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Abstract

Recently, word enhancement has become very
popular for Chinese Named Entity Recogni-
tion (NER), reducing segmentation errors and
increasing the semantic and boundary informa-
tion of Chinese words. However, these meth-
ods tend to ignore the information of the Chi-
nese character structure after integrating the
lexical information. Chinese characters have
evolved from pictographs since ancient times,
and their structure often reflects more informa-
tion about the characters. This paper presents a
novel Multi-metadata Embedding based Cross-
Transformer (MECT) to improve the perfor-
mance of Chinese NER by fusing the structural
information of Chinese characters. Specifi-
cally, we use multi-metadata embedding in a
two-stream Transformer to integrate Chinese
character features with the radical-level em-
bedding. With the structural characteristics
of Chinese characters, MECT can better cap-
ture the semantic information of Chinese char-
acters for NER. The experimental results ob-
tained on several well-known benchmarking
datasets demonstrate the merits and superior-
ity of the proposed MECT method.1

1 Introduction

Named Entity Recognition (NER) plays an essen-
tial role in structuring of unstructured text. It
is a sequence tagging task that extracts named
entities from unstructured text. Common cate-
gories of NER include names of people, places,
organizations, time, quantity, currency, and some
proper nouns. NER is the basis for many Nat-
ural Language Processing (NLP) tasks such as
event extraction (Chen et al., 2015), question an-
swering (Diefenbach et al., 2018), information re-

∗Corresponding author.
1The source code of the proposed method is publicly

available at https://github.com/CoderMusou/
MECT4CNER.

Character CR HT SC

题 (topic) 页 是页 日一走页

榆 (elm) 木 木俞 木人一月刂

渡 (ferry) 氵 氵度 氵广廿又

脸 (face) 月 月佥 月人一ツ一

Table 1: Structure decomposition of Chinese charac-
ters: ‘CR’ denotes the Chinese radical, ‘HT’ denotes
the head and tail, and ‘SC’ denotes the structural com-
ponents of Chinese characters.

trieval (Khalid et al., 2008), knowledge graph con-
struction (Riedel et al., 2013), etc.

Compared with English, there is no space be-
tween Chinese characters as word delimiters. Chi-
nese word segmentation is mostly distinguished
by readers through the semantic information of
sentences, posing many difficulties to Chinese
NER (Duan and Zheng, 2011; Ma et al., 2020).
Besides, the task also has many other challenges,
such as complex combinations, entity nesting, and
indefinite length (Dong et al., 2016).

In English, different words may have the same
root or affix that better represents the word’s seman-
tics. For example, physiology, psychology, sociol-
ogy, technology and zoology contain the same suf-
fix, ‘-logy’, which helps identify the entity of a sub-
ject name. Besides, according to the information
of English words, root or affixes often determine
general meanings (Yadav et al., 2018). The root,
such as ‘ophthalmo-’ (ophthalmology), ‘esophage-
’ (esophagus) and ‘epithelio-’ (epithelium), can
help human or machine to better recognize profes-
sional nouns in medicine. Therefore, even the state-
of-the-art methods, such as BERT (Devlin et al.,
2019) and GPT (Radford et al., 2018), trained on
large-scale datasets, adopt this delicate word seg-
mentation method for performance boost.

For Chinese characters, there is also a structure

https://github.com/CoderMusou/MECT4CNER
https://github.com/CoderMusou/MECT4CNER
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Radicals Denotation Examples

鸟 (bird) birds 鸡 (chicken), 鸭 (duck), 鹅 (goose), 鹰 (eagle)
艹 (grass) herbaceous plants 花 (flower), 草 (grass), 菜 (vegetable), 茶 (tea)
月 (meat) body parts 肾 (kidney), 脚 (foot), 腿 (leg), 脑 (brain)

Table 2: Some examples of Chinese radicals, including ‘鸟’(bird), ‘艹’(grass) and ‘月’(meat).

similar to the root and affixes in English. Accord-
ing to the examples in Table 1, we can see that
the structure of Chinese characters has different
decomposition methods, including the Chinese rad-
ical (CR), head and tail (HT) and structural compo-
nents (SC). Chinese characters have evolved from
hieroglyphs since ancient times, and their structure
often reflects more information about them. There
are some examples in Table 2. The glyph structure
can enrich the semantics of Chinese characters and
improve the performance of NER. For example, the
Bi-LSTM-CRF method (Dong et al., 2016) firstly
obtains character-level embedding through the dis-
assembly of Chinese character structure to improve
the performance of NER. However, LSTM is based
on time series modeling, and the input of each cell
depends on the output of the previous cell. So the
LSTM-based model is relatively complicated and
the parallel ability is limited.

To address the aforementioned issues, we
take the advantages of Flat-Lattice Transformer
(FLAT) (Li et al., 2020) in efficient parallel com-
puting and excellent lexicon learning, and intro-
duce the radical stream as an extension on its ba-
sis. By combining the radical information, we pro-
pose a Multi-metadata Embedding based Cross-
Transformer (MECT). MECT has the lattice- and
radical-streams, which not only possesses FLAT’s
word boundary and semantic learning ability but
also increases the structure information of Chinese
character radicals. This is very effective for NER
tasks, and has improved the baseline method on
different benchmarks. The main contributions of
the proposed method include:

• The use of multi-metadata feature embedding
of Chinese characters in Chinese NER.

• A novel two-stream model that combines the
radicals, characters and words of Chinese
characters to improve the performance of the
proposed MECT method.

• The proposed method is evaluated on sev-
eral well-known Chinese NER benchmarking

datasets, demonstrating the merits and superi-
ority of the proposed approach over the state-
of-the-art methods.

2 Related Work

The key of the proposed MECT method is to use
the radical information of Chinese characters to en-
hance the Chinese NER model. So we focus on the
mainstream information enhancement methods in
the literature. There are two main types of Chinese
NER enhancement methods, including lexical in-
formation fusion and glyph-structural information
fusion.

Lexical Enhancement In Chinese NER, many
recent studies use word matching methods to en-
hance character-based models. A typical method is
the Lattice-LSTM model (Zhang and Yang, 2018)
that improves the NER performance by encoding
and matching words in the lexicon. Recently, some
lexical enhancement methods were proposed using
CNN models, such as LR-CNN (Gui et al., 2019a),
CAN-NER (Zhu and Wang, 2019). Graph networks
have also been used with lexical enhancement. The
typical one is LGN (Gui et al., 2019b). Besides,
there are Transformer-based lexical enhancement
methods, such as PLT (Xue et al., 2019) and FLAT.
And SoftLexicon (Ma et al., 2020) introduces lexi-
cal information through label and probability meth-
ods at the character representation layer.

Glyph-structural Enhancement Some studies
also use the glyph structure information in Chi-
nese NER. For example, Dong et al. (2016) were
the first to study the application of radical-level
information in Chinese NER. They used Bi-LSTM
to extract radical-level embedding and then con-
catenated it with the embedding of characters as
the final input. The radical information used in
Bi-LSTM is structural components (SC) as shown
in Table 1, which achieved state-of-the-art perfor-
mance on the MSRA dataset. The Glyce (Meng
et al., 2019) model used Chinese character images
to extract features such as strokes and structure
of Chinese characters, achieving promising perfor-
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Figure 1: The input and output of FLAT.

mance in Chinese NER. Some other methods (Xu
et al., 2019; Song et al., 2020) also proposed to
use radical information and Tencent’s pre-trained
embedding2 to improve the performance. In these
works, the structural components of Chinese char-
acters have been proven to be able to enrich the
semantics of the characters, resulting in better NER
performance.

3 Background

The proposed method is based on the Flat-Lattice
Transformer (FLAT) model. Thus, we first briefly
introduce FLAT that improves the encoder structure
of Transformer by adding word lattice information,
including semantic and position boundary infor-
mation. These word lattices are obtained through
dictionary matching.

Figure 1 shows the input and output of FLAT. It
uses the relative position encoding transformed by
head and tail position to fit the word’s boundary
information. The relative position encoding, Rij ,
is calculated as follows:

Rij = ReLU(Wr(phi−hj
⊕ phi−tj

⊕ pti−hj
⊕ pti−tj )),

(1)

where Wr is a learnable parameter, hi and ti repre-
sent the head position and tail position of the i-th
character, ⊕ denotes the concatenation operation,
and pspan is obtained as in Vaswani et al. (2017):

p(2k)
span = sin(

span

100002k/dmodel
), (2)

p(2k+1)
span = cos(

span

100002k/dmodel
), (3)

where pspan corresponds to p in Eq. (1), and span
denotes hi − hj , hi − tj , ti − hj and ti − tj . Then
the scaled dot-product attention is obtained by:

Att(A,V ) = softmax(A)V , (4)

Aij = (Qi + u)>Kj + (Qi + v)>R∗ij , (5)

[Q,K,V ] = Ex[Wq,Wk,Wv], (6)

2https://ai.tencent.com/ailab/nlp/en/
embedding.html

where R∗ij = Rij ·WR. u, v and W2 are learnable
parameters.

4 The Proposed MECT Method

To better integrate the information of Chinese char-
acter components, we use Chinese character struc-
ture as another metadata and design a two-stream
form of multi-metadata embedding network. The
architecture of the proposed network is shown in
Figure 2a. The proposed method is based on the
encoder structure of Transformer and the FLAT
method, in which we integrate the meaning and
boundary information of Chinese words. The pro-
posed two-stream model uses a Cross-Transformer
module similar to the self-attention structure to fuse
the information of Chinese character components.
In our method, we also use the multi-modal col-
laborative attention method that is widely used in
vision-language tasks (Lu et al., 2019). The differ-
ence is that we add a randomly initialized attention
matrix to calculate the attention bias for the two
types of metadata embedding.

4.1 CNN for Radical-level Embedding

Chinese characters are based on pictographs, and
their meanings are expressed in the shape of ob-
jects. In this case, the structure of Chinese char-
acters has certain useful information for NER. For
example, the radicals such as ‘艹’ (grass) and ‘木’
(wood) generally represent plants, enhancing Chi-
nese medicine entity recognition. For another ex-
ample, ‘月’ (body) represents human body parts
or organs, and ‘疒’ (disease) represents diseases,
which benefits Chinese NER for the medical field.
Besides, the Chinese have their own culture and be-
lief in naming. Radicals ‘钅’ (metal), ‘木’ (wood),
‘氵’ (water), ‘火’ (fire), and ‘土’ (earth) rep-
resented by the Wu-Xing (Five Elements) theory
are often used as names of people or companies.
But ‘锈’ (rust), ‘杀’ (kill), ‘污’ (dirt), ‘灾’
(disaster) and ‘堕’ (fall) are usually not used
as names, even if they contain some elements of
the Wu-Xing theory. It is because the other rad-
ical components also determine the semantics of
Chinese characters. Radicals that generally appear
negative or conflict with Chinese cultural beliefs
are usually not used for naming.

Therefore, we choose the more informative
Structural Components (SC) in Table 1 as radical-
level features of Chinese characters and use Convo-
lutional Neural Network (CNN) to extract character

https://ai.tencent.com/ailab/nlp/en/embedding.html
https://ai.tencent.com/ailab/nlp/en/embedding.html
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Figure 2: The proposed MECT method: (a) the overall structure of MECT; (b) the Cross-Transformer module.
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Figure 3: CNN for radical feature extraction.

features. The structure diagram of the CNN net-
work is shown in Figure 3. We first disassemble the
Chinese characters into SC and then input the radi-
cals into CNN. Last, we use the max-pooling and
fully connected layers to get the feature embedding
of Chinese characters at the radical-level.

4.2 The Cross-Transformer Module

After radical feature extraction, we propose a Cross-
Transformer network to obtain the supplementary
semantic information of the structure of Chinese
characters. It also uses contextual and lexical infor-
mation to enrich the semantics of Chinese charac-
ters. The Cross-Transformer network is illustrated
in Figure 2b. We use two Transformer encoders
to cross the lattice and radical information of Chi-
nese characters, which is different from the self-
attention method in Transformer.

The input QL(QR),KL(KR),VL(VR) are ob-

tained by the linear transformation of lattice and
radical-level feature embedding:QL(R),i

KL(R),i

VL(R),i

> = EL(R),i

WL(R),Q

I
WL(R),V

> , (7)

where EL and ER are lattice embedding and
radical-level embedding, I is the identity matrix,
and each W is a learnable parameter. Then we use
the relative position encoding in FLAT to represent
the boundary information of a word and calculate
the attention score in our Cross-Transformer:

AttL(AR,VL) = Softmax(AR)VL, (8)

AttR(AL,VR) = Softmax(AL)VR, (9)

AL(R),ij = (QL(R),i + uL(R))
>ER(L),j

+ (QL(R),i + vL(R))
>R∗L(R),ij ,

(10)

where u and v are learnable parameters for atten-
tion bias in Eq. (10), AL is the lattice attention
score, and AR denotes the radical attention score.
And R∗ij = Rij ·WR. WR are learnable parame-
ters. The relative position encoding, Rij , is calcu-
lated as follows:

Rij = ReLU(Wr(phi−hj
⊕ pti−tj )). (11)

4.3 Random Attention
We empirically found that the use of random at-
tention in Cross-Transformer can improve the per-
formance of the proposed method. This may be
due to the requirement of attention bias in lattice
and radical feature embedding, which can better
adapt to the scores of two subspaces. Random at-
tention is a randomly initialized parameter matrix
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Bmax len×max len that is added to the previous at-
tention score to obtain a total attention score:

V ∗L = Softmax(AR +B)VL, (12)

V ∗R = Softmax(AL +B)VR. (13)

4.4 The Fusion Method
To reduce information loss, we directly concatenate
the lattice and radical features and input them into
a fully connected layer for information fusion:

Fusion(V ∗L ,V
∗
R) = (V ∗R ⊕ V ∗L )W

o + b, (14)

where ⊕ denotes the concatenation operation, W o

and b are learnable parameters.
After the fusion step, we mask the word part and

pass the fused feature to a Conditional Random
Field (CRF) (Lafferty et al., 2001) module.

5 Experimental Results

In this section, we evaluate the proposed MECT
method on four datasets. To make the experimen-
tal results more reasonable, we also set up two
additional working methods for assessing the per-
formance of radicals in a two-stream model. We
use the span method to calculate F1-score (F1), pre-
cision (P), and recall (R) as the evaluation metrics.

5.1 Experimental Settings
We use four mainstream Chinese NER benchmark-
ing datasets: Weibo (Peng and Dredze, 2015;
He and Sun, 2016), Resume (Zhang and Yang,
2018), MSRA (Levow, 2006), and Ontonotes
4.0 (Weischedel and Consortium, 2013). The cor-
pus of MSRA and Ontonotes 4.0 comes from news,
the corpus of Weibo comes from social media, and
the corpus of Resume comes from the resume data
in Sina Finance. Table 3 shows the statistical infor-
mation of these datasets. Among them, the Weibo
dataset has four types of entities, including PER,
ORG, LOC, and GPE. Resume has eight types of
entities, including CONT, EDU, LOC, PER, ORG,
PRO, RACE, and TITLE. OntoNotes 4.0 has four
types of entities: PER, ORG, LOC, and GPE. The
MSRA dataset contains three types of entities, i.e.,
ORG, PER, and LOC.

We use the state of the art method, FLAT, as the
baseline model. FLAT is a Chinese NER model
based on Transformer and combined with lattice.
Besides, we also compared the proposed method
with both classic and innovative Chinese NER mod-
els. We use the more informative ‘SC’ as the radi-
cal feature, which comes from the online Xinhua

Datasets Types Train Dev Test

Weibo Sentences
Entities

1.35k
1.89k

0.27k
0.39k

0.27k
0.42k

Resume Sentences
Entities

3.8k
1.34k

0.46k
0.16k

0.48k
0.15k

OntoNotes Sentences
Entities

15.7k
13.4k

4.3k
6.95k

4.3k
7.7k

MSRA Sentences
Entities

46.4k
74.8k

-
-

4.4k
6.2k

Table 3: Statistics of the benchmarking datasets.

Models NE NM Overall

Peng and Dredze (2015) 51.96 61.05 56.05
Peng and Dredze (2016)∗ 55.28 62.97 58.99
He and Sun (2017a) 50.60 59.32 54.82
He and Sun (2017b)∗ 54.50 62.17 58.23
Cao et al. (2018) 54.34 57.35 58.70
Lattice-LSTM 53.04 62.25 58.79
CAN-NER 55.38 62.98 59.31
LR-CNN 57.14 66.67 59.92
LGN 55.34 64.98 60.21
PLT 53.55 64.90 59.76
SoftLexicon (LSTM) 59.08 62.22 61.42
Baseline - - 60.32
MECT 61.91 62.51 63.30
BERT - - 68.20
BERT + MECT - - 70.43

Table 4: Results obtained on Weibo (%).

Dictionary3. The pre-trained embedding of charac-
ters and words are the same as FLAT.

For hyper-parameters, we used 30 1-D convolu-
tion kernels with the size of 3 for CNN. We used
the SMAC (Hutter et al., 2011) algorithm to search
for the optimal hyper-parameters. Besides, we set a
different learning rate for the training of the radical-
level embedding with CNN. Readers can refer to
the appendix for our hyper-parameter settings.

5.2 Comparison with SOTA Methods
In this section, we evaluate and analyze the pro-
posed MECT method with a comparison to both
the classic and state of the art methods. The experi-
mental results are reported in Tables 4−74. Each
table is divided into four blocks. The first block
includes classical Chinese NER methods. The sec-
ond one reports the results obtained by state of the
art approaches published recently. The third and

3http://tool.httpcn.com/Zi/.
4In Tables 4−7, ‘∗’ denotes the use of external labeled

data for semi-supervised learning and ‘†’ denotes the use of
discrete features.

http://tool.httpcn.com/Zi/
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Models P R F1

Zhang and Yang (2018)A 93.72 93.44 93.58
Zhang and Yang (2018)B 94.07 94.42 94.24
Zhang and Yang (2018)C 93.66 93.31 93.48
Zhang and Yang (2018)D 94.53 94.29 94.41
Lattice-LSTM 94.81 94.11 94.46
CAN-NER 95.05 94.82 94.94
LR-CNN 95.37 94.84 95.11
LGN 95.28 95.46 95.37
PLT 95.34 95.46 95.40
SoftLexicon (LSTM) 95.30 95.77 95.53

+ bichar 95.71 95.77 95.74
Baseline - - 95.45
MECT 96.40 95.39 95.89
BERT - - 95.53
BERT + MECT - - 95.98

Table 5: Results obtained on Resume (%). For Zhang
and Yang (2018), A represents word-based LSTM’, B
indicates ‘word-based + char + bichar LSTM’, C repre-
sents the ‘char-based LSTM’ model, andD is the ‘char-
based + bichar + softword LSTM’ model.

fourth ones are the results obtained by the proposed
MECT method as well as the baseline models.

Weibo: Table 4 shows the results obtained on
Weibo in terms of the F1 scores of named enti-
ties (NE), nominal entities (NM), and both (Over-
all). From the results, we can observe that MECT
achieves the state-of-the-art performance. Com-
pared with the baseline method, MECT improves
2.98% in terms of the F1 metric. For the NE metric,
the proposed method achieves 61.91%, beating all
the other approaches.

Resume: The results obtained on the Resume
dataset are reported in Table 5. The first block
shows Zhang and Yang (2018) comparative results
on the character-level and word-level models. We
can observe that the performance of incorporating
word features into the character-level model is bet-
ter than other models. Additionally, MECT com-
bines lexical and radical features, and the F1 score
is higher than the other models and the baseline
method.

Ontonotes 4.0: Table 6 shows the results ob-
tained on Ontonotes 4.0. The symbol ‘§’ indicates
gold segmentation, and the symbol ‘¶’ denotes au-
tomated segmentation. Other models have no seg-
mentation and use lexical matching. Compared
to the baseline method, the F1 score of MECT is
increased by 0.47%. MECT also achieves a high
recall rate, keeping the precision rate and recall rate
relatively stable.

Models P R F1

Yang et al. (2018)§ 65.59 71.84 68.57
Yang et al. (2018)§∗† 72.98 80.15 76.40
Che et al. (2013)§∗ 77.71 72.51 75.02
Wang et al. (2013)§∗ 76.43 72.32 74.32
Zhang and Yang (2018)B§ 78.62 73.13 75.77
Zhang and Yang (2018)B¶ 73.36 70.12 71.70
Lattice-LSTM 76.35 71.56 73.88
CAN-NER 75.05 72.29 73.64
LR-CNN 76.40 72.60 74.45
LGN 76.13 73.68 74.89
PLT 76.78 72.54 74.60
SoftLexicon (LSTM) 77.28 74.07 75.64

+ bichar 77.13 75.22 76.16
Baseline - - 76.45
MECT 77.57 76.27 76.92
BERT - - 80.14
BERT + MECT - - 82.57

Table 6: Results on Ontonotes 4.0 (%), where ‘§’ de-
notes gold segmentation and ‘¶’ denotes auto segmen-
tation.

MSRA: Table 7 shows the experimental results
obtained on MSRA. In the first block, the result pro-
posed by Dong et al. (2016) is the first method us-
ing radical information in Chinese NER. From the
table, we can observe that the overall performance
of MECT is higher than the existing SOTA meth-
ods. Similarly, our recall rate achieves a higher
performance so that the final F1 has a certain per-
formance boosting.

With BERT: Besides the single-model evalu-
ation on the four datasets, we also evaluated the
proposed method when combining with the SOTA
method, BERT. The BERT model is the same as
FLAT using the ‘BERT-wwm’ released by Cui et al.
(2020). The results are shown in the fourth block
of each table. The results of BERT are taken from
the FLAT paper. We can find that MECT further
improves the performance of BERT significantly.

5.3 Effectiveness of Cross-Transformer
There are two sub-modules in the proposed Cross-
Transformer method: lattice and radical attentions.
Figure 4 includes two heatmaps for the normal-
ization of the attention scores of the two modules.
From the two figures, we can see that lattice atten-
tion pays more attention to the relationship between
words and characters so that the model can obtain
the position information and boundary information
of words. Radical attention focuses on global in-
formation and corrects the semantic information of
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Models P R F1

Chen et al. (2006) 91.22 81.71 86.20
Zhang et al. (2006)∗ 92.20 90.18 91.18
Zhou et al. (2013) 91.86 88.75 90.28
Lu et al. (2016) - - 87.94
Dong et al. (2016) 91.28 90.62 90.95
Lattice-LSTM 93.57 92.79 93.18
CAN-NER 93.53 92.42 92.97
LR-CNN 94.50 92.93 93.71
LGN 94.19 92.73 93.46
PLT 94.25 92.30 93.26
SoftLexicon (LSTM) 94.63 92.70 93.66

+ bichar 94.73 93.40 94.06
Baseline - - 94.12
MECT 94.55 94.09 94.32
BERT - - 94.95
BERT + MECT - - 96.24

Table 7: Results obtained on MSRA (%).

(a) Radical attention (b) Lattice attention

Figure 4: Visualization of cross-attention, in which the
coordinates 0-15 are used for the characters part and
the coordinates 16-24 are for the words part. The two
sub-figures show the radical and lattice attention scores
respectively.

each character through radical features. Therefore,
lattice and radical attentions provide complemen-
tary information for the performance-boosting of
the proposed MECT method in Chinese NER.

5.4 Impact of Radicals

We visualized the radical-level embedding obtained
by the CNN network and found that the cosine dis-
tance of Chinese characters with the same radical
or similar structure is smaller. For example, Figure
5 shows part of the Chinese character embedding
trained on the Resume dataset. The highlighted
dots represent Chinese characters that are close to
the character ‘华’. We can see that they have the
same radicals or similar structure. It can enhance
the semantic information of Chinese characters to
a certain extent.

We also examined the inference results of MECT
and FLAT on Ontonotes 4.0 and found many ex-
citing results. For example, some words with a

Figure 5: Embedding visualization of the characters
related to ‘华’ in two-dimensional space. Gray dots
indicate larger cosine distances.

percentage like ‘百分之四十三点二 (43.2%)’ is
incorrectly labelled as PER in the training dataset,
which causes FLAT to mark the percentage of
words with PER on the test dataset, while MECT
avoids this situation. There are also some words
such as ‘田时’ and ‘以国’ that appear in the lex-
icon, which was mistakenly identified as valid
words by FLAT, leading to recognition errors. Our
MECT addresses these issues by paying global
attention to the radical information. Besides, in
FLAT, some numbers and letters are incorrectly
marked as PER, ORG, or others. We compared the
PER label accuracy of FLAT and MECT on the test
dataset. FLAT achieves 81.6%, and MECT reaches
86.96%, which is a very significant improvement.

5.5 Analysis in Efficiency and Model Size

We use the same FLAT method to evaluate the par-
allel and non-parallel inference speed of MECT
on an NVIDIA GeForce RTX 2080Ti card, using
batch size = 16 and batch size = 1. We use the
non-parallel version of FLAT as the standard and
calculate the other models’ relative inference speed.
The results are shown in Figure 6. According to
the figure, even if MECT adds a Transformer en-
coder to FLAT, the speed is only reduced by 0.15 in
terms of the parallel inference speed. Our model’s
speed is considerable relative to LSTM, CNN, and
some graph-based network models. Because Trans-
former can make full use of the GPU’s parallel
computing power, the speed of MECT does not
drop too much, but it is still faster than other mod-
els. The model’s parameter is between 2 and 4
million, determined by the max sentence length in
the dataset and the dmodel size in the model.

5.6 Ablation Study

To validate the effectiveness of the main compo-
nents of the proposed method, we set up two exper-
iments in Figure 7. In Experiment A, we only use a
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Figure 6: Relative inference speed of each model
based on non-parallel FLAT♣. where ‘♣’ represents
the inference speed under non-parallel conditions, ‘♠’
represents the inference speed under parallel condi-
tions, and the value of ‘♦’ is derived from the relative
speed above FLAT.

single-stream model with a modified self-attention,
which is similar to the original FLAT model. The
difference is that we use a randomly initialized at-
tention matrix (Random Attention) for the attention
calculation. We combine lattice embedding and
radical-level embedding as the input of the model.
The purpose is to verify the performance of the two-
stream model relative to the single-stream model.
In Experiment B, we do not exchange the query’s
feature vector. We replace the cross-attention with
two sets of modified self-attention and follow the
two modules’ output with the same fusion method
as MECT. The purpose of experiment B is to ver-
ify the effectiveness of MECT relative to the two-
stream model without crossover. Besides, we eval-
uate the proposed MECT method by removing the
random attention module.

Table 8 shows the ablation study results. 1) By
comparing the results of Experiment A with the
results of Experiment B and MECT, we can find
that the two-stream model works better. The use
of lattice-level and radical-level features as the two
streams of the model helps the model to better un-
derstand and extract the semantic features of Chi-
nese characters. 2) Based on the results of Experi-
ment B and MECT, we can see that by exchanging
the two query feature vectors, the model can extract
features more effectively at the lattice and radical
levels. They have different attention mechanisms to
obtain contextual information, resulting in global
and local attention interaction. This provides better
information extraction capabilities for the proposed
method in a complementary way. 3) Last, the per-
formance of MECT drops on all the datasets by

Lattice
Embedding

Radical-level
Embedding

Adapt Self
Attention

(a) Experiment A

Radical-level
Embedding

Lattice
Embedding

Adapt Self
Attention

Adapt Self
Attention

(b) Experiment B

Figure 7: Two interactive attention experiment set-
tings.

Experiments Weibo Resume OntoNotes MSRA

Exp. A 60.77 95.42 76.43 94.20
Exp. B 61 95.54 76.78 94.18
MECT 62.69 95.89 76.92 94.32

- RA 61.53 95.31 76.64 94.25

Table 8: The F1 scores (%) of the four experimental
methods on different datasets. RA stands for random
attention. We verify all the labels (NE and NM) on
Weibo.

removing the random attention module (the last
row). This indicates that, as an attention bias, ran-
dom attention can eliminate the differences caused
by different embeddings, thereby improving the
model’s performance further.

6 Conclusion

This paper presented a novel two-stream network,
namely MECT, for Chinese NER. The proposed
method uses multi-metadata embedding that fuses
the information of radicals, characters and words
through a Cross-Transformer network. Addition-
ally, random attention was used for further perfor-
mance boost. Experimental results obtained on four
benchmarks demonstrate that the radical informa-
tion of Chinese characters can effectively improve
the performance for Chinese NER.

The proposed MECT method with the radical
stream increases the complexity of a model. In the
future, we will consider how to integrate the char-
acters, words and radical information of Chinese
characters with a more efficient way in two-stream
or multi-stream networks to improve the perfor-
mance of Chinese NER and extend it to other NLP
tasks.
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A Appendix

A.1 Range of Hyper-parameters
We manually selected parameters on the two large-
scale datasets, including Ontonotes 4.0 and MSRA.
For the two small datasets, Weibo and Resume, we
used the SMAC algorithm to search for the best
hyper-parameters. The range of parameters is listed
in Table 9.

Hyper-parameter Range

output dropout [0.1, 0.2, 0.3]
lattice dropout [0.1, 0.2, 0.3]

radical dropout [0.1, 0.2, 0.3, 0.4]
warm up [0.1, 0.2, 0.3]

head num [8]
dhead [16, 20]

dmodel [128, 160]
lr [1e-3, 25e-4]

radical lr [6e-4, 25e-4]
momentum [0.85, 0.97]

Table 9: The searching range of hyper-parameters.


