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Abstract

The modeling of conversational context plays
a vital role in emotion recognition from con-
versation (ERC). In this paper, we put for-
ward a novel idea of encoding the utterances
with a directed acyclic graph (DAG) to better
model the intrinsic structure within a conversa-
tion, and design a directed acyclic neural net-
work, namely DAG-ERC!, to implement this
idea. In an attempt to combine the strengths of
conventional graph-based neural models and
recurrence-based neural models, DAG-ERC
provides a more intuitive way to model the in-
formation flow between long-distance conver-
sation background and nearby context. Exten-
sive experiments are conducted on four ERC
benchmarks with state-of-the-art models em-
ployed as baselines for comparison. The empir-
ical results demonstrate the superiority of this
new model and confirm the motivation of the
directed acyclic graph architecture for ERC.

1 Introduction

Utterance-level emotion recognition in conversa-
tion (ERC) is an emerging task that aims to identify
the emotion of each utterance in a conversation.
This task has been recently concerned by a con-
siderable number of NLP researchers due to its
potential applications in several areas, such as opin-
ion mining in social media (Chatterjee et al., 2019)
and building an emotional and empathetic dialog
system (Majumder et al., 2020).

The emotion of a query utterance is likely to be
influenced by many factors such as the utterances
spoken by the same speaker and the surrounding
conversation context. Indeed, how to model the
conversational context lies at the heart of this task
(Poria et al., 2019a). Empirical evidence also shows
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Figure 1: Conversation as a directed acyclic graph,
with brown directed edges representing the information
propagation between speakers and blue ones represent-
ing the information propagation inside a same speaker.

that a good representation of conversation context
significantly contributes to the model performance,
especially when the content of query utterance is
too short to be identified alone (Ghosal et al., 2019).

Numerous efforts have been devoted to the mod-
eling of conversation context. Basically, they can
be divided into two categories: graph-based meth-
ods (Zhang et al., 2019a; Ghosal et al., 2019; Zhong
et al., 2019; Ishiwatari et al., 2020; Shen et al.,
2020) and recurrence-based methods (Hazarika
et al., 2018a; Hazarika et al., 2018b; Majumder
et al., 2019; Ghosal et al., 2020). For the graph-
based methods, they concurrently gather informa-
tion of the surrounding utterances within a certain
window, while neglecting the distant utterances
and the sequential information. For the recurrence-
based methods, they consider the distant utterances
and sequential information by encoding the utter-
ances temporally. However, they tend to update the
query utterance’s state with only relatively limited
information from the nearest utterances, making
them difficult to get a satisfying performance.
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According to the above analysis, an intuitively
better way to solve ERC is to allow the advantages
of graph-based methods and recurrence-based mod-
els to complement each other. This can be achieved
by regarding each conversation as a directed acyclic
graph (DAG). As illustrated in Figure 1, each ut-
terance in a conversation only receives information
from some previous utterances and cannot propa-
gate information backward to itself and its prede-
cessors through any path. This characteristic indi-
cates that a conversation can be regarded as a DAG.
Moreover, by the information flow from predeces-
sors to successors through edges, DAG can gather
information for a query utterance from both the
neighboring utterances and the remote utterances,
which acts like a combination of graph structure
and recurrence structure. Thus, we speculate that
DAG is a more appropriate and reasonable way
than graph-based structure and recurrence-based
structure to model the conversation context in ERC.

In this paper, we propose a method to model the
conversation context in the form of DAG. Firstly,
rather than simply connecting each utterance with a
fixed number of its surrounding utterances to build
a graph, we propose a new way to build a DAG
from the conversation with constraints on speaker
identity and positional relations. Secondly, inspired
by DAGNN (Thost and Chen, 2021), we propose
a directed acyclic graph neural network for ERC,
namely DAG-ERC. Unlike the traditional graph
neural networks such as GCN (Kipf and Welling,
2016) and GAT (Velickovié et al., 2017) that ag-
gregate information from the previous layer, DAG-
ERC can recurrently gather information of prede-
cessors for every utterance in a single layer, which
enables the model to encode the remote context
without having to stack too many layers. Besides,
in order to be more applicable to the ERC task, our
DAG-ERC has two improvements over DAGNN:
(1) arelation-aware feature transformation to gather
information based on speaker identity and (2) a con-
textual information unit to enhance the information
of historical context. We conduct extensive exper-
iments on four ERC benchmarks and the results
show that the proposed DAG-ERC achieves compa-
rable performance with the state-of-the-art models.
Furthermore, several studies are conducted to ex-
plore the effect of the proposed DAG structure and
the modules of DAG-ERC.

The contributions of this paper are threefold.
First, we are the first to consider a conversation

as a directed acyclic graph in the ERC task. Sec-
ond, we propose a method to build a DAG from a
conversation with constraints based on the speaker
identity and positional relations. Third, we propose
a directed acyclic graph neural network for ERC,
which takes DAGNN as its backbone and has two
main improvements designed specifically for ERC.

2 Related work

2.1 Emotion Recognition in Conversation

Recently, several ERC datasets with textual data
have been released (Busso et al., 2008; Schuller
et al., 2012; Zahiri and Choi, 2017; Li et al., 2017;
Chen et al., 2018; Poria et al., 2019b), arousing
the widespread interest of NLP researchers. In the
following paragraphs, we divide the related works
into two categories according to the methods they
use to model the conversation context.
Graph-based Models DialogGCN (Ghosal et al.,
2019) treats each dialog as a graph in which each
utterance is connected with the surrounding utter-
ances. RGAT (Ishiwatari et al., 2020) adds posi-
tional encodings to DialogGCN. ConGCN (Zhang
et al., 2019a) regards both speakers and utterances
as graph nodes and makes the whole ERC dataset
a single graph. KET (Zhong et al., 2019) uses hier-
archical Transformers (Vaswani et al., 2017) with
external knowledge. DialogXL (Shen et al., 2020)
improves XLNet (Yang et al., 2019) with enhanced
memory and dialog-aware self-attention.”
Recurrence-based Models In this category, [CON
(Hazarika et al., 2018a) and CMN (Hazarika et al.,
2018b) both utilize gated recurrent unit (GRU) and
memory networks. HIGRU (Jiao et al., 2019) con-
tains two GRUs, one for utterance encoder and
the other for conversation encoder. DialogRNN
(Majumder et al., 2019) is a recurrence-based
method that models dialog dynamics with several
RNNs. COSMIC (Ghosal et al., 2020) is the latest
model, which adopts a network structure very close
to DialogRNN and adds external commonsense
knowledge to improve performance.

2.2 Directed Acyclic Graph Neural Network

Directed acyclic graph is a special type of graph
structure that can be seen in multiple areas, for
example, the parsing results of source code (Alla-
manis et al., 2018) and logical formulas (Crouse

2We regard KET and DialogXL as graph-based models
because they both adopt Transformer in which self-attention
can be viewed as a fully-connected graph in some sense.
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et al., 2019). A number of neural networks that em-
ploy DAG architecture have been proposed, such
as Tree-LSTM (Tai et al., 2015), DAG-RNN(Shuai
et al., 2016), D-VAE (Zhang et al., 2019b), and
DAGNN (Thost and Chen, 2021). DAGNN is dif-
ferent from the previous DAG models in the model
structure. Specifically, DAGNN allows multiple
layers to be stacked, while the others have only
one single layer. Besides, instead of merely carry-
ing out naive sum or element-wise product on the
predecessors’ representations, DAGNN conducts
information aggregation using graph attention.

3 Methodology
3.1 Problem Definition

In ERC, a conversation is defined as a sequence of
utterances {uj, ug, ..., uy }, where N is the num-
ber of utterances. Each utterance u; consists of n;
tokens, namely u; = {wi1, w2, ..., Win, }. A dis-
crete value y; € S is used to denote the emotion
label of u;, where S is the set of emotion labels.
The speaker identity is denoted by a function p(+).
For example, p(u;) € P denotes the speaker of u;
and P is the collection of all speaker roles in an
ERC dataset. The objective of this task is to predict
the emotion label y; for a given query utterance u,
based on dialog context {uj,usg,...,un} and the
corresponding speaker identity.

3.2 Building a DAG from a Conversation

We design a directed acyclic graph (DAG) to model
the information propagation in a conversation. A
DAG is denoted by G = (V, £, R). In this paper,
the nodes in the DAG are the utterances in the con-
versation, i.e., V = {u1, ug, ..., un }, and the edge
(4,7,mi5) € & represents the information propa-
gated from u; to u;, where r;; € R is the relation
type of the edge. The set of relation types of edges,
R = {0, 1}, contains two types of relation: 1 for
that the two connected utterances are spoken by the
same speaker, and 0 for otherwise.

We impose three constraints to decide when an
utterance would propagate information to another,
1.e., when two utterances are connected in the DAG:
Direction: Vj > i, (j,4,7;) ¢ £. A previous ut-
terance can pass message to a future utterance, but
a future utterance cannot pass message backwards.
Remote information: 37 < i, p(u,) =p(u;), (7,1
,7ri) € Eand Vj < 7, (4,1,75) ¢ E. For each
utterance u; except the first one, there is a previous
utterance u, that is spoken by the same speaker as

Algorithm 1 Building a DAG from a Conversation

Input: the dialog {u1,us, ..., un}, speaker iden-
tity p(+), hyper-parameter w

Output: G = (V,E,R)

1V« {ul,uQ, ...,uN}

2: £« 0

33 R+ {0,1}

4: foralli € {2,3,..., N} do

5 c+0

6: T+ 1—1
7:  whileT > 0and c < wdo
8 if p(u;) = p(u;) then
9: E+—EU{(r,1,1)}
10: c+—c+1

11: else

12: E+— EU{(r,i,0)}
13: end if

14: T+ T17-—1

15:  end while

16: end for

17: return G = (V,E,R)

u;. The information generated before u, is called
remote information, which is relatively less impor-
tant. We assume that when the speaker speaks u,
she/he has been aware of the remote information
before .. That means, u, has included the remote
information and it will be responsible for propagat-
ing the remote information to u;.

Local information: VI, 7 < [ < i, (l,i,7;) € &.
Usually, the information of the local context is im-
portant. Consider u, and u; defined in the second
constraint. We assume that every utterance u; in
between u, and u; contains local information, and
they will propagate the local information to u;.

The first constraint ensures the conversation to
be a DAG, and the second and third constraints
indicate that u, is the cut-off point of remote and
local information. We regard u, as the w-th latest
utterance spoken by p(u;) before u;, where w is
a hyper-parameter. Then for each utterance u; in
between u, and u;, we make a directed edge from
u; to u;. We show the above process of building a
DAG in Algorithm 1.

An example of the DAG is shown in Figure 2.
In general, our DAG has two main advancements
compared to the graph structures developed in pre-
vious works (Ghosal et al., 2019; Ishiwatari et al.,
2020): First, our DAG doesn’t have edges from
future utterances to previous utterances, which we
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Figure 2: An example DAG built from a three-party
conversation, with w = 1. The three speakers’ utter-
ances are colored by red, blue and green, respectively.
Solid lines represent the edges of local information, and
dash lines denote the edges of remote information.

argue is more reasonable and realistic, as the emo-
tion of a query utterance should not be influenced
by the future utterances in practice. Second, our
DAG seeks a more meaningful u, for each utter-
ance, rather than simply connecting each utterance
with a fixed number of surrounding utterances.

3.3 Directed Acyclic Graph Neural Network

In this section, we introduce the proposed Directed
Acyclic Graph Neural Network for ERC (DAG-
ERC). The framework is shown in Figure 3.

3.3.1 Utterance Feature Extraction

DAG-ERC regards each utterance as a graph node,
the feature of which can be extracted by a pre-
trained Transformer-based language model. Fol-
lowing the convention, the pre-trained language
model is firstly fine-tuned on each ERC dataset,
and its parameters are then frozen while training
DAG-ERC. Following Ghosal et al. (2020), we
employ RoBERTa-Large (Liu et al., 2019), which
has the same architecture as BERT-Large (Devlin
et al., 2018), as our feature extractor. More specifi-
cally, for each utterance u;, we prepend a special
token [C'LS] to its tokens, making the input a form
of {[CLS], wi1,wjz, ..., Win, }. Then, we use the
[C'LS]’s pooled embedding at the last layer as the
feature representation of u;.

3.3.2 GNN, RNN and DAGNN

Before introducing the DAG-ERC layers in de-
tail, we first briefly describe graph-based mod-
els, recurrence-based models and directed acyclic
graph models to help understand their differences.

For each node at each layer, graph-based models
(GNN) aggregate the information of its neighboring
nodes at the previous layer as follows:

H! = f(Aggregate({HflU e N}, HTY, (1)

where f(-) is the information processing function,
Aggregate(+) is the information aggregation func-
tion to gather information from neighboring nodes,
and \; denotes the neighbours of the i-th node.

Recurrence-based models (RNN) allow infor-
mation to propagate temporally at the same layer,
while the i-th node only receives information from
the (i—1)-th node:

H} = f(H_,H™). )

Directed acyclic graph models (DAGNN) work
like a combination of GNN and RNN. They aggre-
gate information for each node in temporal order,
and allow all nodes to gather information from
neighbors and update their states at the same layer:

H} = f(Aggregate({H!|j € Ni}), H™"). (3)

The strength of applying DAGNN to ERC is
relatively apparent: By allowing information to
propagate temporally at the same layer, DAGNN
can get access to distant utterances and model the
information flow throughout the whole conversa-
tion, which is hardly possible for GNN. Besides,
DAGNN gathers information from several neigh-
boring utterances, which sounds more appealing
than RNN as the latter only receives information
from the (7 —1)-th utterance.

3.3.3 DAG-ERC Layers

Our proposed DAG-ERC is primarily inspired by
DAGNN (Thost and Chen, 2021), with novel im-
provements specially made for emotion recognition
in conversation. At each layer [ of DAG-ERC, due
to the temporal information flow, the hidden state
of utterances should be computed recurrently from
the first utterance to the last one.

For each utterance u;, the attention weights be-
tween u; and its predecessors are calculated by
using u;’s hidden state at the (I — 1)-th layer to at-
tend to the predecessors’ hidden states at [-th layer:

aéj = SoftmaxjeM(Wolé[H]l-HHf_l]) 4

where W/, are trainable parameters and || denotes
the concatenation operation.

The information aggregation operation in DAG-
ERC is different from that in DAGNN. Instead of
merely gathering information according to the at-
tention weights, inspired by R-GCN (Schlichtkrull
et al., 2018), we apply a relation-aware feature
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Figure 3: The framework of Directed Acyclic Graph Neural Network for ERC (DAG-ERC).

transformation to make full use of the relational
type of edges:

M=) ayWi Hj, (5)
JEN;

where erij € {W{, W}} are trainable parameters
for the relation-aware transformation.

After the aggregated information Mf is calcu-
lated, we make it interact with u;’s hidden state at
the previous layer H f ~1 to obtain the final hidden
state of u; at the current layer. In DAGNN, the final
hidden state is obtained by allowing M f to control
information propagation of . Zl ~1 to the [-th layer
with a gated recurrent unit (GRU):

H! = GRUY, (H!7!, M), 6)

where H Zl *1, Ml-l, and H f are the input, hidden state
and output of the GRU, respectively.

We refer to the process in Equation 6 as nodal
information unit, because it focuses on the node
information propagating from the past layer to the
current layer. Nodal information unit may be suit-
able for the tasks that DAGNN is originally de-
signed to solve. However, we find that only using
nodal information unit is not enough for ERC, es-
pecially when the query utterance u;’s emotion
should be derived from its context. The reason is
that in DAGNN, the information of context MZZ 18
only used to control the propagation of u;’s hidden
state, and under this circumstance, the information
of context is not fully leveraged. Therefore, we de-
sign another GRU called contextual information
unit to model the information flow of historical

context through a single layer. In the contextual
information unit, the. roles of H Z “land M f in GRU
are reversed, i.e., H ;_1 controls the propagation of
MZZ

Ci = GRU), (M;, H{™"). (7

The representation of u; at the [-th layer is the
sum of H! and C*:

H!'=H!'+C!. (8)

3.3.4 Training and Prediction

We take the concatenation of wu;’s hidden states
at all DAG-ERC layers as the final representation
of u;, and pass it through a feed-forward neural
network to get the predicted emotion:

H; =iy Hi, )
z =ReLU(WyH; + by),  (10)
P; = Softmax(W,z; + b,), an
y; = Argmaxg(P;[k]). (12)

For the training of DAG-ERC, we employ the
standard cross-entropy loss as objective function:

i

M N,
L0) ==Y LogPilyisl, (13)

i=1 t=1

where M is the number of training conversations,
N; is the number of utterances in the i-th conver-
sation, y; ¢ is the ground truth label, and 6 is the
collection of trainable parameters of DAG-ERC.
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Dataset # Conversations # Uterrances
Train ‘ Val ‘ Test | Train ‘ Val ‘ Test
IEMOCAP 120 31 5810 1623
MELD 1038 114 | 280 | 9989 | 1109 | 2610
DailyDialog | 11118 | 1000 | 1000 | 87170 | 8069 | 7740
EmoryNLP 713 99 85 9934 | 1344 | 1328

Table 1: The statistics of four datasets.

4 Experimental Settings

4.1 Implementation Details

We conduct hyper-parameter search for our pro-
posed DAG-ERC on each dataset by hold-out vali-
dation with a validation set. The hyper-parameters
to search include learning rate, batch size, dropout
rate, and the number of DAG-ERC layers. For the
w that is described in 3.2, we let w = 1 for the
overall performance comparison by default, but we
report the results with w varying from 1 to 3 in 5.2.
For other hyper-parameters, the sizes of all hidden
vectors are equal to 300, and the feature size for the
RoBERTa extractor is 1024. Each training and test-
ing process is run on a single RTX 2080 Ti GPU.
Each training process contains 60 epochs and it
costs at most 50 seconds per epoch. The reported
results of our implemented models are all based on
the average score of 5 random runs on the test set.

4.2 Datasets

We evaluate DAG-ERC on four ERC datasets. The
statistics of them are shown in Table 1.
IEMOCAP (Busso et al., 2008): A multimodal
ERC dataset. Each conversation in IEMOCAP
comes from the performance based on script by
two actors. Models are evaluated on the samples
with 6 types of emotion, namely neutral, happiness,
sadness, anger, frustrated, and excited. Since this
dataset has no validation set, we follow Shen et al.
(2020) to use the last 20 dialogues in the training
set for validation.

MELD (Poria et al., 2019b): A multimodal ERC
dataset collected from the TV show Friends. There
are 7 emotion labels including neutral, happiness,
surprise, sadness, anger, disgust, and fear.
DailyDialog (Li et al., 2017): Human-written di-
alogs collected from communications of English
learners. 7 emotion labels are included: neutral,
happiness, surprise, sadness, anger, disgust, and
fear. Since it has no speaker information, we con-
sider utterance turns as speaker turns by default.
EmoryNLP (Zahiri and Choi, 2017): TV show
scripts collected from Friends, but varies from

MELD in the choice of scenes and emotion labels.
The emotion labels of this dataset include neutral,
sad, mad, scared, powerful, peaceful, and joyful.
We utilize only the textual modality of the above
datasets for the experiments. For evaluation met-
rics, we follow Ishiwatari et al. (2020) and Shen
et al. (2020) and choose micro-averaged F1 exclud-
ing the majority class (neutral) for DailyDialog and
weighted-average F1 for the other datasets.

4.3 Compared Methods

We compared our model with the following base-
lines in our experiments:

Recurrence-based methods: DialogueRNN (Ma-
jumder et al., 2019), DialogRNN-RoBERTa
(Ghosal et al., 2020), and COSMIC without ex-
ternal knowledge3 (Ghosal et al., 2020).
Graph-based methods: DialogurGCN (Ghosal
et al., 2019), KET (Zhong et al., 2019), DialogXL
(Shen et al., 2020) and RGAT (Ishiwatari et al.,
2020).

Feature extractor: RoBERTa (Liu et al., 2019).
Previous models with our extracted features:
DialogueGCN-RoBERTa, RGAT-RoBERTa and
DAGNN (Thost and Chen, 2021)*.

Ours: DAG-ERC.

5 Results and Analysis

5.1 Overall Performance

The overall results of all the compared methods on
the four datasets are reported in Table 2. We can
note from the results that our proposed DAG-ERC
achieves competitive performances across the four
datasets and reaches a new state of the art on the
IEMOCAP, DailyDialog and EmoryNLP datasets.

As shown in the table, when the feature ex-
tracting method is the same, graph-based models
generally outperform recurrence-based models on
IEMOCAP, DailyDialog, and EmoryNLP. This phe-
nomenon indicates that recurrence-based models
cannot encode the context as effectively as graph-
based models, especially for the more important
local context. What’s more, we see a significant
improvement of DAG-ERC over the graph-based

3In this paper, we compare our DAG-ERC with COSMIC
without external knowledge, rather than the complete COS-
MIC, in order to make a clearer comparison on the model
architecture, even though our DAG-ERC outperforms the com-
plete COSMIC on IEMOCAP, DailyDialog and EmoryNLP.

“DAGNN is not originally designed for ERC, so we apply
our DAG building method and the extracted feature for it.
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Model IEMOCAP MELD DailyDialog EmoryNLP
DialogueRNN 62.75 57.03 - -
+RoBERTa 64.76 63.61 57.32 37.44
COSMIC 63.05 64.28 56.16 37.10
KET 59.56 58.18 53.37 33.95
DialogXL 65.94 62.41 54.93 34.73
DialogueGCN 64.18 58.10 - -
+RoBERTa 64.91 63.02 57.52 38.10
RGAT 65.22 60.91 54.31 34.42
+RoBERTa 66.36 62.80 59.02 37.89
RoBERTa 63.38 62.88 58.08 37.78
DAGNN 64.61 63.12 58.36 37.89
DAG-ERC 68.03 63.65 59.33 39.02

Table 2: Overall performance on the four datasets.

models on IEMOCAP, which demonstrates DAG-
ERC’s superior ability to capture remote informa-
tion given that the dialogs in [IEMOCAP are much
longer (almost 70 utterances per dialog).

On MELD, however, we observe that neither
graph-based models nor our DAG-ERC outper-
forms the recurrence-based models. After going
through the data, we find that due to the data collec-
tion method (collected from TV shows), sometimes
two consecutive utterances in MELD are not coher-
ent. Under this circumstance, graph-based models’
advantage in encoding context is not that important.

Besides, the graph-based models see consider-
able improvements when implemented with the
powerful feature extractor RoOBERTa. In spite of
this, our DAG-ERC consistently outperforms these
improved graph-based models and DAGNN, con-
firming the superiority of the DAG structure and
the effectiveness of the improvements we make to
build DAG-ERC upon DAGNN.

5.2 Variants of DAG Structure

In this section, we investigate how the structure of
DAG would affect our DAG-ERC’s performance
by applying different DAG structures to DAG-ERC.
In addition to our proposed structure, we further
define three kinds of DAG structure: (1) sequence,
in which utterances are connected one by one; (2)
DAG with single local information, in which each
utterance only receives local information from its
nearest neighbor, and the remote information re-
mains the same as our DAG; (3) common DAG, in
which each utterance is connected with  previous
utterances. Note that if there are only two speakers
taking turns to speak in a dialog, then our DAG is
equivalent to common DAG with k = 2w, mak-
ing the comparison less meaningful. Therefore, we
conduct the experiment on EmoryNLP, where there
are usually multiple speakers in one dialog, and the

DAG # Preds F1 score
Sequence 0.92 37.57
Single local information 1.66 38.22
Common k = 2 1.78 38.30
Common k = 4 3.28 38.34
Common Kk = 6 4.50 38.48
Oursw =1 2.69 39.02
Ours w = 2 4.46 38.90
Oursw =3 5.65 38.94

Table 3: Different DAGs applied to DAG-ERC.

speakers speak in arbitrary order. The test perfor-
mances are reported in Table 3, together with the
average number of each utterance’s predecessors.

Several instructive observations can be made
from the experimental results. Firstly, the per-
formance of DAG-ERC drops significantly when
equipped with the sequence structure. Secondly,
our proposed DAG structure has the highest perfor-
mance among the DAG structures. Considering our
DAG with w = 2 and common DAG with Kk = 6,
with very close numbers of predecessors, our DAG
still outperforms the common DAG by a certain
margin. This indicates that the constraints based
on speaker identity and positional relation are ef-
fective inductive biases, and the structure of our
DAG is more suitable for the ERC task than rigidly
connecting each utterance with a fixed number of
predecessors. Finally, we find that increasing the
value of w may not contribute to the performance
of our DAG, and w = 1 tends to be enough.

5.3 Ablation Study

To study the impact of the modules in DAG-ERC,
we evaluate DAG-ERC by removing relation-aware
feature transformation, the nodal information unit,
and the contextual information unit individually.
The results are shown in Table 4.

As shown in the table, removing the relation-
aware feature transformation causes a sharp per-
formance drop on IEMOCAP and DailyDialog,
while a slight drop on MELD and EmoryNLP.
Note that there are only two speakers per dialog

Method IEMOCAP MELD DailyDialog ~ EmoryNLP
DAG-ERC 68.03 63.65 59.33 39.02

w/o rel-trans | 64.12 (3.91) 63.29 (10.36) 57.12(]2.21) 38.87 (0.15)
wio H 66.19 (11.84) 63.17(10.48) 58.05(]1.28) 38.54 (0.48)
wlo C' 66.32 (11.71) 63.36 (]0.29) 58.90 (10.43) 38.50(0.52)

Table 4: Results~0f ablation study on the four datasets,
with rel-trans, H, and C denoting relation-aware fea-
ture transformation, nodal information unit, and con-
textual information unit, respectively.
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Figure 4: Test results of RGAT-RoBERTa, DAGNN,
and DAG-ERC on the IEMOCAP dataset by different
numbers of network layers.

in IEMOCAP and DailyDialog, and there are usu-
ally more than two speakers in dialogs of MELD
and EmoryNLP. Therefore, we can infer that the
relation of whether two utterances have the same
speaker is sufficient for two-speaker dialogs, while
falls short in the multi-speaker setting.

Moreover, we find that on each dataset, the per-
formance drop caused by ablating nodal informa-
tion unit is similar to contextual information unit,
and all these drops are not that critical. This im-
plies that either the nodal information unit or con-
textual information unit is effective for the ERC
task, while combining the two of them can yield
further performance improvement.

5.4 Number of DAG-ERC Layers

According to the model structure introduced in
Section 3.3.2, the only way for GNNs to receive
information from a remote utterance is to stack
many GNN layers. However, it is well known
that stacking too many GNN layers might cause
performance degradation due to over-smoothing
(Kipf and Welling, 2016). We investigate whether
the same phenomenon would happen when stack-
ing many DAG-ERC layers. We conduct an ex-
periment on IEMOCAP and plot the test result
by different numbers of layers in Figure 4, with
RGAT-RoBERTa and DAGNN as baselines. As
illustrated in the figure, RGAT suffers a significant
performance degradation after the number of lay-
ers exceeds 6. While for DAGNN and DAG-ERC,
with the number of layers changes, both of their
performances fluctuate in a relatively narrow range,
indicating that over-smoothing tends not to happen
in the directed acyclic graph networks.

Emotional shift w/o Emotional shift

Dataset

# Samples | Accuracy | # Samples | Accuracy
IEMOCAP 576 57.98% 1002 74.25%
MELD 1003 59.02% 861 69.45%
DailyDialog 670 57.26% 454 59.25%
EmoryNLP 673 37.29% 361 42.10%

Table 5: Test accuracy of DAG-ERC on samples with
emotional shift and without it.

5.5 Error Study

After going through the prediction results on the
four datasets, we find that our DAG-ERC fails to
distinguish between similar emotions very well,
such as frustrated vs anger, happiness vs excited,
scared vs mad, and joyful vs peaceful. This kind of
mistake is also reported by Ghosal et al. (2019). Be-
sides, we find that DAG-ERC tends to misclassify
samples of other emotions to neutral on MELD,
DailyDialog and EmoryNLP due to the majority
proportion of neutral samples in these datasets.
We also look closely into the emotional shift
issue, which means the emotions of two consecu-
tive utterances from the same speaker are different.
Existing ERC models generally work poorly in
emotional shift. As shown in Table 5, our DAG-
ERC also fails to perform better on the samples
with emotional shift than that without it, though
the performance is still better than previous mod-
els. For example, the accuracy of DAG-ERC in the
case of emotional shift is 57.98% on the IEMO-
CAP dataset, which is higher than 52.5% achieved
by DialogueRNN (Majumder et al., 2019) and 55%
achieved by DialogXL (Shen et al., 2020).

6 Conclusion

In this paper, we presented a new idea of mod-
eling conversation context with a directed acyclic
graph (DAG) and proposed a directed acyclic graph
neural network, namely DAG-ERC, for emotion
recognition in conversation (ERC). Extensive ex-
periments were conducted and the results show
that the proposed DAG-ERC achieves compara-
ble performance with the baselines. Moreover, by
comprehensive evaluations and ablation study, we
confirmed the superiority of our DAG-ERC and the
impact of its modules. Several conclusions can be
drawn from the empirical results. First, the DAG
structures built from conversations do affect the per-
formance of DAG-ERC, and with the constraints
on speaker identity and positional relation, the pro-
posed DAG structure outperforms its variants. Sec-
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ond, the widely utilized graph relation type of
whether two utterances have the same speaker is
insufficient for multi-speaker conversations. Third,
the directed acyclic graph network does not suffer
over-smoothing as easily as GNNs when the num-
ber of layers increases. Finally, many of the errors
misjudged by DAG-ERC can be accounted for by
similar emotions, neutral samples and emotional
shift. These reasons have been partly mentioned
in previous works but have yet to be solved, which
are worth further investigation in future work.
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