turn dialog corpus, and
obtain 2.3 million sessions for training, 10k ses-
sions for validation and 10k sessions for testing.
For the Weibo or Douban corpus, each dialog ses-
sion has 4 sentences on average, and each sentence
contains about 7 or 14 words respectively. The
discovered dialog structure graph on Weibo corpus
contains 1,641,238 utterance-level vertices, 6000
session-level vertices and 11,561,007 edges. And
the discovered dialog structure graph on Douban
corpus contains 1,768,720 utterance-level vertices,
5500 session-level vertices and 6,117,159 edges.
The number of utterance-level vertices is equal to
the number of extracted phrase number in corpus
and session-level vertices is determined by grid
search based on the NLL metric in Section 4.2.

In this work, we select DVRNN (Shi et al., 2019)
as a baseline, since there is few previous study on
unsupervised open-domain dialog structure discov-
ery. DVRNN is the SOTA unsupervised method
in discovering dialog structure in task-oriented di-
alogs, which outperforms other hidden Markov
based methods by a large margin (Shi et al., 2019).
We rerun the original source codes.® Notice that,
to suite the setting of open-domain dialog and also
consider the limit of our 16G GPU memory (we set
batch size as 32 to ensure training efficiency), we

8 github.com/wyshi/Unsupervised-Structure-Learning

set the number of dialog states as 50 (originally it
is 10).” We also evaluate the quality of the initial-
ized graph (denoted as Phrase Graph) that consists
of only phrases (as vertices) and initial edges (be-
tween phrases) in Section 3.2. For more details,
please refer to Appendix A.1.

4.2 Evaluation Metrics

We evaluate discovered dialog structure graph with
both automatic evaluation and human evaluation.
For automatic evaluation, we use two metrics to
evaluate the performance of reconstruction: (1)
NLL is the negative log likelihood of dialog ut-
terances; (2) BLEU-1/2 measures how much that
reconstructed sentences contains 1/2-gram overlaps
with input sentences (Papineni et al., 2002). The
two metrics indicate how well the learned dialog
structure graph can capture important semantic in-
formation in dialog dataset.

Further, we manually evaluate the quality of
edges and vertices in the graph. For edges, (1)
S-U Appr. for multi-turn dialog coherence. It
measures the appropriateness of Sess-Utter edges,
where these edges provide crucial prior information
to ensure multi-turn dialog coherence (see results
in Section 5.4). “1” if an utterance-level vertex
is relevant to its session-level vertex (topic), oth-
erwise “0”. (2) U-U Appr. for single-turn dialog
coherence: It measures the quality of Utter-Utter
edges between two utterance-level vertices, where
these edges provide crucial prior information to

"We ever tried to modify their codes to support the learn-
ing of a large number of dialog states (up to 30k). But its
performance is even worse than original code with 50 states.
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ensure single-turn dialog coherence. It is “1” if an
Utter-Utter edge is suitable for responding, other-
wise “0”. Notice that we don’t evaluate the quality
of Sess-Sess edges because Sess-Sess edges are
dependent on the statistics of Sess-Utter edges.
Meanwhile, for vertices, we evaluate Session-
level Vertex Quality (Sess.V.-Qual.). Ideally, a
session-level vertex (topic) should be mapped by
dialog sessions that share high similarity. In other
words, we can measure the quality of a session-
level vertex by evaluating the similarity of seman-
tics between two sessions that are mapped to it. It is
“2” if the two sessions mapped to the same session-
level vertex are about the same or highly similar
topic, ’0” if the two sessions contains different
topic, otherwise “1”. Specifically, during evalu-
ation, we provide typical words of each topic by
calculating TF-IDF on utterances that are mapped
to it. High “Sess.V.-Qual.” is beneficial to conduct
topic management for coherent multi-turn dialogs.
Note that we don’t evaluate utterance-level vertex
quality since it is too fine-grained for annotators to
determine whether two utterances that are mapped
to a utterance-level vertex are “highly-similar”.
For human evaluation, we sample 300 cases and
invite three annotators from a crowd-sourcing plat-
form to evaluate each case.® Notice that all system
identifiers are masked during human evaluation.

4.3 Experiment Results

As shown in Table 1, DVAE-GNN significantly out-
performs DVRNN, in terms of all the metrics (sign
test, p-value < 0.01) on the two datasets. It demon-
strates that DVAE-GNN can better discover mean-
ingful dialog structure graph. Specifically, DVAE-
GNN obtains the best results in terms of NLL and
BLEU-1/2, which shows that DVAE-GNN can bet-
ter capture important semantic information in com-
parison with DVRNN. Meanwhile, DVAE-GNN
also surpasses all baselines in terms of “U-U Appr.”
and “S-U Appr.”. It indicates that our discovered
dialog structure graph has higher-quality edges and
can better facilitate coherent dialog generation.
Furthermore, we conduct ablation study. Specif-
ically, to evaluate the contribution of GNN, we
remove GNN from DVAE-GNN, denoted as DVAE-
GNN w/o GNN. We see that its performance drop
sharply in terms of “S-U Appr”” and “Sess.V.-
Qual.”. It demonstrates that GNN can better incor-
porate the structure information (complex relations

8test.baidu.com

among vertices) into session-level vertex represen-
tation learning. Moreover, to evaluate the contribu-
tion of phrases to utterance-level vertex representa-
tion, we remove phrases, denoted as DVAE-GNN
w/o phrase. We see that its scores in terms of all the
metrics drops sharply, especially the three human
evaluation metrics. The reason is that it’s difficult
to learn high-quality utterance-level vertex repre-
sentation from a large amount of fine-grained se-
mantic content in open-domain dialogs without any
prior information. The Kappa value is above 0.4,
showing moderate agreement among annotators.

Two sample parts of the discovered dialog struc-
ture graph can be found in Appendix B.

5 Experiments for Graph Grounded
Dialog Generation

To confirm the benefits of discovered dialog struc-
ture graph for coherent conversation generation,
we conduct experiments on the graph discovered
from Weibo corpus. All the systems (including
baselines) are trained on Weibo corpus.

5.1 Models

We carefully select the following six baselines.
MMPMS It is the multi-mapping based neural
open-domain conversational model with posterior
mapping selection mechanism (Chen et al., 2019),
which is a SOTA model on the Weibo Corpus.
MemGM It is the memory-augmented open-
domain dialog model (Tian et al., 2019), which
learns to cluster U-R pairs for response generation.
HRED It is the hierarchical recurrent encoder-
decoder model (Serban et al., 2016).

CVAE 1t is the Conditional Variational Auto-
Encoder based neural open-domain conversational
model (Zhao et al., 2017).

VHCR-EI This variational hierarchical RNN
model can learn hierarchical latent variables from
open-domain dialogs (Ghandeharioun et al., 2019).
It is a SOTA dialog model with hierarchical VAE.
DVRNN-RL It discovers dialog structure graph for
task-oriented dialog modeling (Shi et al., 2019).
GCS It is our proposed dialog structure graph
grounded dialog system with hierarchical RL.
GCS w/ UtterG It is a simplified version of
GCS that just uses the utterance-level graph and
utterance-level sub-policy.

GCS w/ Phrase Graph It is a simplified version of
GCS that just uses the phrase graph and utterance-
level sub-policy.
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Methods Coherence Informativeness Overall Quality
Multi.T.-Coh.*  Single.T.-Coh.* | Info.* Dist-1/2% | Enga.* Length?#
MMPMS 0.66 0.45 0.50 0.08/0.32 | 0.24 5.82
MemGM 0.53 0.37 0.34 0.09/0.33 | 0.20 4.08
HRED 0.54 0.43 0.19  0.08/0.26 | 0.20 5.04
CVAE 0.58 0.39 043 0.11/0.38 | 0.22 7.74
VHCR-EI 0.68 0.43 0.53 0.12/0.36 | 0.28 7.30
DVRNN-RL 0.60 0.39 0.39 0.06/0.22 | 0.22 7.86
GCS 1.03 0.59 0.58 0.19/0.55 | 0.48 8.00
GCS w/ UtterG 0.93 0.56 0.55 0.16/0.47 | 0.34 8.00
GCS w/ Phrase Graph 0.72 0.41 0.54 0.16/045 | 0.24 8.00

Table 2: Evaluation results for baselines and our system trained on Weibo corpus. * or # denote human or

automatic evaluation metrics.

We use the same user simulator for RL training
of DVRNN-RL, GCS and GCS w/ UtterG. Here,
we use the original MMPMS as user simulator be-
cause it achieves the best result on the Weibo Cor-
pus. The user simulator is pre-trained on dialog
corpus and not updated during policy training. We
use the original source codes for all the baselines
and the simulator. Further details about baselines
and GCS can be found in Appendix A.2.

We conduct model-human dialogs for evalua-
tion. Given a model, we first randomly select an
utterance (the first utterance in a session) from test
set for the model side to start the conversations
with a human turker. Then the human is asked to
converse with the selected model till 8 turns are
reached. Finally, we obtain 50 model-human di-
alogs for multi-turn evaluation. Then we randomly
sample 200 U-R pairs from the above dialogs for
single-turn evaluation.

5.2 Evaluation Metrics

Since the proposed system does not aim at predict-
ing the highest-probability response at each turn,
but rather the long-term success of a dialog (e.g.,
coherence), we do not employ BLEU (Papineni
et al., 2002) or perplexity for evaluation. We use
three multi-turn evaluation metrics and three single-
turn metrics. For human evaluation, we invite three
annotators to conduct evaluation on each case, and
we ask them to provide 1/0 (Yes or No) scores for
most of the metrics. Moreover, for multi-turn co-
herence, we first ask the annotators to manually
segment a dialog by topics and then conduct evalu-
ation on each session. A session refers to a dialog
fragment about one topic. Notice that system iden-
tifiers are masked during human evaluation.

Multi-turn Metrics. We use the following met-
rics: (1) Multi-turn Coherence (Multi.T.-Coh.)
It measures the coherence within a session. Com-
mon incoherence errors in a session include am-
phora errors across utterances and information in-
consistency. “0” means that there are more than
two incoherence errors in a session. “1” means
that there are only one error. “2” means that there
are no errors. Finally, we compute the average
score of all the sessions. (2) Dialog engagement
(Enga.) This metric measures how interesting a
dialogs is. It is “1” if a dialog is interesting and
the human is willing to continue the conversation,
otherwise “0”. (3) Length of high-quality dialog
(Length) A high-quality dialog ends if the model
tends to produce dull responses or two consecutive
utterances are highly overlapping (Li et al., 2016b).

Single-turn Metrics. We use the following met-
rics: (1) Single-turn Coherence (Single.T.-Coh.)
“0” if a response is inappropriate as an reply, oth-
erwise “17; (2) Informativeness (Info.) “0” if a
response is a “safe” response, e.g. “I don’t know”,
or it is highly overlapped with context, otherwise
“1”; (3) Distinct (Dist.-¢) It is an automatic metric
for response diversity (Li et al., 2016a).

5.3 Experiment Results

As shown in Table 2, GCS significantly outper-
forms all the baselines in terms of all the metrics ex-
cept “Length-of-dialog” (sign test, p-value < 0.01).
It indicates that GCS can generate more coherent,
informative and engaging dialogs. Specifically,
our system’s two sub-policies strategy on the dia-
log structure graph enables more coherent dialog
flow control than hierarchical latent variable based
VHCR-EI model that performs the best among
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BIRT, BRMTUEERTT, BHE[In holiday, we
can go out and have fun, such as flying kites.]
Bot FHEHHREIT . [I'll come back on Friday.]

User BBHAERFIREISK[AI right, Il wait for you at home]
WFHINF, MEIARE . AL FEFEVRMAZ [Great! Looking
forward to your big meal.]

NANE, BABRBEMRF, —&ME[Well, I want to travel
to Nanjing, let’s go together.]

Bot AEHT ! [I feel like you're abandoning me. ]

User EfR, MB{1—#Z[No, you can come with us.]

ERFEEIYW. [Is it appropriate to travel with a
lovey-dovey couple?]
FRE, 28R, XEIERARE[ don’t think it is
User reasonable that showing sweet makes a lovey-dovey
couple broke up fast.]

Bot  AMREFHEREBE You are vey nice.]

User —&M, FAZIR#E[Just so-so.]

FHIE, FEBIRIRIE[AL right, you are beautiful in
my eyes!]
TAI5, PREFIFEH, BXP13k | [Ha-ha, you are so funny.
You're just flattering me.]

Bot  XTAACMEREME[Yeah, I'm sorry.]

BHER, BBRKE, FEIRRT [That’s doesn’t matter,
you're forgiven]

BAFIX AWFHIZE[You are so generous. How could such
a good thing happen.]

User

Bot

User

Bot

Bot

User

User

Bot

Figure 4: A sample dialog between our dialog sys-
tem GCS and a human, where“Bot” is our system and
“User” is the human. This dialog contains three dialog
topics. We translate the original Chinese texts into En-
glish language.

baselines, as indicated by “Multi.T.-Coh.”. More-
over, our high-quality edges between utterance-
level vertices (measured by the metric “U-U Appr.”
in Table 1) help GCS to achieve higher single-turn
coherence score than DVRNN-RL, as indicated
by “Single.T.-Coh.”. In addition, GCS, VHCR-EI,
MMPMS and CVAE can obtain better performance
in terms of “Info.”, indicating that latent variable
can effectively improve response informativeness.
The Kappa value is above 0.4, showing moderate
agreement among annotators.

5.4 Case Study of Conversation Generation

Figure 4 shows a sample dialog between our sys-
tem “GCS” and a human. We see that our system
can generate a coherent, engaging and informative
multi-turn dialog. For an in-depth analysis, we
manually segment the whole dialog into two ses-
sions. It can be seen that the first session is about
“meeting appointment”, and it contains a reason-
able dialog logic, I will have a holiday — I will
arrive — wait for you at home — look forward to a
big meal. And the second session is about “joking
between friends”, and it also contains a reasonable
logic, you are beautiful — flattering me — I am
SOITY.

Ablation Study. In order to evaluate the contri-
bution of session-level vertices, we run GCS with
an utterance-level dialog structure graph, denoted
as “GCS w/ UtterG”. Results in Table 2 show that
its performance in terms of “Multi.T.-Coh.” and
“Enga.” drops sharply. It demonstrates the contri-
bution of our hierarchical dialog structure graph
for enhancing dialog coherence and dialog engage-
ment. The possible reason for the inferior perfor-
mance of “GCS w/ UtterG” is that the removal
of session-level vertices harms the capability of
selecting coherent utterance-level vertex sequence.

6 Conclusion

In this paper, we conduct unsupervised discovery
of discrete dialog structure from chitchat corpora.
Further, we try to formalize the structure as a two-
layer directed graph. To discover the dialog struc-
ture, we present an unsupervised model, DVAE-
GNN, which integrates GNN into DVAE to model
complex relations among dialog states for more
effective dialog structure discovery. Experimen-
tal results demonstrate that DVAE-GNN can dis-
cover meaningful dialog structure, and the use of
dialog structure as background knowledge can sig-
nificantly improve multi-turn dialog coherence.
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A Implementation Details

A.1 Implementation Details about
DVAE-GNN

For all models, we share the same vocabulary (max-
imum size is 50000) and initialized word embed-
ding (dimension is 200) with the pre-trained Ten-
cent Al Lab Embedding.” Meanwhile, we ran-
domly initialized the embedding space of session-
level vertices and latent vectors for utterance-level
vertices (dimensions are 200). The hidden sizes of
all RNN encoders and RNN decoders are set as 512.
The three threshold variables about co-occurrence
statistics ", a®" and a* are all set as 0.05.

We use the PaddlePaddle framework for the de-
velopment of our systems.'?

Notice that it is costly to calculate Equation 3 in
Section 3.3 since the total number of utterance-
level vertices, IV, is very large (more than one
million). In practice, for each utterance, we first
retrieve the top-50 most related utterance-level ver-
tices according to Okapi BM25 (Robertson and
Zaragoza, 2009) similarity between the utterance
and associated phrases of all candidate vertices.
And then calculate Equation 3 only with these re-
trieved vertices. Thus, only a part of vectors in
A, will be dynamically updated for each training
sample when training DVAE-GNN.

A.2 Experiment settings about GCS
Source codes about baselines

e HRED:github.com/julianser/
hed-dlg-truncated

e MMPMS:github.com/PaddlePaddle/
Research/tree/master/NLP/
IJCAI2019-MMPMS

¢ CVAE:github.com/snakeztc/
NeuralDialog—-CVAE

¢ VHCR-El:.github.com/natashamjaques/

neural_chat

e MemGM:github.com/tianzhiliang/
MemoryAugDialog

¢ DVRNN:github.com/wyshi/

Unsupervised-Structure-Learning

%ai.tencent.com/ailab/nlp/embedding.htm]
1paddlepaddle.org.cn/

Hyper-parameter Setting for Training In our
experiments, all the models share the same vocabu-
lary (maximum size is 50000 for both Weibo corpus
and Douban corpus), initialized word embedding
(dimension is 200) with the Tencent AI Lab Em-
bedding. Moreover, bidirectional one-layer GRU-
RNN (hidden size is 512) is utilized for all the
RNN encoders and RNN decoders. In addition,
dropout rate is 0.3, batch size is 32 and optimizer
is Adam(Ilr=2le-3) for all models. During RL train-
ing, the discounting weight for rewards is set as
0.95. The MMPMS model for the user simulator
employs 10 responding mechanisms. We utilize
dependency parse for phrase extraction.!! We pre-
train the response generator in the Weibo Corpus.
Rewards and Training Procedure for the
Graph grounded Conversational System. We
use the PaddlePaddle framework for the develop-
ment of our systems.!?> We hot-start the response
generator by pre-training it before the training of
policy module. Meanwhile, to make the RL based
training process more stable, we employ the A2C
method (Sutton and Barto, 2018) for model op-
timization rather than the original policy gradient
as done in previous work (Li et al., 2016b). More-
over, during RL training, the parameters of the
policy module are updated, and the parameters of
response generator and the representation of seman-
tic vertices stay intact.

B Case Study of Dialog Structure Graph
Discovery

Figure 5 shows a part of the unified dialog struc-
ture graph that is discovered from the Weibo cor-
pus. Each yellow-colored circle in this figure
represents a session-level vertex with expert in-
terpreted meanings based on the information of
top words (from phrases of utterance-level vertices
belonging to this session-level vertex) ranked by
TF/IDF. Each green-colored rectangle represents
an utterance-level vertex. The directed-arrows be-
tween utterance-level vertices represent dialog tran-
sitions between states, and the utterance-level ver-
tices within blue dotted-lines are about the same
session-level vertex (topic).

We observe reasonable dialog structures in Fig-
ure 5. It captures the major interaction logic in
dialogs about the topic “go traveling”, traveling is
really good — you decide where to travel — let’s

ai.baidu.com/tech/nlp_basic/dependency_parsing
2paddlepaddle.org.cn/
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kiR

Go traveling

FRAMRNAER |\

Really/want to make \

RESFRIRAN BT

Tell me your goal

HAMBRE
Want a boyfriend

ﬁ%mgﬁgﬁgﬁ

Single girls need to be
strong t:k\

AR an appointment with \ Joudly
7
Haven't been pen
traveling for a long
time
BN RBNB AL
Find a boyfriend who
AR E can take good pictures EE_ABHL
Travel is really good 2R KR = Need a boyfriend
Make an appointment
to travel
SIEAFHR
Been slightl
Ri%H E—ERA R e v {REFAT
Should travel with a You decide You are so
Xi’an people where to travel boring HBPATH
What's a
HEFENRA boyfriend for
AEEE AT R A EE L Takct beautiful
Want to go back fo b pictures ERHREINR
historical Xi'an henrehen Will never S
3 have a boyfriend RS
Can accompany
me to celebrate
FR-LEBERDM HAERUAD HOREGE the festival
Wait for me to see the Huangshan isn’t Tt really looks
crowded now good

Terra Cotta Warriors

Figure 5: A part of the unified dialog structure graph that is extracted from Weibo corpus. Here, we interpret
session-level semantics based on their child utterance-level vertices. We translate the original Chinese texts

into English language.

BRANMCREER
Watch Jay Chou’s concert

2

Constellation

SLBEAH
How about Virgo
kBt men
INEBBERESR BARERLR Virgo men are intimate
e o
I want o go to the Jay Chou is in Xi'an gjfsg A \mﬁl}i
concert agittarius is al
. . things to all men
ERFAENARS
R Many people like
BERANMERES
Jay Chou 2
Watch Jay Chou’s Y EEREFRE EREERE
concert The birthday is Like a Sagittarius
Capricorn
EZUN: -+ =) NREBE LR BAARBTFEX
How many people Buy ticket on Has 1Inal-e
will watch Taobao B e B AL chauvinism
A Sagittarius is cranky
; W ARE R
REBMIES E&RRT Can not hear the
Plan to watch the Tickets are Iyrics clearly
GUTCER sold out =2
Absolutely right
Seekiﬁiouse TR @?E%%%
Buy on site Capricorn
men are shy

Figure 6: A part of the unified dialog structure graph that is extracted from Weibo corpus. Here, we interpret
session-level semantics based on their child utterance-level vertices. We translate the original Chinese texts

into English language.
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go to Huangshan — comments about Huangshan.
Furthermore, it also captures the major logic in di-
alogs about the topic “want a boyfriend”, need a
boyfriend — why? — he can accompany me to cel-
ebrate the festival. Moreover, it captures a dialog
topic transition between the topic “go trveling” and
another topic “want a boyfriend”.

Figure 6 shows another part of the unified dialog
structure graph that discovered from the Weibo
corpus.

C GCS with RL

In the following, we will elaborate the details of
GCS.

C.1 Dialog Context Understanding

Given a dialog context (the last two utterances), we
first map it to the graph by recognizing the most
related utterance-level vertex with the well-trained
DVAE-GNN. Here, the recognized utterance-level
vertex is denoted as the hit utterance-level vertex.

For policy learning, we build current RL state s;
at time step [ by collecting dialog context (the last
two utterances), previously selected session-level
vertex sequence, and previously selected utterance-
level vertex sequence. Here, we first utilize three
independent RNN encoders to encode them respec-
tively, and then concatenate these three obtained
representation vectors, to obtain the representation
of the RL state, e, .

C.2 Response Generator

The response generator is a pre-trained Seq2Seq
model with attention mechanism, whose parame-
ters are not updated during RL training. Specifi-
cally, we take the last user utterance, and the asso-
ciated phrase of the selected utterance-level vertex
as input of the generator.

D Training Objective for DVAE-GNN

The proposed DVAE-GNN model consists of two
procedures. In the recognition procedure, for a
dialog session X that consists of a sequence of ¢
utterances, X = [z1, ..., Z.), in recognition proce-
dure, we first recognize an utterance-level vertex z;
for each utterance x;, and then recognize a session-
level vertex g based on all recognized utterance-
level vertices, [z1, ..., zc]. In reconstruction proce-
dure, we regenerate all the utterances in X with
the predicted vertices Z = [z1,...,2¢,9]. Here,

we optimize the proposed DVAE-GNN model by
maximizing the variational lower-bound:

Eqz1x)[log p(X|2)] — KL(q(Z]X)|p(Z)),

where p(Z) is the prior uniform distribution of Z.

Specifically, we approximate the first item in
the above equation by sampling Z from ¢(Z|X)
and calculate the the negative log-likelihood recon-
struction loss. For the second item, we calculate it
by:

> KL[g(zz))llp(z)] + K Llg(gl1,....0) [p(9)],

j=1

where we can calculate each sub-item straightly
since z1,... . and g follow discrete distribution. Be-
low, we provide the derivation of the second item.

KL[g(Z|X)|p(2)]
= Z[logq(z\x) —logp(Z)]a(Z|X)

Z {Z log q(zjla;) — log p(z;)] + [log a(glz1,....c)
21, g J= 1
logp(9)]} HQ(zv\-Tx)(l(g\ll,...,c)
72 > logq(z|z;) — logp(z))a(z;]z;) H a(zilzi)a(gl21...c)
j=lz1,..c.9 i=1,i#j
+ Z log (g=..., —logp(g)la(glz1,...c) [T alzle:)
i=1
:ZZ[logq(zi\l‘ﬁ*logp(zj)] > aCle) 1 atalealgla,. o)
j=1 z; Z[1,) =509 i=1,i#j
+ lloga(glz,...c) —logp(9)lalgl=1,.c) Y Hq zile
g 21,0 i=1
=D KLlg(zilz)lp(z)] Y H Jalgl,..c)
j=1 2[1,..c]—509 1=1i7#]

+KLg(glz,.0llp(9)] Y [T azil2)
21,0 i=1

= ZKL[’] zjlw;)llp (2

j=1

)+ KLla(glz1,....c) Ip(9)]
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