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Abstract

Approaches to computational argumentation
tasks such as stance detection and aspect de-
tection have largely focused on the text of in-
dividual claims, losing out on potentially valu-
able context from the broader collection of text.
We present a general approach to these tasks
motivated by syntopical reading, a reading pro-
cess that emphasizes comparing and contrast-
ing viewpoints in order to improve topic under-
standing. To capture collection-level context,
we introduce the syntopical graph, a data struc-
ture for linking claims within a collection. A
syntopical graph is a typed multi-graph where
nodes represent claims and edges represent dif-
ferent possible pairwise relationships, such as
entailment, paraphrase, or support. Experi-
ments applying syntopical graphs to stance de-
tection and aspect detection demonstrate state-
of-the-art performance in each domain, signif-
icantly outperforming approaches that do not
utilize collection-level information.

1 Introduction

Collections of text about the same topic such as
news articles and research reports often present a
variety of viewpoints. Adler and Van Doren (1940)
proposed a formalized manual process for under-
standing a topic based on multiple viewpoints in
their book, How to Read a Book, applying dialec-
tics to collection browsing. This process consists
of four levels of reading, the highest of which is
syntopical reading. Syntopical reading is focused
on understanding a core concept by reading a col-
lection of works. It requires finding passages on the
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core concept that agree or disagree with each other,
defining the issues, and analyzing the discussion
to gain a better understanding of the core concept.
The goal of the paper at hand is to operationalize
the syntopical reading process computationally in
order to help individuals make sense of a collection
of documents for a given topic.

Viewed through the lens of computational argu-
mentation, these documents state claims or con-
clusions that can be grouped by the aspects of the
topic they discuss as well as by the stance they con-
vey towards the topic (Stede and Schneider, 2018).
An individual aiming to form a thorough under-
standing of the topic needs to get an overview of
these viewpoints and their interactions. This may
be hard even if adequate tool support for brows-
ing the collection is available (Wachsmuth et al.,
2017a; Stab et al., 2018; Chen et al., 2019).

We seek to enable systems that are capable
of reconstructing viewpoints within a collection,
where a viewpoint is expressed as a triple V' =
(topic, aspect, stance). We consider the argumenta-
tive unit of a claim to be the minimal expression of
a viewpoint in natural language, such that a single
viewpoint can have many claims expressing it. As
an example, consider the following two claims:

“Nuclear energy emits zero CO5.”

“Nuclear can provide a clean baseload, elimi-
nating the need for fracking and coal mining.”

Within a collection these claims express:
V' = (Nuclear Energy, env. impact, PRO)

The goal of the systems we envision is thus to
identify, group, and summarize the latent view-
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Figure 1: We introduce the idea of a synfopical graph, a data structure that represents the context of claims. The
graph is a typed multi-graph (multiple edges allowed between nodes), where nodes are claims or documents, and
edges are pairwise relationships such as entailment, paraphrase, topical similarity, or term similarity. By using this
graph as input to graph neural networks or traditional graph algorithms, we can significantly improve on the tasks
of aspect and stance detection, which allow us to identify viewpoints in a collection.

points underlying the claims in a collection, such
that a reader can investigate and engage with them.

Many existing approaches attempt to identify
viewpoints within a collection largely from the text
of individual claims only, which we refer to as
“content-only approaches.” However, as the latent
viewpoints are a global property of a collection, it
is necessary to account not only for the text but
also its context. For instance, in order to identify
the stance of a claim with respect to a topic, it may
help to consider the claim’s stance relative to other
claims on the topic. Although a few researchers
have accounted for connections between claims
and other information (details in Section 2), no
systematic model of their interactions exists yet.

We therefore introduce a syntopical graph that
models pairwise textual relationships between
claims in order to enable a better reconstruction
of the latent viewpoints in a collection. In line with
the idea of Adler and Van Doren (1940), the syn-
topical graph makes the points of agreement and
disagreement within the collection explicit. Tech-
nically, it denotes a multi-graph (where a pair of
nodes can have many typed edges) that simulta-
neously represents relationships such as relative
stance, relative specificity, or whether a claim para-
phrases another. We build syntopical graphs by
transferring pretrained pairwise models, requiring
no additional training data to be annotated.

We decompose the problem of viewpoint recon-
struction into the subtasks of stance detection and
aspect detection, and evaluate the benefits of syn-

topical graphs — which are a collection-level ap-
proach — on both tasks. For stance detection,
we use the sentential argumentation mining col-
lection (Stab et al., 2018) and the IBM claim stance
dataset (Bar-Haim et al., 2017a). For aspect detec-
tion we use the argument frames collection (Ajjour
etal., 2019). We treat the graph as an input to: (a) a
graph neural network architecture for stance de-
tection, and (b) graph algorithms for unsupervised
tasks such as aspect clustering. In both settings,
our results show that the syntopical graph approach
improves significantly over content-only baselines.
The contributions of the work are two-fold:

1. A well-motivated data structure for capturing
the latent structure of an argumentative corpus,
the syntopical graph.

2. An instantiation of syntopical graphs that
yields state-of-the-art results on stance detec-
tion and aspect detection.

2 Related Work

First attempts at stance detection used content-
oriented features (Somasundaran and Wiebe, 2009).
Later approaches, such as those by Ranade et al.
(2013) and Hasan and Ng (2013), exploited com-
mon patterns in dialogic structure to improve stance
detection. More tailored to argumentation, Bar-
Haim et al. (2017a) first identified the aspects of a
discussed topic in two related claims and the senti-
ment towards these aspects. From this information,
they derived stance based on the contrastiveness of
the aspects. Later, Bar-Haim et al. (2017b) mod-
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eled the context of a claim to account for cases
without sentiment. Our work follows up on and
generalizes this idea, systematically incorporating
implicit and explicit structure induced by the topics,
aspects, claims, and participants in a debate.

In a similar vein, Li et al. (2018) embedded de-
bate posts and authors jointly based on their inter-
actions, in order to classify a post’s stance towards
the debate topic. Durmus et al. (2019) encoded
related pairs of claims using BERT to predict the
stance and specificity of any claim in a complex
structure of online debates. However, neither of
these exploited the full graph structure resulting
from all the relations and interactions in a debate,
which is the gap we fill in this paper. Sridhar et al.
(2015) model collective information about debate
posts, authors, and their agreement and disagree-
ment using probabilistic soft logic. Whereas they
are restricted to the structure available in a forum,
our approach can in principle be applied to arbitrary
collections of text.

We also tackle aspect detection, which may at
first seem more content-oriented in nature. Accord-
ingly, previous research such as the works of Misra
et al. (2015) and Reimers et al. (2019b) employed
word-based features or contextualized word embed-
dings for topic-specific aspect clustering. Ajjour
et al. (2019), whose argument frames dataset we
use, instead clustered aspects with Latent Seman-
tic Analysis (LSA) and topic modeling. But, in
general, aspects might not be mentioned in a text
explicitly. Therefore, we follow these other ap-
proaches, treating the task as a clustering problem.
Unlike them, however, we do not model only the
content and linguistic structure of texts, but we
combine them with the debate structure.

Different types of argumentation graphs have
been proposed, covering expert-stance informa-
tion (Toledo-Ronen et al., 2016), basic argument
and debate structure (Peldszus and Stede, 2015;
Gemechu and Reed, 2019), specific effect rela-
tions (Al-Khatib et al., 2020; Kobbe et al., 2020),
social media graphs (Aldayel and Magdy, 2019),
and knowledge graphs (Zhang et al., 2020). Our
main focus is not learning to construct ground-truth
graphs, but how to use an approximated graph to de-
rive properties such as stance and aspect. Our work
resembles approaches that derive the relevance of
arguments (Wachsmuth et al., 2017b) or their cen-
trality and divisiveness in a discussion (Lawrence
and Reed, 2017) from respective graphs. Sawhney

et al. (2020) used a neural graph attention network
to classify speech stance based on a graph with
texts, speakers, and topics as nodes. While we also
use a relational graph convolutional network for
learning, the graph we propose captures implicit
claim relations as well as explicit structure.

In addition, text-based graph neural models have
been proposed to facilitate classification, such as
TextGCN (Yao et al., 2019) as well as the follow-
up work BertGCN (Lin et al., 2021). These ap-
proaches build a graph over terms (using normal-
ized mutual information for edge weights) as well
as sentences and documents (using TF-IDF for
edge weights) to improve sentence- or document-
level classification. Our work generalizes this ap-
proach, focusing on incorporating many edge types
with different meanings, such as relative stance or
relative specificity. We compare our approach with
a BertGCN baseline, and we ablate all considered
edge types, in order to show the importance of
capturing these different textual relationships.

Ultimately, we seek to facilitate understanding
of the main viewpoints in a text collection. Qiu
and Jiang (2013) used clustering-based viewpoint
discovery to study the impact of the interaction of
topics and users in forum discussions. Egan et al.
(2016) used multi-document summarization tech-
niques to mine and organize the main points in a
debate, and Vilares and He (2017) mined the main
topics and their aspects using a Bayesian model.
Bar-Haim et al. (2020) introduced the idea of key-
point analysis, grouping arguments found in a col-
lection by the viewpoint they reflect and summa-
rizing each group to a salient keypoint. While our
graph-based analysis is likely to be suitable for find-
ing keypoints, we instead focus on reconstructing
latent viewpoints by grouping claims, leaving open
the option to identify the key claims in future work
as it would require manual evaluation.

3 Syntopical Graphs

We now introduce the concept of a syntopical
graph. The goal of our syntopical graph is to sys-
tematically model the salient interactions of all
claims in a collection of documents. Then, proper-
ties of claims (say, their stance towards a topic or
the aspects they cover) can be assessed based not
only on the content of the claim alone, but on the
entirety of information available in their context.
To capture this context, we build a graph where
documents and claims are nodes. Edges between
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Claim: Nuclear energy emits zero CO».

Topic: Nuclear Energy
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hardly a clean process.

Topic: Nuclear Energy

Claim: However, uranium mining is

Claim: Nuclear can provide a clean
baseload and eliminate the need for
fracking and coal mining.

Topic: Nuclear Energy

ﬁ

Figure 2: An example syntopical graph created from a collection of documents on the topic of Nuclear Energy.
The nodes are documents and claims, and there are 0+ weighted and typed edges between any pair of nodes. In
downstream applications, we add the representation of the topic to the claim nodes.

claims are constructed using pairwise scoring func-
tions, such as pretrained natural language inference
(NLI) models. Claims may relate to each other in
many different ways: they can support or refute
each other, they can paraphrase each other, they
can entail or contradict each other, they can be topi-
cally similar, etc. We hypothesize that being able to
account for these relationships helps computational
argumentation tasks such as stance detection.

3.1 Graph Components

Intuitively, if it is known that claim (a) refutes claim
(b), and claim (b) has a positive stance to the topic,
it seems more reasonable to believe that claim (a)
has a negative stance. We can represent all of this
with a graph if we allow multiple edges between
nodes. For instance, claims can have edges that la-
bel both relative agreement and relative specificity,
as exemplified in the graph in Figure 2. The process
of constructing a graph is shown in Figure 1.

Technically, we capture this intuition as a typed
multi-graph: fyped in that the nodes have differ-
ent types drawn from {document, claim}, and a
multi-graph because multiple edges (of different
types) are allowed between nodes. We then for-
mally define a syntopical graph as a labeled multi-
graph in terms of a 5-tuple G:

G:(ZN,EE,N,E,ZN,ZE),

where Xy is the alphabet of node types, X is the
alphabet of edge types, IV is the set of nodes, F/
is the set of multi-edges, [y : N — Xy maps
each node to its type, and g : E — Xg maps
each edge to its type. In the following, we show
how to construct the graph and what each of its

components look like.
The node types, >, are used to represent struc-
tured metadata in the graph:

Yy = {claim, document}

Each node in the graph is mapped to its type with
the function . Accordingly, the edge alphabet is

YE= ZE:claim U EE:document7
where X g..1qim 18 the set of types of claim-claim
edges and X g.qocument 18 the set of types of claim-
document edges.

Claim Nodes The central node type in a syntopi-
cal graph is a claim node. A claim node represents
a topically relevant claim in a collection. By treat-
ing a claim as a node embedded in a graph, we can
take advantage of rich graph structures to repre-
sent the context in which the claim occurs, such as
the document the claim appears in or the claim’s
relationship with other claims.

Document Nodes In general, two claims from
the same source are more likely to represent the
same viewpoint than a pair of claims sampled ran-
domly. To capture this intuition, we allow claims
from the same source to share information with
each other via document nodes, which enables mod-
els to pool information about groups of claims and
share the information amongst them. Similar in-
formation about claims can be aggregated in the
metadata node and broadcast out to all claims.

Pairwise Relationships as Multi-Edges There

are two classes of edge types:

o claim-claim edges (X .ciqim) model the re-
lationship between pairs of claims: do they
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support each other, is one more specific than
the other, etc. Different tasks can make use of
this information (e.g., a claim is likely to have
a specific stance if other claims that support it
have the same stance).

o claim-document edges (Xg.document) allow
groups of claims to share information with
each other through common ancestors (e.g.,
claims in a document pro nuclear energy are
somewhat likely to have a pro stance).

Any pair of nodes can have multiple edges of
different types between them; a claim can both
contradict and refute another claim, for instance.

Edge Weights An edge can have a real-valued
weight associated with it on the range (—1, 1), rep-
resenting the strength of the connection. The rel-
ative stance edge between a claim which strongly
refutes another would receive a weight close to —1.

3.2 Graph Construction

For graph edges, we combine four pretrained mod-
els and two similarity measures. The pretrained
edge types are: relative stance and relative speci-
ficity from Durmus et al. (2019), paraphrase edges
from Dolan et al. (2004); Morris et al. (2020), and
natural language inference edges from Williams
et al. (2018); Liu et al. (2019). The edge weights
are the confidence scores defined by

weight(u’ U, T) = Ppos(u,v) ~ Pneg(u,v)>

where v and v are claims, 7 is the relation type,
and Ppos(u,v) 18 the probability of a positive asso-
ciation between the claims (e.g., “is a paraphrase”
or “does entail”), peq(u,0) for a negative one. For
similarity-based edges, we use standard TF-IDF
for term-based similarity and LDA for topic-based
similarity (Blei et al., 2003), using cosine similar-
ity as the edge weight. The document-claim edges
have a single type, contains, with an edge weight of
1. We compute each of the pairwise relationships
for all pairs of claims that share the same topic,
and then filter out edges using a threshold 7 on the
absolute value of the edge weight. 7 is tuned as
a hyperparameter on a validation dataset for each
task.

For node representations, we initialize the claim
node representations with the output of a natural
language inference model that predicts whether the
claim entails the topic. We initialize the document
representations with a sentence vectorizer over the
text of the document.

4 Viewpoint Reconstruction

A viewpoint can be understood as a judgment of
some aspect of a topic that conveys a stance towards
the topic. The goal of viewpoint reconstruction is to
identify the set of viewpoints in a collection given
a topic, starting with the claims. An example of
this process is shown on the right in Figure 1. To
denote viewpoints, we borrow notation in line with
the idea of aspect-based argument mining (Traut-
mann, 2020), which in turn was inspired by aspect-
based sentiment analysis. In particular, we express
a viewpoint as a triple V':

V' = (topic, aspect, stance)

A claim is an expression of a viewpoint in nat-
ural language, and a single viewpoint can be ex-
pressed in several ways throughout a collection in
many claims. Aspects are facets of the broader ar-
gument around the topic. While some actual claims
may encode multiple viewpoints simultaneously,
henceforth we consider each claim to encode one
viewpoint for simplicity. To tackle viewpoint re-
construction computationally, we decompose it into
two sub-tasks, stance detection and aspect detec-
tion, along with a final grouping of claims with
same aspect and stance.

Stance Detection Stance detection requires as-
signing a valence label to a claim with respect to
a particular topic. Though content-only baselines
can work in many cases, there are also cases where
the stance of a claim might only make sense in rela-
tion to a broader argument. For example, the claim
“Nuclear power plants take 5 years to construct” is
difficult to assign a stance a priori. However, in the
context of other claims such as “Solar farms often
take less than 2 years to commission”, it might be
viewed as having a negative stance. To exploit this
additional contextual information, we use syntopi-
cal graphs as input to a graph neural network, in
particular a Relational Graph Convolutional Net-
work (R-GCN) (Schlichtkrull et al., 2018).

We treat stance detection as a supervised node
classification task. The goal is to output a predic-
tion in the set {PRO, CON} for each claim node
relative to a topic. R-GCNs were developed to
perform node classification and edge prediction
for knowledge bases, which are also typed multi-
graphs. As such, the abstractions of the syntopical
graph slot neatly into the abstractions of R-GCNs.

The input to an R-GCN is a weighted, typed
multigraph with some initial node representation.
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The network is made up of stacked relational graph
convolutional layers; each layer computes a new
set of node representations based on each node’s
neighborhood. In effect, each layer combines the
edge-type-specific representation of all of a node’s
neighbors with its own representation. The repre-
sentations are influenced by the node, and all of
its neighbors, attenuated through the edge weight.
An R-GCN thus consumes a set of initial claim
representations, transforms them through stacks of
relational graph convolutional layers, and outputs
a final set of node vectors, which are fed into a
classifier to predict the claim stance.

Aspect Detection Following the work of Ajjour
et al. (2019), we treat aspect detection as an unsu-
pervised task. As aspects are an open class, we use
a community detection approach, modularity-based
community detection (Clauset et al., 2004). The
key intuition of modularity-based community de-
tection is that communities are graph partitions that
have more edges within communities than across
communities. Modularity is a value assigned to
a graph partition, which is higher when there are
fewer edges across communities than within them;
a modularity of O represents a random partition,
while higher modularities indicate tighter commu-
nities. The goal of modularity-based community
detection is to maximize modularity by finding
dense partitions. This intuition works well for as-
pects in a syntopical graph — claims that discuss a
similar aspect are likely to have salient interactions.
As aspects themselves are independent of stance,
the direction of the interactions (e.g., support or
refute) does not matter, but their salience does. To
capture only the intensity of the interaction between
two claims, we apply a transformation to signed
collapse the multi-edges of a syntopical graph (de-
noted SG) to a positive-weighted graph (G):

we () = > teny 0sa(u,v,t) - lwse(u, v, t)|
’ ZtEEE 656'(“) v, t) ’

where wg (u, v) is the weight between nodes u and
v in the new graph G, dsg(u,v,t) = 1 if an edge
of type t exists between nodes v and v in the syn-
topical graph (SG), and wsq(u,v,t) is the edge
weight for type ¢ between nodes u and v in the
syntopical graph. This is equivalent to taking the
average across types of the absolute values of the
weights. The newly constructed single-edge graph
is then used to identify aspects, which should have
more interactions between them than across them.

5 Experiments

To evaluate the effectiveness of our approach at re-
constructing viewpoints, we consider three datasets
across the two subtasks of stance and aspect de-
tection. We hypothesize that syntopical graph ap-
proaches will outperform content-only baselines —
including the ones used to initialize the claim repre-
sentations — because they are able to make use of
not only the claim content, but also the claim con-
text. We further hypothesize that syntopical graph
approaches will outperform graph-based baselines
that use only textual similarity edges, because the
latter’s claim context is not as rich. For our experi-
ments, we construct a syntopical graph as described
in Section 3.

We further evaluate our model by conducting
several additional experiments, including removing
the use of document nodes or initial claim repre-
sentations, analyzing the performance of each edge
type in isolation and when left out, and an anal-
ysis of the differences in predictions between the
syntopical graph and the content-only baselines.

Stance Detection For the stance detection exper-
iments, we use two datasets: first, the heteroge-
neous cross-topic argumentation mining dataset
(ArgMin) from Stab et al. (2018), and second, the
claim-stance dataset (IBMCS) from Bar-Haim et al.
(2017a). The ArgMin dataset contains about 25k
sentences from 400 documents across eight con-
troversial topics, ranging from abortion to school
uniforms. Following Schiller et al. (2020), we fil-
ter only the claims, resulting in 11.1k claims. The
IBMCS dataset contains 2.4k claims across 55 top-
ics. We use the splits from Schiller et al. (2020),
which ensure that the topics in the training and test
sets are mutually exclusive. Claims are given a
stance label drawn from {PRO, CON}. We evaluate
using macro-averaged F; and accuracy.

We use a syntopical graph for each dataset as the
input to a relational graph convolutional network
(R-GCN), implemented in DGL (Wang et al., 2019)
and PyTorch (Paszke et al., 2019). For document
node representations, we use a pretrained sentence
transformer and concatenate all of the sentences
as input (Reimers et al., 2019a). For the claim
node representations, we use a RoOBERTa model
pretrained on an NLI task (Liu et al., 2019) to en-
code both the claim and topic; the resulting vectors
are fixed throughout training.
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IBMCS ArgMin

Model macro [ Acc macro I Acc

Majority Baseline 34.06 51.66 33.83 51.14
RoBERTa Large NLI 52.34 52.69 60.56 60.93
BertGCN (Lin et al., 2021) 66.16 66.26 58.51 58.73
MT-DNN, I Dataset (Schiller et al., 2020)* 70.66 71.16 61.65 62.40
MT-DNN, 10 Datasets (Schiller et al., 2020)* 77.72 77.87 61.38 62.11
Syntopical Graph (R-GCN, Structure Only) 44.32 47.82 42.59 52.71
Syntopical Graph (R-GCN, No Documents) 83.03 83.10 67.52 68.34
Syntopical Graph (R-GCN) 83.40 83.54 67.77 68.01

Table 1: Results on the two stance detection datasets. The full syntopical graph, as well as the variant without
document nodes, outperforms the content only baselines by both a significant and substantial margin (p < 10~7
for ArgMin, and p < 10~* for IBMCS). A * on the model means we retrained a previously reported baseline.

Model b-cubed 1 b-cubed P b-cubed R
LDA 47.01 47.19 49.82
Clustering (RoBERTa Large MNLI) 45.69 44.76 50.15
Syntopical Graph (Modularity) 55.42 66.11 53.82

Table 2: Aspect detection results on the argument frames dataset (Ajjour et al., 2019). The syntopical graph
outperformed both LDA and clustering of RoBERTa embeddings, recovering latent aspects substantially better
than either approach. The syntopical graph approach significantly outperforms LDA (p < 10719).

Aspect Detection For clustering-based aspect
detection, we use the argument frames dataset
from Ajjour et al. (2019). The dataset contains
roughly 11k sentences drawn from 465 different
topics. Each sentence has a specific aspect (or
frame, in the original paper), drawn from a set of
over a thousand possible aspects. Following the
authors, we evaluate with a clustering metric, b-
cubed F; (Amig6 et al., 2009). We transform the
graph as described in Section 4 to use as an input
to modularity-based community detection, using 7
of 0.6 tuned on held-out topics.

6 Results and Analysis

The main results for stance detection are shown
in Table 1. The most important finding is that
the fusion of signals from content and from struc-
ture done by our approach syntopical graph (R-
GCN) outperforms the existing state-of-the-art
(Schiller et al., 2020) for both the IBMCS dataset
(83.40 macro F1, +5.68 absolute) and the ArgMin
dataset (67.7 macro Fj, +6.12 absolute). The
content-oriented RoBERTa Large NLI model and
the structure-only syntopical graph have signifi-
cantly reduced performance independently, empha-
sizing the complementarity of the two signals. Our
best network is the one which includes both claim
and document node, except for the ArgMin dataset.

Aspect detection results are shown in Table 2.
Our modularity approach outperforms the state-of-

the-art (Ajjour et al., 2019) on the argument frames
dataset (55.42 b-cubed F, +8.41 absolute).

The remainder of this section investigates the ro-
bustness of the syntopical graph approach to stance
and aspect detection: First, we analyze the con-
tribution of each edge type, running experiments
without and with only each edge type. We also
examine the accuracy of the edges in our graph
when applied out of domain as well as analysis to
understand the types of claims for which this model
improves performance.

Edge Analysis We conducted an ablation study
to analyze the usefulness of each considered edge
type. To do so, we built graphs containing each
edge independently, and graphs dropping each edge
independently. Table 3 presents the results.

For the supervised task of stance detection, we
use the IBMCS dataset. No single edge performs
as well as the combination of edges, the best being
relative stance with a macro-I score of 80.72.
This indicates that our model is capable of taking
advantage of the different kinds of relationships
represented by the edge types. We see the largest
performance drops when we remove relative stance
(79.39), relative specificity (79.39), or NLI (78.95)
edges respectively, indicating the highest amount of
unique information being captured by these edges.
In contrast, paraphrase can be removed without
loss for stance detection according to the results.

1589



Edge Model Stance Detection (macro F1) Aspect Detection
Alone Without Alone Without

Relative Stance RoBERTa Base 80.72 79.39 52.22 53.52
Relative Specificity = RoBERTa Base 70.22 79.35 43.59 55.73
Paraphrase RoBERTa Large 75.57 83.42 56.31 53.77
NLI RoBERTa Base 80.29 78.95 53.16 53.52
Term Similarity TF-IDF + cosine 73.62 81.83 52.40 54.74
Topic Similarity LDA + cosine 72.67 82.54 51.11 54.92
All Edges 83.40 55.42

Table 3: Importance of each edge type for both evaluated tasks. We examine each edge type alone and when
eliminated from the graph entirely (without). For supervised stance detection, no single edge performs as well as
the combination of all edges. For unsupervised aspect detection paraphrase edges provide the best signal.

Edge Accuracy

(All RoBERTa) Top Bottom Random
Stance 53% 44% 52%
Specificity 82% 52% 56%
Paraphrase 93% 65% 74%
NLI 93% 50% 60%

Table 4: Performance of each edge type across domains
considering the 100 strongest edges, the 100 weakest
edges, and 100 random edges. There is a clear trend
of the strongest edges being more accurate and the
weakest edges being less accurate, meaning that the
edge weight does have some predictive effect about the
edge’s accuracy.

This is opposite for aspect detection, which
we treat as an unsupervised community detection
task; here paraphrase alone outperforms the graph
with all edge relationships (macro F; 56.31 versus
55.42). The other edges even have a slight negative
effect on the overall results (55.42); being unsuper-
vised, our approach here has no way of filtering out
uninformative edges.

Edge Domain Transfer One possible con-
founder of the contribution of each edge type is the
out-of-domain performance of the pairwise model
used to predict that edge. A poor model would
provide little more than random noise, even if the
edge type were expected to be helpful. To investi-
gate this possibility, we sampled 100 each of the
edges (above 7 = 0.6) with the highest weight, the
lowest weight, and a random sample. We then an-
notated each edge as being correctly or incorrectly
predicted. Results are shown in Table 4.

There is a clear trend that the edge weight is
correlated with edge correctness, meaning that the
models retain some level of calibration across do-
mains. As we incorporate the edge weight in the
R-GCN, this helps to lessen the effect of the noisier,

weaker edges. Another trend is that an edge type’s
usefulness across tasks is not solely a function of
that edge type’s accuracy. The type of failure mode
is also important. For instance, the relative stance
edges have poor surface-level accuracy, but the
most common failure was not predicting the wrong
relative stance; it was predicting any stance for
pairs of claims about different aspects.

Flip Analysis Finally, we analyze flipped”
cases in stance detection in which the baseline pre-
dicted stance incorrectly but the model predicted
stance correctly, or vice-versa, to understand areas
for which this model improves performance. A
sample of these is shown in Table 5.

Perhaps the most surprising result is how differ-
ent the predictions of the syntopical graph-based
approach are from those of the content-only MT-
DNN baseline. For the IBMCS dataset, there were
1355 claims in the test set, and we flipped 219
(16.2%) correctly relative to the MT-DNN base-
line, but also 140 (10.3%) incorrectly compared to
that baseline. Thus, we flipped 26.5% of the over-
all predictions for the 5.68 point improvement in
F. This holds across the ArgMin dataset as well,
where we flipped 536 (19.6%) claims correctly and
373 (13.7%) claims incorrectly, out of a total 2726
claims in the test set. Though we show substan-
tial gains overall, it seems that the models capture
different signals. We thus believe that future im-
provements through improved model combination
may still be possible.

7 Conclusion

In this paper, we have introduced a data structure,
the syntopical graph, which provides context for
claims in collections. We have provided empirical
evidence that syntopical graphs can be used as in-
put representations for graph-structured approaches
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Example

True MT-DNN Syn. Gr. Reason

Topic: wind power should be a primary focus of future energy supply

Claim: predictability of wind plant output remains low

Strongest Neighbor (+): the non-dispatchable nature of wind energy

production can raise costs

CON PRO CON Good Neighbors

Topic: wind power should be a primary focus of future energy supply

Claim: Wind power uses little land

Strongest Neighbor (-): wind power “cannot be relied upon to provide

significant levels of power

PRO PRO CON Bad Neighbors

Topic: build the Keystone XL pipeline
Claim: the pipeline would be ”game over for the planet

Strongest Neighbor (-): this is the most technologically advanced and

safest pipeline ever proposed

CON PRO CON Good Neighbors

Table 5: Stance detection examples with the true stance label where the output label of our syntopical graph was
different from that of the MT-DNN baseline, along with a potential reason.

(such as graph neural networks and graph cluster-
ing algorithms) to obtain significant improvements
over content-only baselines.

We believe there are several opportunities to ex-
tend this work in the future. First, we believe the
graph construction could be improved by avoid-
ing the inefficient pairwise analysis, expanding the
edge types, and utilizing a more robust classifier
for the graph. Second, we would relax the con-
straint that a claim represents a single viewpoint, or
the limitation of aspect detection to unsupervised
approaches. Finally, we would like to apply our
approach to the original problem first motivated
by syntopical reading to see if this system can aid
users in browsing or understanding a collection.

8 Ethics Impact Statement

We anticipate that the syntopical graph explored
in this work will have a beneficial impact in real
world systems to aid users in improved comprehen-
sion and reduce susceptibility to misinformation.
The goal of our work is motivated by syntopical
reading, which theorizes that individuals exposed
to agreement and disagreement within a collection
gain a deeper understanding of the central topics.
Our work on syntopical graphs provides an algo-
rithmic foundation to aid readers in understanding
the key viewpoints (aspect and stance for a given
topic) present in a collection.
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A Relational Graph Convolutional
Networks

The input to an R-GCN is a weighted, typed multi-
graph with some initial node representation. The
network is made up of stacked relational graph
convolutional layers; each layer computes a new
set of node representations based on each node’s
neighborhood. In effect, each layer combines the
edge-type-specific representation of all of a node’s
neighbors with its own representation. The prop-
agation equation is defined per Schlichtkrull et al.
(2018):

h,(uH'I) =0 (Z Z

reXp 1;6/\/{;

‘ /\lﬂ| WORDw, ., + Wél)hﬁ))

where u and v are nodes in the graph, N is the
neighborhood for node w of edge types r, ﬁ is
the normalization term, W, is the per-relationship
transformation, wy, ,, is the edge weight between
nodes u and v of edge type r, and W} is the self-

loop weight.

B Claim Node Representations

For the claim node representations, we format the
input to the Roberta Large NLI model as:

[CLS] [SEP] [SEP]

We use the output representations (1024 dims
per claim node) as the node representations for the
graph.

claim topic

C Hyperparameter Tuning

To tune hyperparameters, we used Optuna' and
the tree of parzen estimators optimizer. We tuned
the IBMCS dataset with 100 samples on a 1080Ti,
training 10 epochs for each sample. For the
ArgMin dataset, we tuned for 3 samples on an
Nvidia Quadro RTX 6000, fixing all parameters
from the best IBMCS dataset, except for the num-
ber of layers. We selected each based on the lowest
validation loss.

D Selected Models

For both datasets, we tune the R-GCN on the vali-
dation set, ending up with the following parameter
settings: number of 3 graph convolutional layers
for ArgMin and 2 for IBMCS; 128 hidden dimen-
sions per layer; a learning rate or 0.00856 and de-
cay () of 0.797; dropout of 0.005; 7 of 0.6; batch
size of 10; and 4 bases for edge relations. We

'https://optuna.org

Parameter Type Low High
Threshold (7) float 0.5 1.0
Learning Rate float (log) 1076 1072
LR Decay () float 0.6 1.0

Hidden Layers int 1 3
Hidden Units int 50 200

Number of Bases int 1 6
Dropout float 0 0.5

Table 6: The range of hyperparameters we sweep over
when training the relational graph convolutional net-
work.

trained each model for 10 epochs. The IBMCS
model took roughly 20 minutes to train, and the
ArgMin model took roughly 3 and a half hours to
train. We ran each model 5 times to account for
random variations, and selected the run with the
lowest validation score.

The IBMCS model has roughly 248k parameters
and the ArgMin model has roughly 330k tunable
parameters.

The BertGCN baseline used the ROBERTaGCN
configuration from Lin et al. (2021). Per the orig-
inal paper, we first trained a RoOBERTa model on
the task for 50 epochs using a batch size of 64
and a learning rate of 0.00001, then trained the
RoBERTaGCN model for 60 epochs using a batch
size of 8, a GCN learning rate of 0.001, and a
RoBERTa learning rate of 0.00001.
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