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Abstract

Emotion detection in dialogues is challenging
as it often requires the identification of the-
matic topics underlying a conversation, the rel-
evant commonsense knowledge, and the intri-
cate transition patterns between the affective
states. In this paper, we propose a Topic-
Driven Knowledge-Aware Transformer to han-
dle the challenges above. We firstly design a
topic-augmented language model (LM) with
an additional layer specialized for topic detec-
tion. The topic-augmented LM is then com-
bined with commonsense statements derived
from a knowledge base based on the dialogue
contextual information. Finally, a transformer-
based encoder-decoder architecture fuses the
topical and commonsense information, and
performs the emotion label sequence predic-
tion. The model has been experimented on
four datasets in dialogue emotion detection,
demonstrating its superiority empirically over
the existing state-of-the-art approaches. Quan-
titative and qualitative results show that the
model can discover topics which help in dis-
tinguishing emotion categories.

1 Introduction

The abundance in dialogues extracted from on-
line conversations and TV series provides unprece-
dented opportunity to train models for automatic
emotion detection, which are important for the de-
velopment of empathetic conversational agents or
chat bots for psychotherapy (Hsu and Ku, 2018;
Jiao et al., 2019; Zhang et al., 2019; Cao et al.,
2019). However, it is challenging to capture the
contextual semantics of personal experience de-
scribed in one’s utterance. For example, the emo-
tion of the sentence “I just passed the exam” can be
either happy or sad depending on the expectation
of the subject. There are strands of works utilizing
the dialogue context to enhance the utterance rep-
resentation (Jiao et al., 2019; Zhang et al., 2019;

(a): Food and Restaurant

(b): Marriage and Death

A: Could I have some fish?
B: Certainly. And what vegetables would you like?

A: Oh , spinach , I think.
A: I like drinking tea at teahouses.

B: Oh, so do I.

☺

B: Great. We can chat while enjoying a cup there.
A: Why don't we go for one now?

☺

A: Let's go!
☺
☺

A: Johnny died yesterday, we knew that it was coming, but...
B: Like just last week, he was doing so well.☹

A: Then all of a sudden they gave him a microphone,
      he asked me to marry him, like, onstage.

B: He was doing so well.

☹

☺
☺

Figure 1: Utterances around particular topics carry spe-
cific emotions. Utterances carrying positive (smiling
face) or negative (crying face) emotions are highlighted
in colour. Other utterances are labeled as ‘Neutral’. In
(a), utterances discussing food and restaurant are more
likely carrying positive sentiment. In (b), the similar
utterance, ‘He was doing so well’, expressed different
emotions depending on its associated topic.

Majumder et al., 2019), where influences from his-
torical utterances were handled by recurrent units,
and attention signals were further introduced to
intensify the positional order of the utterances.

Despite the progress made by the aforemen-
tioned methods, detecting emotions in dialogues
is however still a challenging task due to the way
emotions are expressed and how the meanings of
utterances vary based on the particular topic dis-
cussed, as well as the implicit knowledge shared
between participants. Figure 1 gives an example
of how topics and background knowledge could
impact the mood of interlocutors. Normally, dia-
logues around specific topics carry certain language
patterns (Serban et al., 2017), affecting not only the
utterance’s meaning, but also the particular emo-
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tions conveyed by specific expressions. Existing
dialogue emotion detection methods did not put
emphasis on modelling these holistic properties of
dialogues (i.e., conversational topics and tones).
Consequently, they were fundamentally limited in
capturing the affective states of interlocutors re-
lated to the particular themes discussed. Besides,
emotion and topic detection heavily relies on lever-
aging underlying commonsense knowledge shared
between interlocutors. Although there have been
attempts in incorporating it, such as the COSMIC
(Ghosal et al., 2020), existing approaches do not
perform fine-grained extraction of relevant infor-
mation based on both the topics and the emotions
involved.

Recently, the Transformer architecture (Vaswani
et al., 2017) has empowered language models to
transfer large quantities of data to low-resource
domains, making it viable to discover topics in
conversational texts. In this paper, we propose
to add an extra layer to the pre-trained language
model to model the latent topics, which is learned
by fine-tuning on dialogue datasets to alleviate the
data sparsity problem. Inspired by the success of
Transformers, we use the Transformer Encoder-
Decoder structure to perform the Seq2Seq predic-
tion in which an emotion label sequence is pre-
dicted given an utterance sequence (i.e., each utter-
ance is assigned with an emotion label). We posit
that the dialogue emotion of the current utterance
depends on the historical dialogue context and the
predicted emotion label sequence for the past utter-
ances. We leverage the attention mechanism and
the gating mechanism to incorporate commonsense
knowledge retrieved by different approaches. Code
and trained models are released to facilitate further
research1. To sum up, our contributions are:

• We are the first to propose a topic-driven ap-
proach for dialogue emotion detection. We
propose to alleviate the low-resource setting
by topic-driven fine-tuning using pre-trained
language models.

• We utilize a pointer network and an additive at-
tention to integrate commonsense knowledge
from multiple sources and dimensions.

• We develop a Transformer Encoder-Decoder
structure as a replacement of the commonly-
used recurrent attention neural networks for
dialogue emotion detection.

1http://github.com/something678/TodKat.

2 Related Work

Dialogue Emotion Detection Majumder et al.
(2019) recognized the importance of dialogue con-
text in dialogue emotion detection. They used a
Gated Recurrent Unit (GRU) to capture the global
context which is updated by the speaker ad-hoc
GRUs. At the same time, Jiao et al. (2019) pre-
sented a hierarchical neural network model that
comprises two GRUs for the modelling of tokens
and utterances respectively. Zhang et al. (2019)
explicitly modelled the emotional dependencies
on context and speakers using a Graph Convolu-
tional Network (GCN). Meanwhile, Ghosal et al.
(2019) extended the prior work (Majumder et al.,
2019) by taking into account the intra-speaker de-
pendency and relative position of the target and
context within dialogues. Memory networks have
been explored in (Jiao et al., 2020) to allow bidi-
rectional influence between utterances. A similar
idea has been explored by Li et al. (2020b). While
the majority of works have been focusing on tex-
tual conversations, Zhong et al. (2019) enriched
utterances with concept representations extracted
from the ConceptNet (Speer et al., 2017). Ghosal
et al. (2020) developed COSMIC which exploited
ATOMIC (Sap et al., 2019) for the acquisition of
commonsense knowledge. Different from exist-
ing approaches, we propose a topic-driven and
knowledge-aware model built on a Transformer
Encoder-Decoder structure for dialogue emotion
detection.

Latent Variable Models for Dialogue Context
Modelling Latent variable models, normally de-
scribed in their neural variational inference form
named Variational Autoencoder (VAE) (Kingma
and Welling, 2014), has been studied extensively
to learn thematic representations of individual doc-
uments (Miao et al., 2016; Srivastava and Sutton,
2017; Rezaee and Ferraro, 2020). They have been
successfully employed for dialogue generation to
model thematic characteristics over dynamically
evolving conversations. This line of work, which
inlcudes approaches based on hierarchical recurrent
VAEs (Serban et al., 2017; Park et al., 2018; Zeng
et al., 2019) and conditional VAEs (Sohn et al.,
2015; Shen et al., 2018; Gao et al., 2019), encodes
each utterance with historical latent codes and au-
toregressively reconstructs the input sequence.

On the other hand, pre-trained language models
are used as embedding inputs to VAE-based mod-

http://github.com/something678/TodKat
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els (Peinelt et al., 2020; Asgari-Chenaghlu et al.,
2020). Recent work by Li et al. (2020a) employs
BERT and GPT-2 as the encoder-decoder structure
of VAE. However, these models have to be either
trained from scratch or built upon pre-trained em-
beddings. They therefore cannot be directly applied
to the low-resource setting of dialogue emotion de-
tection.

Knowledge Base and Knowledge Retrieval
ConceptNet (Speer et al., 2017) captures common-
sense concepts and relations as a semantic network,
which encompasses the spatial, physical, social,
temporal, and psychological aspects of everyday
life. More recently, Sap et al. (2019) built ATOMIC,
a knowledge graph centered on events rather than
entities. Owing to the expressiveness of events and
ameliorated relation types, using ATOMIC achieved
competitive results against human evaluation in the
task of If-Then reasoning.

Alongside the development of knowledge bases,
recent years have witnessed the thrive of new meth-
ods for training language models from large-scale
text corpora as implicit knowledge base. As has
been shown in (Petroni et al., 2019), pre-trained
language models perform well in recalling rela-
tional knowledge involving triplet relations about
entities. Bosselut et al. (2019) proposed COM-
monsEnse Transformers (COMET) which learns to
generate commonsense descriptions in natural lan-
guage by fine-tuning pre-trained language models
on existing commonsense knowledge bases such
as ATOMIC. Compared with extractive methods,
language models fine-tuned on knowledge bases
have a distinctive advantage of being able to gener-
ate knowledge for unseen events, which is of great
importance for tasks which require the incorpora-
tion of commonsense knowledge such as emotion
detection in dialogues.

3 Methodology

3.1 Problem Setup

A dialogue is defined as a sequence of utterances
{x1, x2, . . . , xN}, which is annotated with a se-
quence of emotion labels {y1, y2, . . . , yN}. Our
goal is to develop a model that can assign the
correct label to each utterance. As for each ut-
terance, the raw input is a token sequence, i.e.,
xn = {wn,1, wn,2, . . . , wn,Mn} where Mn denotes
the length of an utterance. We address this prob-
lem using the Seq2Seq framework (Sutskever et al.,

2014), in which the model consecutively consumes
an utterance xn and predicts the emotion label yn
based on the earlier utterances and their associated
predicted emotion labels. The joint probability of
emotion labels for a dialogue is:

Pθ(y1:N |x1:N ) =
N∏
n=1

Pθ(yn|x≤n, y<n) (1)

It is worth mentioning that the subsequent utter-
ances are unseen to the model at each predictive
step. Learning is performed via optimizing the
log-likelihoods of predicted emotion labels.

The overall architecture of our proposed
TOpic-Driven and Knowledge-Aware Transformer
(TODKAT) is shown in Figure 2, which consists of
two main components, the topic-driven language
model fine tuned on dialogues, and the knowledge-
aware transformer for emotion label sequence pre-
diction for a given dialogue. In what follows, we
will describe each of the components in turn.

3.2 Topic Representation Learning

We propose to insert a topic layer into an existing
language model and fine-tune the pre-trained lan-
guage model on the conversational text for topic
representation learning. Topic models, often for-
mulated as latent variable models, play a vital role
in dialogue modeling (Serban et al., 2017) due to
the explicit modeling of ‘high-level syntactic fea-
tures such as style and topic’ (Bowman et al., 2016).
Despite the tremendous success of applying topic
modeling in dialogue generation (Sohn et al., 2015;
Shen et al., 2018; Gao et al., 2019), there is scarce
work exploiting latent variable models for dialogue
emotion detection. To this end, we borrow the ar-
chitecture from VHRED (Serban et al., 2017) for
topic discovery, with the key modification that both
the encoder RNN and decoder RNN are replaced
by layers of a pre-trained language model. Further-
more, we use a transformer multi-head attention in
replacement of the LSTM to model the dependence
between the latent topic vectors. Unlike VHRED,
we are interested in the encoder part to extract the
posterior of the latent topic z, rather than the recur-
rent prior of z in the decoder part since the latter
is intended for dialogue generation. We assume
that each utterance is mapped to a latent variable
encoding its internal topic, and impose a sequen-
tial dependence on the topic transitions. Figure 2a
gives an overview of the VAE-based model which
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Figure 2: TOpic-Driven and Knowledge-Aware Transformer (TODKAT).

aims at learning the latent topic vector during the
fine-tuning of the language model.

Specifically, the pre-trained language model is
decomposed into two parts, the encoder and the
decoder. By retaining the pre-trained weights, we
transfer representations from high-resource tasks
to the low-resource setting, which is the case for
dialogue emotion datasets.

Encoder The training of topic discovery part of
TODKAT comprises a VAE at each time step, with
its latent variable dependent on the previous latent
code. Each utterance is input to the VAE encoder
with a recurrent hidden state, the output of which is
a latent vector ideally encoding the topic discussed
in the utterance. The latent vectors are tied through
a recurrent hidden state to constraint a coherent
topic over a single dialogue. We use LMφ to de-
note the network of lower layers of the language
model (before the topic layer) and xLn to denote
the output from LMφ given the input xn. The vari-
ational distribution for the approximation of the
posterior will be:

qφ(zn|x≤n,z<n)

= N
(
zn|fµφ(x

L
n , hn−1), fσφ(x

L
n , hn−1)

)
,

(2)

where hn−1 = fτ (zn−1, x
L
n−1), for n > 1. (3)

Here, fµφ(·) and fσφ(·) are multi-layer percep-
trons (MLPs), fτ can be any transition function
(e.g., a recurrent unit). We employ the transformer
multi-head attention with its query being the previ-
ous latent variable zn−1, that is,

fτ (zn−1, x
L
n−1) = Attention(zn−1, x

L
n−1, x

L
n−1). (4)

We initialize h0 = 0 and model the transition
between hn−1 and hn by first generating zn from
hn−1 using Eq. (2), then calculating hn by Eq. (3).

Decoder The decoder network reconstructs xn
from zn at each time step. We use Gaus-
sian distributions for both the generative prior
and the variational distribution. Since we want
zn to be dependent on zn−1, the prior for zn
is p(zn|hn−1) = N

(
zn|fµγ (hn−1), fσγ (hn−1)

)
.

where fµγ (·) and fσγ (·) are MLPs. The posterior
for zn is pθ(zn|x≤n, z<n), which is intractable and
is approximated by qφ(zn|x≤n, z<n) of Eq. 2. We
denote the higher layers of the language model as
LMθ. Then the reconstruction of x̂n given zn and
xLn can be expressed as:

x̂n = LMθ(zn, x
L
n). (5)

Note that this is different from dialogue generation
in which an utterance is generated from the latent
topic vector. Here, we aim to extract the latent topic
from the current utterance and therefore train the
model to reconstruct the input utterance as specified
in Eq. (5). To make the combination of zn and
xLn compatible for LMθ, we need to perform the
latent vector injection. As in (Li et al., 2020a), we
employ the “Memory” scheme that zn becomes an
additional input for LMθ, that is, the input to the
higher layers becomes [zn, xLn ].

Training The training objective is the Evidence
Lower Bound (ELBO):

Eqφ(z≤N |x≤N )[log pθ(x≤N |z≤N )]
−KL[qφ(z≤N |x≤N )||p(z≤N )].

(6)

Eq. 6 factorizes and the expectation term becomes

Eqφ(z≤N |x≤N )

[
N∑
n=1

log pθ(xn|z≤n,x<n)

]
, (7)
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and the KL term becomes

N∑
n=1

KL[qφ(zn|x≤n, z<n)||p(zn|z<n,x<n)], (8)

where p(zn|z<n,x<n) is the prior for zn. After
training, we are able to extract the topic represen-
tation from the encoder part of the model, which
is denoted as zn = LMenc

φ (xn). Meanwhile, the
entire language model has been fine-tuned, which
is denoted as un = LMCLS(xn).

3.3 Knowledge-Aware Transformer

The topic-driven LM fine-tuning stage makes it
possible for the LM to discover a topic represen-
tation from a given utterance. After fine-tuning,
we attach the fine-tuned components to a classifier
and train the classifier to predict the emotion la-
bels. We propose to use the Transformer Encoder-
Decoder structure as the classifier, and consider
the incorporation of commonsense knowledge re-
trieved from external knowledge sources. In what
follows, we first describe how to retrieve the com-
monsense knowledge from a knowledge source,
then we present the detailed structure of the classi-
fier.

Commonsense Knowledge Retrieval We use
ATOMIC2 as a source of external knowledge. In
ATOMIC, each node is a phrase describing an event.
Edges are relation types linking from one event
to another. ATOMIC thus encodes triples such as
〈event, relation type, event〉. There
are a total of nine relation types, of which three
are used: xIntent, the intention of the subject
(e.g., ‘to get a raise’), xReact, the reaction of the
subject (e.g., ‘be tired’), and oReact, the reaction
of the object (e.g., ‘be worried’), since they are
defined as the mental states of an event (Sap et al.,
2019).

Given an utterance xn, we can compare it
with every node in the knowledge graph, and re-
trieve the most similar one. The method for com-
puting the similarity between an utterance and
events is SBERT (Reimers and Gurevych, 2019).
We extract the top-K events, and obtain their
intentions and reactions, which are denoted as
{esIn,k, esRn,k, eoRn,k}, k = 1, . . . ,K.

On the other hand, there is a knowledge gen-

2https://homes.cs.washington.edu/
˜msap/atomic/

eration model, called COMET3, which is trained
on ATOMIC. It can take xn as input and gen-
erate the knowledge with the desired event rela-
tion types specified (e.g., xIntent, xReact or
oReact). The generated knowledge can be un-
seen in ATOMIC since COMET is essentially a fine-
tuned language model. We use COMET to generate
the K most likely events, each with respect to the
three event relation types. The produced events are
denoted as {gsIn,k, gsRn,k, goRn,k}, k = 1, . . . ,K.

Knowledge Selection With the knowledge re-
trieved from ATOMIC, we build a pointer net-
work (Vinyals et al., 2015) to exclusively choose
the commonsense knowledge either from SBERT
or COMET. The pointer network calculates the
probability of choosing the candidate knowledge
source as:

P
(
I(xn, en, gn) = 1

)
= σ

(
[xn, en, gn]Wσ

)
,

where I(xn, en, gn) is an indicator function with
value 1 or 0, and σ(x) = 1/(1+exp(−x)). We en-
velope σ with Gumbel Softmax (Jang et al., 2017)
to generate the one-hot distribution4. The inte-
grated commonsense knowledge is expressed as

cn = I(xn, en, gn)en +
(
1− I(xn, en, gn)

)
gn,

where cn = {csIn,k, csRn,k, coRn,k}Kk=1.

With the knowledge source selected, we pro-
ceed to select the most informative knowledge. We
design an attention mechanism (Bahdanau et al.,
2015) to integrate the candidate knowledge. Recall
that we have a fine-tuned language model which
can calculate both the [CLS] and topic representa-
tions. Here we apply the language model to the
retrieved or generated knowledge to obtain the
[CLS] and the topic representation, denoted as
[cn,k, zn,k]. The attention mechanism is performed
by calculating the dot product between the utter-

3https://github.com/atcbosselut/
comet-commonsense

4We have also experimented with a soft gating mechanism
by aggregating knowledge from SBERT and COMET in a
weighted manner. But the results are consistently worse than
those using a hard gating mechanism.

https://homes.cs.washington.edu/~msap/atomic/
https://homes.cs.washington.edu/~msap/atomic/
https://github.com/atcbosselut/comet-commonsense
https://github.com/atcbosselut/comet-commonsense
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ance and each normalized knowledge tuple:

vk = tanh
(
[cn,k, zn,k]Wα

)
, (9)

αk =
exp
(
vk[zn, un]

>)∑
k exp

(
vk[zn, un]>

) , (10)

cn =
K∑
k=1

αkcn,k. (11)

Here, we abuse cn to represent the aggregated
knowledge phrases. We further aggregate cn by
event relation types using a self-attention and the
final event representation is denoted as cn.

Transformer Encoder-Decoder We use a
Transformer encoder-decoder to map an utterance
sequence to an emotion label sequence, thus
allowing for modeling the transitional patterns
between emotions and taking into account the
historical utterances as well. Each utterance is con-
verted to the [CLS] representation concatenated
with the topic representation zn and knowledge
representation cn. We enforce a masking scheme
in the self-attention layer of the encoder to make
the classifier predict emotions in an auto-regressive
way, entailing that only the past utterances are
visible to the encoder. This masking strategy,
preventing the query from attending to future keys,
suits better a real-world scenario in which the
subsequent utterances are unseen when predicting
an emotion of the current utterance. As for
the decoder, the output of the previous decoder
block is input as a query to the self-attention layer.
The training loss for the classifier is the negative
log-likelihood expressed as:

L = −
N∑
n=1

log pθ(yn|u≤n,y<n),

where θ denotes the trainable parameters.

4 Experimental Setup

In this section, we present the details of the datasets
used, the methods for comparison, and the imple-
mentation details of our models.

Datasets We use the following datasets for ex-
perimental evaluation:
DailyDialog (Li et al., 2017) is collected from daily
communications. It takes the Ekman’s six emotion
types (Ekman, 1993) as the annotation protocol,
that is, it annotates an utterance with one of the
six basic emotions: anger, disgust, fear, happiness,

sadness, or surprise. Those showing ambiguous
emotions are annotated as neutral.
MELD (Poria et al., 2019) is constructed from
scripts of ‘Friends’, a TV series on urban life. Same
as DailyDialog, the emotion label falls into Ek-
man’s six emotion types, or neutral.
IEMOCAP (Busso et al., 2008) is built with subti-
tles from improvised videos. Its emotion labels are
happy, sad, neutral, angry, excited and frustrated.
EmoryNLP (Zahiri and Choi, 2018)5 is also built
with conversations from ‘Friends’ TV series, but
with a slightly different annotation scheme in which
disgust, anger and surprise become peaceful, mad
and powerful, respectively.

Following Zhong et al. (2019) and Ghosal et al.
(2020), the ‘neutral’ label of DailyDialog is not
counted in the evaluation to avoid highly imbal-
anced classes. For MELD and EmoryNLP, we
consider a dialogue as a sequence of utterances
from the same scene ID. Table 1 summarizes the
statistics of each dataset.

DD MELD IEMOCAP EmoryNLP
#Dial. 13,118 1,432 151 827
Train 11,118 1,038 100 659
Dev. 1,000 114 20 89
Test 1,000 280 31 79

#Utt. 102,979 13,708 7,333 9,489
Train 87,170 9,989 4,810 7,551
Dev. 8,069 1,109 1,000 954
Test 7,740 2,610 1,523 984

#Cat. 7 7 6 7

Table 1: Statistics of the benchmarks for dialogue emo-
tion detection. The train/development/test sets are pre-
defined in each dataset.

Baselines We compare the performance of TOD-
KAT with the following methods:
HiGRU (Jiao et al., 2019) simply inherits the re-
current attention framework that an attention layer
is placed between two GRUs to aggregate the sig-
nals from the encoder GRU and pass them to the
decoder GRU.
DialogueGCN (Ghosal et al., 2019) creates a graph
from interactions of speakers to take into account
the dialogue structure. A Graph Convolutional Net-
work (GCN) is employed to encode the speakers.
Emotion labels are predicted with the combinations
of the global context and speakers’ status.

5https://github.com/emorynlp/
emotion-detection

https://github.com/emorynlp/emotion-detection
https://github.com/emorynlp/emotion-detection
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Models
DailyDialog MELD IEMOCAP EmoryNLP

Macro-F1
- neutral

Micro-F1
- neutral

weighted
Avg-F1

Micro-F1
weighted
Avg-F1

Micro-F1
weighted
Avg-F1

Micro-F1

HiGRU 0.4904 0.5190 0.5681 0.5452 0.5854 0.5828 0.3448 0.3354
DialogueGCN 0.4995 0.5373 0.5837 0.5617 0.6085 0.6063 0.3429 0.3313
KET – 0.5348 0.5818 – 0.5956 – 0.3439 –
COSMIC 0.5105 0.5848 0.6521 – 0.6528* – 0.3811 –
TODKAT 0.5256 0.5847 0.6823 0.6475 0.6133 0.6111 0.4312 0.4268
−Topics 0.5136 0.5549 0.6634 0.6352 0.6281 0.6260 0.4180 0.4055
−KB 0.5003 0.5344 0.6397 0.6111 0.5896 0.5738 0.3379 0.3262
KATSBERT 0.5173 0.5578 0.6454 0.6188 0.6097 0.6069 0.3734 0.3567
KATCOMET 0.5102 0.5462 0.6582 0.6307 0.6277 0.6254 0.4110 0.3974

Table 2: The F1 results of the dialogue emotion detectors on four benchmarks. Here we denote the proposed model
as TODKAT, of which the results are an average of ten runs. The ablations of different components are reported
separately in the bottom, where the model without the incorporation of latent topics is denoted as ‘−Topics’,
transformer encoder-decoder structure without the use of a knowledge base is dnoted as ‘−KB’. KATCOMET and
KATSBERT uses the commonsense knowledge obtained with COMET and SBERT, respectively. Results of KET and
COSMIC are from (Zhong et al., 2019) and (Ghosal et al., 2020), respectively.

KET (Zhong et al., 2019) is the first model
which integrates common-sense knowledge ex-
tracted from ConceptNet and emotion information
from an emotion lexicon into conversational text.
A Transformer encoder is employed to handle the
influence from past utterances.
COSMIC (Ghosal et al., 2020) is the state-of-the-
art approach that leverages ATOMIC for improved
emotion detection. COMET is employed in their
model to retrieve the event-eccentric commonsense
knowledge from ATOMIC.

We modified the script6 of language model fine-
tuning in the Hugging Face library (Wolf et al.,
2020) for the implementation of topic-driven fine-
tuning. We use one transformer encoder layer. As
for the decoder, there are N layers where N is the
number of utterances in a dialogue. We refer the
readers to the Appendix for the detailed settings of
the proposed models.

5 Results and Analysis

Comparison with Baselines Experiment results
of TODKAT and its ablations are reported in Ta-
ble 2. HiGRU and DialogueGCN results were
produced by running the code published by the
authors on the four datasets. Among the baselines,
COSMIC gives the best results. Our proposed
TODKAT outperforms COSMIC on both MELD
and EmoryNLP in weighted Avg-F1 with the im-
provements ranging between 3-5%. TODKAT also
achieves superior result than COSMIC on DailyDi-

6https://huggingface.co/transformers/
v2.0.0/examples.html

alogue in Macro-F1 and gives nearly the same re-
sult in Micro-F1. TODKAT is inferior to COSMIC
on IEMOCAP. It is however worth mentioning that
COSMIC was trained with 132 instances on this
dataset, while for all the other models the training-
and-validation split is 100 and 20. As such, the
IEMOCAP results reported on COSMIC (Ghosal
et al., 2020) are not directly comparable here. COS-
MIC also incorporates the commonsense knowl-
edge from ATOMIC but with the modified GRUs.
Our proposed TODKAT, built upon the topic-driven
Transformer, appears to be a more effective archite-
cure for dialogue emotion detection. Compared
with KET, the improvements are much more sig-
nificant, with over 10% increase on MELD, and
close to 5% gain on DailyDialog. KET is also built
on the Transformer, but it considers each utterance
in isolation and applies commonsense knowledge
from ConceptNet. TODKAT, on the contrary, takes
into account the dependency of previous utterances
and their associated emotion labels for the predic-
tion of the emotion label of the current utterance.
DialogueGCN models interactions of speakers and
it performs slightly better than KET. But it is signif-
icantly worse than TODKAT. It seems that topics
might be more useful in capturing the dialogue
context.

Ablation Study The lower half of Table 2
presents the F1 scores with the removal of vari-
ous components from TODKAT. It can be observed
that with the removal of the topic component, the
performance of TODKAT drops consistently across
all datasets except IEMOCAP in which we ob-

https://huggingface.co/transformers/v2.0.0/examples.html
https://huggingface.co/transformers/v2.0.0/examples.html
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serve a slight increase in both weighted average
F1 and Micro-F1. This might be attributed to the
size of the data since IEMOCAP is the smallest
dataset evaluated here, and small datasets hinder
the model’s capability to discover topics. Without
using the commonsense knowledge (‘−KB’), we
observe more drastic performance drop compared
to all other components, with nearly 10% drop in F1
on EmoryNLP, showing the importance of employ-
ing commonsense knowledge for dialogue emotion
detection. Comparing two different ways of extract-
ing knowledge from ATOMIC, direct retrieval using
SBERT or generation using COMET, we observe
mixed results. Overall, the Transformer Encoder-
Decoder with a pointer network is a conciliator
between the two methods, yielding a balanced per-
formance across the datasets.

Relationships between Topics and Emotions
To investigate the effectiveness of the learned topic
vectors, we perform t-SNE (Van der Maaten and
Hinton, 2008) on the test set to study the rela-
tionship between the learned topic vectors and the
ground-truth emotion labels. The results on Dai-
lyDialog and MELD are illustrated in Figure 3(a)
and (b). Latent topic vectors of utterance are used
to plot the data points, whose colors indicate their
ground-truth emotion labels. We can see that the
majority of the topic vectors cluster into polarized
groups. Few clusters are bearing a mixture of po-
larity, possibly due to the background topics such
as greetings in the datasets.

Topics can be interpreted using the attention
scores of Eq. 4. The top-10 most-attended words
are selected as the representative words for each ut-
terance. As in (Dathathri et al., 2020), we construct
bag-of-words7 that represent 141 distinct topics.
Given the attended words of an utterance cluster
grouped based on their latent topic representations,
we label the word collection with the dominant
theme name. We refer to the theme names as topics
in Figure 3c. It can be observed that utterances
associated with Office tend to carry ‘disgust’ emo-
tions, while those related to Family are prone to be

‘happy’.
We further compute the Spearman’s rank-order

correlation coefficient to quantitatively verify the
relationship between the topic and emotion vec-
tors. For an utterance pair, a similarity score is

7Word lists and their corresponding theme names
are crawled from https://www.enchantedlearning.
com/wordlist/.

Office

(a) DailyDialog

Family

(b) MELD

Topic Utterances Emotion

Office

A: How are you doing, Christopher?
B: To be honest, I’m really fed up with

work at the moment. I need a break!
A: Are you doing anything this weekend?
B: I have to work on Saturday all day!

I really hate my job!

disgust

Family

A: Yeah, I-I heard. I think it’s great! Ohh,
I’m so happy for you!

B: I can’t believe you’re getting married!
C: Yeah.
D: Monica and Rachel made out.

happy

(c) Representative utterances and their topics

Figure 3: T-SNE visualization of the learned topic vec-
tors of utterances from the test sets of DailyDialog
(subfigure (a)) and MELD (subfigure (b)). Colors indi-
cate the ground-truth emotion label. Neutral utterances
are omitted here for clarity. Representative utterances
(highlighted in colors) for the topic ‘Office’ in Daily-
Dialog and the topic ‘Family’ in MELD are shown in
subfigure (c).

obtained separately for their corresponding topic
vectors as well as their emotion vectors. We then
sort the list of emotion vector pairs according to
their similarity scores to check to what extent their
ranking matches that of topic vector pairs, based
on the Spearman’s rank-order correlation coeffi-
cient. The results are 0.60, 0.58, 0.42 and 0.54
with p-values� 0.01 respectively for DailyDialog,
MELD, IEMOCAP and EmoryNLP, showing that
there is a strong correlation between the clustering
of topics and that of emotion labels. IEMOCAP
has the lowest correlation score, which is inline
with the results in Table 2 that the discovered latent
topics did not improve the emotion classification
results.

Impact of Relation Type We investigate the
impact of commonsense relation types on the
performance of TODKAT. We expand the re-
lation set to five relation types and all nine re-
lation types, respectively. According to (Sap

https://www.enchantedlearning.com/wordlist/
https://www.enchantedlearning.com/wordlist/
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Dataset
Relation Type

{sI, sR, oR, sE, oE} All
DailyDialog 0.5718↓ 0.5664↓

MELD 0.6429↓ 0.6322↓
IEMOCAP 0.6163↑ 0.6073↓
EmoryNLP 0.4029↓ 0.3885↓

Table 3: Micro-F1 scores of TODKAT with more com-
monsense relation types retrieved from ATOMIC in-
cluded for training. Here, “sE” and “oE” represent
effect of subject and effect of object, respectively. “All”
denotes the incorporation of all nine commonsense re-
lation types from ATOMIC.

et al., 2019), there are other relation types includ-
ing {sNeed, sWant, oWant, sEffect, oEffect}, which
identifies the prerequisites and post conditions of
the given event, and {sAttr}, the “If-Event-Then-
Persona” category of relation type that describes
how the subject is perceived by others. We calcu-
late the Micro-F1 scores of TODKAT with these
two categories of relation types added step by step.
From Table 3 we can conclude that the inclusion
of two extra relation types or all relation types de-
grades the F1 scores on almost all datasets. An
exception occurs on IEMOCAP where the F1 score
rises by 0.5% when adding “sE” and “oE” rela-
tions, possibly due to the fact that the dataset is
abundant in events. Hence the extra event descrip-
tions offer complementary knowledge to some ex-
tent. While on other datasets neither the incorpo-
ration of “If-Event-Then-Event” nor the incorpo-
ration of “If-Event-Then-Persona” relation types
could bring any benefit.

Impact of Attention Mechanism With the
knowledge retrieved from ATOMIC or generated
from COMET, we are able to infer the possible
intentions and reactions of the interlocutors. How-
ever, not all knowledge phrases contribute the same
to the emotion of the focused utterance. We study
the attention mechanism in terms of selecting the
relevant knowledge. We show in Table 4 a heat
map of the attention scores in Eq. 9 to illustrate
how the topic-driven attention could identify the
most salient phrase. The utterance ‘Oh my God,
you’re a freak.’ will be erroneously categorized
as ‘mad’ without using the topic-driven attention
(shown in the last row of Table 4). In contrast, the
attention mechanism guides the model to attend
to the more relevant events and thus predict the
correct emotion label.

D
ia

lo
gu

e
C

on
te

xt

A: Alright, go on.
B: Ok, I have to sleep on the west side

because I grew up in California
and otherwise the ocean would be
on the wrong side.

A: Oh my God, you’re a freak.
B: Yeah. How about that.

Neutral
Neutral

Joyful
Neutral

To
pi

c-
D

riv
en

A
tte

nt
io

n A wants to be liked

Joyful 3

A wants to be accepted
A wants to be a freak
A will feel satisfied
A will feel ashamed
A will feel happy
B will feel impressed
B will feel disgusted
B will feel surprised
A: Oh my God, you’re a freak. Mad 7

Table 4: Illustration of the attention mechanism in
Eq. 9 that helps distinguish the retrieved knowledge.

6 Conclusion

We have proposed a Topic-Driven and Knowledge-
Aware Transformer model that incorporates topic
representation and the commonsense knowledge
from ATOMIC for emotion detection in dialogues.
A topic-augmented language model based on fine-
tuning has been developed for topic extraction.
Pointer network and additive attention have been
explored for knowledge selection. All the novel
components have been integrated into the Trans-
former Encoder-Decoder structure that enables
Seq2Seq prediction. Empirical results demonstrate
the effectiveness of the model in topic represen-
tation learning and knowledge integration, which
have both boosted the performance of emotion de-
tection.
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A Appendices

A.1 Settings
We modified the script8 of language model fine-
tuning in the Hugging Face library (Wolf et al.,
2020) for the implementation of topic-driven fine-
tuning. On each training set, we train the topic
model for 3 epochs, with learning rate set to 5e-5
to prevent overfitting to the low-resource dataset.
The classifier is built on the Transformers9 pack-
age in Hugging Face. The language model we
employ is RoBERTa (Liu et al., 2019). Each utter-
ance is padded by the <pad> token of RoBERTa
if it is less than the maximum length of 128. The
maximum number of utterances in a dialogue is
set to 36, 25, 72 and 25 respectively for Daily-
Dialog (Li et al., 2017) 10, MELD (Poria et al.,
2019) 11, IEMOCAP (Busso et al., 2008) 12 and
EmoryNLP (Zahiri and Choi, 2018) 13. Dialogues
with shorter lengths are padded with NULL. It
is worth noting that this step is performed after
RoBERTa due to the random noises introduced
by RoBERTa. The number of retrieved or gener-
ated events from ATOMIC under the relation types
‘intentions’ and ‘reactions’ is both set to 5, i.e.,
K = 5.

8https://huggingface.co/transformers/
v2.0.0/examples.html

9https://huggingface.co/transformers/
10http://yanran.li/dailydialog.html
11https://github.com/declare-lab/MELD
12https://sail.usc.edu/iemocap/iemocap_

release.htm
13https://github.com/emorynlp/

emotion-detection
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