
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1324–1337

August 1–6, 2021. ©2021 Association for Computational Linguistics

1324

On Finding the K-best Non-projective Dependency Trees

Ran Zmigrod Tim Vieira Ryan Cotterell ,

University of Cambridge Johns Hopkins University ETH Zürich
rz279@cam.ac.uk tim.f.vieira@gmail.com

ryan.cotterell@inf.ethz.ch

Abstract

The connection between the maximum span-
ning tree in a directed graph and the best de-
pendency tree of a sentence has been exploited
by the NLP community. However, for many
dependency parsing schemes, an important de-
tail of this approach is that the spanning tree
must have exactly one edge emanating from
the root. While work has been done to ef-
ficiently solve this problem for finding the
one-best dependency tree, no research has at-
tempted to extend this solution to finding the
K-best dependency trees. This is arguably a
more important extension as a larger propor-
tion of decoded trees will not be subject to the
root constraint of dependency trees. Indeed,
we show that the rate of root constraint viola-
tions increases by an average of 13 times when
decoding with K=50 as opposed to K=1. In
this paper, we provide a simplification of the
K-best spanning tree algorithm of Camerini
et al. (1980). Our simplification allows us
to obtain a constant time speed-up over the
original algorithm. Furthermore, we present a
novel extension of the algorithm for decoding
the K-best dependency trees of a graph which
are subject to a root constraint.1

1 Introduction

Non-projective, graph-based dependency parsers
are widespread in the NLP literature. (McDonald
et al., 2005; Dozat and Manning, 2017; Qi et al.,
2020). However, despite the prevalence of K-best
dependency parsing for other parsing formalisms—
often in the context of re-ranking (Collins and Koo,
2005; Sangati et al., 2009; Zhu et al., 2015; Do and
Rehbein, 2020) and other areas of NLP (Shen et al.,
2004; Huang and Chiang, 2005; Pauls and Klein,
2009; Zhang et al., 2009), we have only found
three works that consider K-best non-projective

1Our implementation is available at https://github.
com/rycolab/spanningtrees.

102 103 104

Training set size (log-scale)

0

5

10

15

20

25

30

35

R
oo

tc
on

st
ra

in
tv

io
la

tio
n

ra
te

(%
)

K = 50
K = 1

Figure 1: Violation rate of the root constraint when
using regular K-best decoding (Camerini et al., 1980)
on pre-trained models of Qi et al. (2020) for languages
with varying training set sizes.

dependency parsing (Hall, 2007; Hall et al., 2007;
Agić, 2012). All three papers utilize the K-best
spanning tree algorithm of Camerini et al. (1980).
Despite the general utility of K-best methods in
NLP, we suspect that the relative lack of interest in
K-best non-projective dependency parsing is due
to the implementation complexity and nuances of
Camerini et al. (1980)’s algorithm.2

We make a few changes to Camerini et al.
(1980)’s algorithm, which result in both a sim-
pler algorithm and simpler proof of correctness.3

Firstly, both algorithms follow the key property
that we can find the second-best tree of a graph
by removing a single edge from the graph (The-
orem 1); this property is used iteratively to enu-
merate the K-best trees in order. Our approach
to finding the second-best tree (see §3) is faster
because of it performs half as many of the expen-
sive cycle-contraction operations (see §2). Overall,
this change is responsible for our 1.39x speed-up

2In fact, an anonymous reviewer called it “one of the most
‘feared’ algorithms in dependency parsing.”

3While our algorithm is by no means simple, an anony-
mous reviewer called it “a big step in that direction.”

https://github.com/rycolab/spanningtrees
https://github.com/rycolab/spanningtrees

1325

(see §4). Secondly, their proof of correctness is
based on reasoning about a complicated ordering
on the edges in the K th tree (Camerini et al., 1980,
Section 4); our proof side-steps the complicated
ordering by directly reasoning over the ancestry
relations of the K th tree. Consequently, our proofs
of correctness are considerably simpler and shorter.
Throughout the paper, we provide the statements
of all lemmas and theorems in the main text, but
defer all proofs to the appendix.

In addition to simplifying Camerini et al.
(1980)’s algorithm, we offer a novel extension.
For many dependency parsing schemes such as
the Universal Dependency (UD) scheme (Nivre
et al., 2018), there is a restriction on dependency
trees to only have one edge emanate from the root.4

Finding the maximally weighted spanning tree that
obeys this constraint was considered by Gabow and
Tarjan (1984) who extended the O(N2) maximum
spanning tree algorithm of Tarjan (1977); Camerini
et al. (1979). However, no algorithm exists for K-
best decoding of dependency trees subject to a root
constraint. As such, we provide the first K-best
algorithm that returns dependency trees that obey
the root constraint.

To motivate the practical necessity of our exten-
sion, consider Fig. 1. Fig. 1 shows the percentage
of trees that violate the root constraint when doing
one-best and 50-best decoding for 63 languages
from the UD treebank (Nivre et al., 2018) using
the pre-trained model of Qi et al. (2020).5,6 We
find that decoding without the root constraint has
a much more extreme effect when decoding the
50-best than the one-best. Specifically, we observe
that on average, the number of violations of the root
constraint increased by 13 times, with the worst in-
crease being 44 times. The results thus suggest that
finding K-best trees that obey the root constraint
from a non-projective dependency parser requires
a specialist algorithm. We provide a more detailed
results table in App. A, including root constraint
violation rates forK=5, K=10, andK=20. Fur-
thermore, we note that the K-best algorithm may
also be used for marginalization of latent variables
(Correia et al., 2020) and for constructing parsers
with global scoring functions (Lee et al., 2016).

4There are certain exceptions to this such as the Prague
Treebank (Bejček et al., 2013).

5Zmigrod et al. (2020) conduct a similar experiment for
only the one-best tree.

6We note that Qi et al. (2020) do apply the root constraint
for one-best decoding, albeit with a sub-optimal algorithm.

2

3

4

1

ρ

90

40

10

60

30 50

70

20

Figure 2: Example graph G (taken from Zmigrod et al.
(2020)). Edges that are part of both the best tree G(1)

and the best dependency tree G[1] are marked as thick
solid edges. Edges only in G(1) are dashed and edges
only in G[1] are dotted.

2 Finding the Best Tree

We consider the study of rooted directed
weighted graphs, which we will abbreviate to sim-
ply graphs.7 A graph is given by G = (ρ,N , E)
whereN is a set of N + 1 nodes with a designated
root node ρ ∈ N and E is a set of directed weighted
edges. Each edge e = (iA j) ∈ E has a weight
w(e) ∈ R+. We assume that self-loops are not al-
lowed in the graph (i.e., (iA i) 6∈ E). Additionally,
we assume our graph is not a multi-graph, there-
fore, there can exist at most one edge from node i
to node j.8 When it is clear from context, we abuse
notation and use j ∈ G and e ∈ G for j ∈ N and
e ∈ E respectively. When discussing runtimes, we
will assume a fully connected graph (|E| = N2).9

An arborescence (henceforth called a tree) of G
is a subgraph d = (ρ,N , E ′) such that E ′ ⊆ E and
the following is true:

1. For all j ∈ N r {ρ}, |{(A j) ∈ E ′}| = 1.

2. d does not contain any cycles.

Other definitions of trees can also include that
there is at least one edge emanating from the root.
However, this condition is immediately satisfied
by the above two conditions. A dependency tree

7As we use the algorithm in Zmigrod et al. (2020) as our
base algorithm, we borrow their notation wherever convenient.

8We make this assumption for simplicity, the algorithms
presented here will also work with multi-graphs. This might be
desirable for decoding labeled dependency trees. However, we
note that in most graph-based parsers such as Qi et al. (2020)
and Ma and Hovy (2017), dependency labels are extracted
after the unlabeled tree has been decoded.

9We make this assumption as in the context of dependency
parsing, we generate scores for each possible edge. Further-
more, (Tarjan, 1977) prove that the runtime of finding the best
tree for dense graphs is O(N2). This is O(|E| logN) in the
non-dense case.

1326

d = (ρ,N , E ′) is a tree with the extra constraint

3. |{(ρA) ∈ N ′}| = 1

The set of all trees and dependency trees in a graph
are given by A(G) and D(G) respectively. The
weight of a tree is given by the sum of its edge
weights10

w(d) =
∑
e∈d

w(e) (1)

This paper concerns finding the K highest-
weighted (henceforce called K-best) tree or de-
pendency tree, these are denoted byG(K) andG[K]

respectively. Tarjan (1977); Camerini et al. (1979)
provided the details for an O(N2) algorithm for
decoding the one-best tree. This algorithm was ex-
tended by Gabow and Tarjan (1984) to find the best
dependency tree in O(N2) time. We borrow the
algorithm (and notation) of Zmigrod et al. (2020),
who provide an exposition and proofs of these algo-
rithms in the context of non-projective dependency
parsing. The pseudocode for finding G(1) and G[1]

is given in Fig. 3. We briefly describe the key com-
ponents of the algorithm.11

The greedy graph of G is denoted by
−A
G =

(ρ,N , E ′) where E ′ contains the highest weighted
incoming edge to each non-root node. Therefore, if
−A
G has no cycles, then

−A
G = G(1). A cycle C in

−A
G

is called a critical cycle. If we encounter a critical
cycle in the algorithm, we contract the graph by
the critical cycle. A graph contraction, G/C , by a
cycle C replaces the nodes in C by a mega-node
c such that the nodes of G/C are N r C ∪ {c}.
Furthermore, for each edge e = (iA j) ∈ G:

1. If i 6∈ C and j ∈ C, then e′ = (iA c) ∈
G/C such that w(e′) = w(e) + w

(−A
Cj

)
where Cj is the subgraph of C rooted at j.

2. If i ∈ C and j 6∈ C, then e′ = (cA j) ∈
G/C such that w(e′) = w(e).

3. If i 6∈ C and j 6∈ C, then e ∈ G/C .

4. If i ∈ C and j ∈ C, then there is no edge
related to (iA j) in G/C .

There also exists a bookkeeping function π such
10For inference, the weight of a trees often decomposes

multiplicatively rather than additively over the edges. One can
take the exponent (or logarithm) of the original edge weights
to make the weights distribute additively (or multiplicative).

11For a more complete and detailed description as well as a
proof of correctness, please refer to the original manuscripts.

1: def opt(G) :

2: if
−A
G has a cycle C : . Recursive case

3: return opt
(
G/C

)
C

4: else . Base case

5: if we require a dependency tree :
6: return constrain(G)
7: else
8: return

−A
G

9: def constrain(G) :

10: σ ← set of ρ’s outgoing edges in
−A
G

11: if |σ| = 1 : return
−A
G . Constraint satisfied

12: e← argmax
e′∈σ

w

(−−−A
G\\e′

)
13: if

−−A
G\\e has cycle C :

14: return constrain
(
G/C

)
C

15: else
16: return constrain(G\\e)

Figure 3: Algorithms for finding G(1) and G[1]. These
are from Zmigrod et al. (2020).

that for all e′ ∈ G/C , π(e′) ∈ G. This bookkeeping
function returns the edge in the original graph that
led to the creation of the edge in the contracted
graph using one of the constructions above.

Finding G(1) is then the task of finding a con-

tracted graph G′ such that
−A
G′ = G′(1). Once this is

done, we can stitch back the cycles we contracted.
If G′ = G/C , for any d ∈ A(G/C), d# C ∈
A(G) is the tree made with edges π(d) (π applied

to each edge d) and
−A
Cj where Cj is the subgraph of

the nodes in C rooted at node j and π(e) = (iA j)
for e = (iA c) ∈ d. The contraction weight-
ing scheme means that w(d) = w(d# C) (Geor-
giadis, 2003). Therefore, G(1) = (G′(1) # C)(1).

The strategy for finding G[1] is to find the con-
tracted graph for G(1) and attempt to remove edges
emanating from the root. This was first proposed
by Gabow and Tarjan (1984). When we consider
removing an edge emanating from the root, we are
doing this in a possibly contracted graph, and so an
edge (ρA j) may exist multiple times in the graph.
We denote G\\e to be the graph G with all edges
with the same end-points as e removed. Fig. 2 gives
an example of a graph G, its best tree G(1), and its
best dependency tree G[1].

The runtime complexity of finding G(1) or G[1]

is O(N2) for dense graphs by using efficient pri-
ority queues and sorting algorithms (Tarjan, 1977;
Gabow and Tarjan, 1984). We assume this runtime

1327

2

3

4

1

ρ

(a)

2

3

4

1

ρ

e

b(G, e,G(1))

r(G, e,G(1))

(b)

2

3

4

1

ρ

e′

b(G, e,G(1))

r(G, e,G(1))

(c)

2

3

4

1

ρ

e′′

f

b(G, e,G(1))

r(G, e,G(1))

(d)

2

3

4

1

ρ

f ′
e′′

f

b(G, e,G(1))

r(G, e,G(1))

(e)

2

3

4

1

ρ

f ′
e

e′′

f

(f)

Figure 4: Worked example of Lemma 1. Consider a fully connected graph, G, of the example given in Fig. 2 as

given in (a). Suppose that the solid edges in (a) represent
−A
G . Therefore, G(1) =

−A
G . Next, suppose that we know

that e = (2A 4) ∈ G(1) is not in G(2). Then one of the dashed edges in (b) must be in G(2) as 4 must have an
incoming edge. The edges emanating from ρ and 1 make up the set of blue edges, b(G, e,G(1)) while the edge
emanating from 3 makes the set of red edges, r(G, e,G(1)). If e′ ∈ b(G, e,G(1)) is in G(2) as in (c), then the
solid lines in (c) make a tree and G(2) differs from G(1) by exactly one blue edge of e. Otherwise, we know that
e′′ ∈ r(G, e,G(1)) is in G(2) as in (d). However, the solid edges in (d) contain a cycle between 3 and 4 with
edges e′′ and f . We could break the cycle at 3 and include edge f ′ in our tree as in (e). However, while the solid
edges in (e) make a valid tree, as w(e) > w(e′′) and w(f) > w(f ′), the tree given by the solid lines of (f) will have
a higher weight. This would mean that e ∈ G(2) which leads to a contradiction. Therefore, we must break the cycle
at 4 , which leads us to a tree as in (c). Consequently, G(2) will differ from G(1) by exactly one blue edge of e.

for the remainder of the paper.

3 Finding the Second Best Tree

In the following two sections, we provide a simpli-
fied reformulation of Camerini et al. (1980) to find
the K-best trees. The simplifications additionally
provide a constant time speed-up over Camerini
et al. (1980)’s algorithm. We discuss the differ-
ences throughout our exposition.

The underlying concept behind finding the K-
best tree, is that G(K) is the second best tree G′(2)

of some subgraph G′ ⊆ G. In order to explore the
space of subgraphs, we introduce the concept of
edge inclusion and exclusion graphs.

Definition 1 (Edge inclusion and exclusion). For
any graph G and edge e ∈ G, the edge-inclusion
graph G+ e ⊂ G is the graph such that for
any d ∈ A(G+ e), e ∈ d. Similarly, the edge-
exclusion graphG− e ⊂ G is the graph such that
for any d ∈ A(G− e), e 6∈ d.

When we discuss finding theK-best dependency
trees in §5, we implicitly change the above defi-
nition to use D(G+ e) and D(G− e) instead of
A(G+ e) and A(G− e) respectively.

In this section, we will specifically focus on find-
ing G(2), we extend this to finding the G(k) in §4.
Finding G(2) relies on the following fundamental
theorem.

Theorem 1. For any graph G and e ∈ G(1)

G(2) = (G− e)(1) (6)

where

e = argmax
e′∈G(1)

w
(
(G− e′)(1)

)
(7)

Theorem 1 states that we can find G(2) by
identifying an edge e ∈ G(1) such that G(2) =
(G− e)(1). We next show an efficient method for
identifying this edge, as well as the weight of G(2)

without actually having to find G(2).

Definition 2 (Blue and red edges). For any graph

1328

1: def next(G) :

2: if
−A
G has a cycle C : . Recursive case

3: d, 〈w, e〉 ← next
(
G/C

)
4: d′ ← d# C
5: e′ ← argmin

e′′∈C∩d′
wG,d′(e

′′)

6: w′ ← w(d′)− wG,d′(e)
7: return d′,max(〈w, π(e)〉, 〈w′, e′〉)
8: else . Base case

9: e← argmin

e′∈
−A
G

wG(e
′)

10: w ← w
(−A
G
)
− wG(e)

11: return
−A
G, 〈w, e〉

Figure 5: Algorithm for finding G(1), the best edge e
to delete to find G(2), and w

(
G(2)

)
.

G, tree d ∈ A(G), and edge e = (iA j) ∈ d,
the set of blue edges b(G, e, d) and red edges
r(G, e, d) are defined by12

b(G, e, d) def
= {e′ =(i′A j) | w

(
e′
)
≤ w(e),

dr {e} ∪ {e′} ∈ A(G)}
(2)

r(G, e, d) def
= {e′ =(i′A j) | e′ 6∈ b(G, e, d)}

(3)

An example of blue and red edges are given in
Fig. 4.

Lemma 1. For any graph G, if G(1) =
−A
G , then

for some e ∈ G(1) and e′ ∈ b(G, e,G(1))

G(2) = G(1) r {e} ∪ {e′} (8)

Lemma 1 can be understood more clearly by
following the worked example in Fig. 4. The moral
of Lemma 1 is that in the base case where there are
no critical cycles, we only need to examine the blue
edges of the greedy graph to find the second best
tree. Furthermore, our second best tree will only
differ from our best tree by exactly one blue edge.
Camerini et al. (1980) make use of the concepts of
the blue and red edge sets, but rather than consider
a base case as Lemma 1, they propose an ordering
in which to visit the edges of the graph. This results
in several properties about the possible orderings,

12We can also define b(G, e, d) as (i′ A j) ∈
b(G, e, d) ⇐⇒ i′ is an ancestor of j in d and r(G, e, d)
as (i′ A j) ∈ r(G, e, d) ⇐⇒ i′ is a descendant of j in
d. This equivalence exists as we can only swap an incoming
edge to j in d without introducing a cycle if the new edge em-
anates from an ancestor of j. The exposition using ancestors
and descendants is more similar to the exposition originally
presented by Camerini et al. (1980).

requiring much more complicated proofs.

Definition 3 (Swap cost). For any graph G, tree
d ∈ A(G), and edge e ∈ d, the swap cost denotes
the minimum change to a tree weight to replace e
by a single edge in d. It is given by

wG,d(e) = min
e′∈b(G,e,d)

(
w(e)− w

(
e′
))

(4)

We will shorthand wG(e) to mean wG,G(1)(e).

Corollary 1. For any graph G, if G(1) =
−A
G , then

G(2) = (G− e)(1) where e is given by

e = argmin
e′∈G(1)

wG
(
e′
)

(5)

Furthermore, w
(
G(2)

)
= w

(
G(1)

)
− wG(e).

Corollary 1 provides us a procedure for finding
the best edge to remove to find G(2) as well as
its weight in the base case of G having no critical
cycles. We next illustrate what must be done in the
recursive case when a critical cycle exists.

Lemma 2. For any G with a critical cy-
cle C, either G(2) = (G/C)

(2) # C (with
w
(
G(2)

)
= w

(
(G/C)

(2)
)
) or G(2) = (G− e)(1)

(with w
(
G(2)

)
= w

(
G(1)

)
− wG(e)) for some

e ∈ C ∩G(1).

Combining Corollary 1 and Lemma 2, we can
directly modify opt to find the weight of G(2) and
the edge we must remove to obtain it. We detail
this algorithm as next in Fig. 5.

Theorem 2. For any graph G, executing next(G)
returns G(1) and 〈w, e〉 such that G(2) =
(G− e)(1) and w

(
G(2)

)
= w.

Runtime analysis. We know that without lines
5, 6, 9 and 10, next is identical to opt and so
will run in O(N2). We call w at most N + 2
times during a full call of next: N times from
lines 5 and 9 combined, once from Line 6, and
once from Line 10. To find w, we first need to
find the set of blue edges, which can be done in
O(N) by computing the reachability graph. Then,
we need another O(N) to find the minimising
value. Therefore, next does O(N2) extra work
than opt and so retains the runtime of O(N2).
Camerini et al. (1980) require G(1) to be known
ahead of time. This results in having to run the
original algorithm in O(N2) time and then having
to do the same amount of work as next because
they must still contract the graph. Therefore, next
has a constant-time speed-up over its counterpart
in Camerini et al. (1979).

1329

G(1), w : 260
ρ

1

2

3

4

G(2), w : 220
ρ

1

2

3

4

e : (4A 3)

G(5), w : 190
ρ

1

2

3

4

e : (ρA 1)

G(3), w : 210
ρ

1

2

3

4

e : (ρA 2)

G(4), w : 200
ρ

1

2

3

4

e : (2A 3)

G(6), w : 150
ρ

1

2

3

4

e : (ρA 1)

G(7), w : 130
ρ

1

2

3

4

e : (ρA 1)

+e

−e

+e

−e

+e

−e

+e

−e

+e

−e

+e

−e

Figure 6: Example of running through kbest using the graph of Fig. 2. We start withG(1) that has a weight of 260
and consider the best edge to remove to find G(2). Using next we find that G(2) = (G− e)(1) for e = (4A 3).
We then know that either e ∈ G(3) or e 6∈ G(3). We can push these two possibilities to the queue using two calls
to next. We find that G(3) comes from the graph without e, and also removes the edge e′ = (ρA 2). We attempt
to push two new elements to the queue, but we see that only by including e′ in the graph can we find another tree.
We repeat this process until we have found G(K) or the queue is empty.

1: def kbest(G,K) :
2: 〈G(1), 〈w, e〉〉 ← next(G)
3: yield G(1)

4: Q← priority queue([〈w, e,G〉])
5: for k = 2, . . . ,K :
6: if Q.empty() : return
7: 〈w, e,G′〉 ← Q.pop()
8: 〈G(k), 〈w′, e′〉〉 ← next(G′ − e)
9: yield G(k)

10: Q.push(〈w′, e′, G′ − e〉)
11: 〈 · , 〈w′′, e′′〉〉 ← next(G′ + e)
12: Q.push(〈w′′, e′′, G′ + e〉)

Figure 7: K-best tree enumeration algorithm.

4 Finding the K th Best Tree

In the previous section, we found an efficient
method for finding G(2). We now utilize this
method to efficiently find the K-best trees.

Lemma 3. For any graph G and K > 1, there
exists a subgraph G′ ⊆ G and 1 ≤ l < K such
that G(l) = G′(1) and G(K) = G′(2).

Lemma 3 suggests that we can find the K-best
trees by only examining the second best trees of
subgraphs of G. This idea is formalized as algo-
rithm kbest in Fig. 7. A walk-through of the
exploration space using kbest for our example
graph in Fig. 2 is shown in Fig. 6.

Theorem 3. For any graph G and K> 0, at any
iteration 1 ≤ k ≤ K, kbest(G,K) returns G(k).

Runtime analysis. We call next once at the

K = 10 K = 20 K = 50

Camerini et al. 6.95 14.04 35.11
kbest 4.89 10.10 25.63

Speed-up 1.42× 1.39× 1.37×

Table 1: Runtime experiment for parsing the K-best
spanning trees in the English UD test set (Nivre et al.,
2018). Times are given in 10−2 seconds for the average
parse of the K-best spanning trees.

start of the algorithm, then every subsequent itera-
tion we make two calls to next. As we haveK−1
iterations , the runtime of kbest isO(KN2). The
first call to next in each iteration finds the K th

best tree as well as an edge to remove. Camerini
et al. (1980) make one call to of opt and two calls
to next which only finds the weight-edge pair of
our algorithm. Therefore, kbest has a constant
time speed-up on the original algorithm.13

A short experiment. We empirically measure
the constant time speed-up between kbest and
the original algorithm of Camerini et al. (1980).
We take the English UD test set (as used for Fig. 1)
and find the 10, 20, and 50 best spanning trees
using both algorithms.14 We give the results of the
experiment in Tab. 1.15 We note that on average
kbest leads to a 1.39 times speed-up. This is

13In practice, we maintain a set of edges to include and
exclude to save space.

14Implementations for both versions can be found in our
code release (see footnote 1)

15The experiment was conducted using an Intel(R)
Core(TM) i7-7500U processor with 16GB RAM.

1330

G[1], w : 210
ρ

1

2

3

4

e : (ρA 1)

G[2], w : 190
ρ

1

2

3

4

e : (ρA 2)

G[3], w : 150
ρ

1

2

3

4

e : (4A 3)

G[4], w : 130
ρ

1

2

3

4

e : (2A 3)

+e

−e

+e

−e

+e

−e
+e

−e

Figure 8: Example of running through kbest dep using the graph of Fig. 2. We start with G[1] that has a weight
of 210 and consider the best edge to remove to find G(2). We consider removing the best dependency tree with the
same edge emanating from the root e = (ρA 1) using next. However, no such dependency tree exists, and so we
only need to push the graph G− e. When we next pop from the queue, we see that we have removed root edge e,
and so must consider removing the new root edge e′ = (ρA e). In this case, no dependency tree exists without e
and e′, and so we only push to the queue the results of running next. We repeat this process until we have found
G[K] or the queue is empty.

lower than we anticipated as we have to make half
as many calls to next than the original algorithm.
However, in the original next of Camerini et al.
(1980), we do not require to stitch together the tree,
which may explain the slightly smaller speed-up.

5 Finding the K th Best Dependency Tree

In this section, we present a novel extension to the
algorithm presented thus far, that allows us to effi-
ciently find the K-best dependency trees. Recall
that we consider dependency trees to be spanning
trees with a root constraint such that only one edge
may emanate from ρ. Naı̈vely, we can use kbest
where we initialize the queue with (G+ eρ)

(1) for
each eρ = (ρA j) ∈ G. However, this adds a
O(N3) component to our runtime as we have to
call opt N times. Instead, our algorithm main-
tains the O(KN2) runtime as the regular K-best
algorithm. We begin by noting that we can find
second best dependency tree, by finding either the
best dependency tree with a different root edge or
the second best tree with the same root edge.

Lemma 4. For any graph G and edge eρ =
(ρA j) ∈ G[1], G[2] = (G− eρ)[1] or G[2] =
(G+ eρ)

[2].

Lemma 5. For any graph G and K > 1, if e =
(ρA j) ∈ G[K], then either e is not in any of the
K−1-best trees or there exists a subgraph G′ ⊆ G
and 1 ≤ l < K such that G[l] = G′[1], e ∈ G′[1]
and G[K] = G′[2].

Lemma 5 suggests that we can find the K-best
dependency trees, by examining the second best
dependency trees of subgraphs of G or finding the
best dependency tree with a unique root edge. This

1: def kbest dep(G,K) :
2: G[1] ← opt(G)
3: yield G[1]

4: eρ ← outgoing edge from ρ in G[1]

5: 〈 ·, 〈w, e〉〉 ← next(G+ eρ)
6: d← opt(G− eρ)
7: Q← priority queue([〈w(d), eρ, G〉])
8: Q.push(〈w, e,G+ eρ〉)
9: for k = 2, . . . ,K :

10: if Q.empty() : return
11: 〈w, e,G′〉 ← Q.pop()
12: if e does not emanate from ρ :
13: G[k], 〈w′, e′〉 ← next(G′ − e)
14: Q.push(〈w′, e′, G′ − e〉)
15: 〈 · , 〈w′′, e′′〉〉 ← next(G′ + e)
16: Q.push(〈w′′, e′′, G′ + e〉)
17: else
18: G[k] ← opt(G′)
19: eρ ← outgoing edge from ρ in G[k]

20: d← opt(G′ − eρ)
21: Q.push(〈w(d), eρ, G′ − e〉)
22: 〈 ·, 〈w′, e′〉〉 ← next(G′ + eρ)
23: Q.push(〈w′, e′, G+ eρ〉)
24: yield G(k)

Figure 9: K-best dependency tree enumeration algo-
rithm.

idea is formalized as algorithm kbest dep in
Fig. 9. A walk-through of the exploration space
using kbest dep for our example graph in Fig. 2
is shown in Fig. 8.

Theorem 4. For any graph G and K ≥ 1, at it-
eration 1 ≤ k ≤ K, kbest dep(G,K) returns
G[k].

1331

Runtime analysis. At the start of the algorithm,
we call opt twice and next once. Then, at each
iteration we either make two calls two next, or
two calls to opt and one call to next. As both
algorithms have a runtime ofO(N2), each iteration
has a runtime of O(N2). Therefore, running K
iterations gives a runtime of O(KN2).

6 Conclusion

In this paper, we provided a simplification to
Camerini et al. (1980)’sO(KN2)K-best spanning
trees algorithm. Furthermore, we provided a novel
extension to the algorithm that decodes the K-best
dependency trees in O(KN2). We motivated the
need for this new algorithm as using regularK-best
decoding yields up to 36% trees which violation
the root constraint. This is a substantial (up to 44
times) increase in the violation rate from decoding
the one-best tree, and thus such an algorithm is
even more important than in the one-best case. We
hope that this paper encourages future research in
K-best dependency parsing.

Acknowledgments

We would like to thank the reviewers for their
valuable feedback and suggestions to improve this
work. The first author is supported by the Uni-
versity of Cambridge School of Technology Vice-
Chancellor’s Scholarship as well as by the Univer-
sity of Cambridge Department of Computer Sci-
ence and Technology’s EPSRC.

Ethical Concerns

We do not foresee how the more efficient algo-
rithms presented this work exacerbate any existing
ethical concerns with NLP systems.

References
Željko Agić. 2012. K-best spanning tree dependency

parsing with verb valency lexicon reranking. In Pro-
ceedings of COLING.

Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlı́na
Jı́nová, Václava Kettnerová, Veronika Kolářová,
Marie Mikulová, Jiřı́ Mı́rovský, Anna Nedoluzhko,
Jarmila Panevová, Lucie Poláková, Magda
Ševčı́ková, Jan Štěpánek, and Šárka Zikánová.
2013. Prague dependency treebank 3.0.

Paolo M. Camerini, Luigi Fratta, and Francesco Maf-
fioli. 1979. A note on finding optimum branchings.
Networks, 9.

Paolo M. Camerini, Luigi Fratta, and Francesco Maf-
fioli. 1980. The k best spanning arborescences of a
network. Networks, 10.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31.

Gonçalo M. Correia, Vlad Niculae, Wilker Aziz, and
André F. T. Martins. 2020. Efficient marginalization
of discrete and structured latent variables via spar-
sity. In Advances in Neural Information Processing
Systems: Annual Conference on Neural Information
Processing Systems.

Bich-Ngoc Do and Ines Rehbein. 2020. Neural rerank-
ing for dependency parsing: An evaluation. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the International Conference
on Learning Representations.

Harold N. Gabow and Robert Endre Tarjan. 1984. Effi-
cient algorithms for a family of matroid intersection
problems. Journal of Algorithms, 5.

Leonidas Georgiadis. 2003. Arborescence optimiza-
tion problems solvable by Edmonds’ algorithm.
Theoretical Computer Science, 301.

Keith Hall. 2007. K-best spanning tree parsing. In Pro-
ceedings of the Annual Meeting of the Association of
Computational Linguistics.

Keith Hall, Jiřı́ Havelka, and David A. Smith. 2007.
Log-linear models of non-projective trees, k-best
MST parsing and tree-ranking. In Proceedings of
the Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of the International Work-
shop on Parsing Technology.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global neural CCG parsing with optimality guaran-
tees. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Xuezhe Ma and Eduard Hovy. 2017. Neural probabilis-
tic model for non-projective MST parsing. In Pro-
ceedings of the International Joint Conference on
Natural Language Processing.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of Human Language Technology Conference and
Conference on Empirical Methods in Natural Lan-
guage Processing.

https://www.aclweb.org/anthology/C12-2001
https://www.aclweb.org/anthology/C12-2001
http://ufal.mff.cuni.cz/pdt3.0
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230090403
https://doi.org/10.1002/net.3230100202
https://doi.org/10.1002/net.3230100202
https://doi.org/10.1162/0891201053630273
https://doi.org/10.1162/0891201053630273
https://proceedings.neurips.cc/paper/2020/hash/887caadc3642e304ede659b734f79b00-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/887caadc3642e304ede659b734f79b00-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/887caadc3642e304ede659b734f79b00-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.379
https://doi.org/10.18653/v1/2020.acl-main.379
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/S0304-3975(02)00888-5
https://doi.org/10.1016/S0304-3975(02)00888-5
https://www.aclweb.org/anthology/P07-1050
https://www.aclweb.org/anthology/D07-1102
https://www.aclweb.org/anthology/D07-1102
https://www.aclweb.org/anthology/W05-1506
https://www.aclweb.org/anthology/W05-1506
https://doi.org/10.18653/v1/D16-1262
https://doi.org/10.18653/v1/D16-1262
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066

1332

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, John
Bauer, Sandra Bellato, Kepa Bengoetxea, Yev-
geni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad
Bhat, Erica Biagetti, Eckhard Bick, Rogier Blok-
land, Victoria Bobicev, Carl Börstell, Cristina
Bosco, Gosse Bouma, Sam Bowman, Adriane
Boyd, Aljoscha Burchardt, Marie Candito, Bernard
Caron, Gauthier Caron, Gülşen Cebiroğlu Eryiğit,
Flavio Massimiliano Cecchini, Giuseppe G. A.
Celano, Slavomı́r Čéplö, Savas Cetin, Fabricio
Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun,
Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin,
Miriam Connor, Marine Courtin, Elizabeth David-
son, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Carly Dickerson, Pe-
ter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Ali
Elkahky, Binyam Ephrem, Tomaž Erjavec, Aline
Etienne, Richárd Farkas, Hector Fernandez Al-
calde, Jennifer Foster, Cláudia Freitas, Katarı́na
Gajdošová, Daniel Galbraith, Marcos Garcia, Moa
Gärdenfors, Sebastian Garza, Kim Gerdes, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökırmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzı̄tis, Bruno Guillaume, Céline Guillot-
Barbance, Nizar Habash, Jan Hajič, Jan Hajič jr.,
Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug,
Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Jena Hwang, Radu Ion,
Elena Irimia, O. lájı́dé Ishola, Tomáš Jelı́nek, An-
ders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Sylvain Kahane, Hiroshi Kanayama, Jenna Kan-
erva, Boris Katz, Tolga Kayadelen, Jessica Ken-
ney, Václava Kettnerová, Jesse Kirchner, Kamil
Kopacewicz, Natalia Kotsyba, Simon Krek, Sooky-
oung Kwak, Veronika Laippala, Lorenzo Lam-
bertino, Lucia Lam, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phuong
Lê H`ông, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, KyungTae Lim, Nikola Ljubešić, Olga Logi-
nova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martı́nez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gus-
tavo Mendonça, Niko Miekka, Margarita Misir-
pashayeva, Anna Missilä, Cătălin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Keiko Sophie Mori, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili Müürisep,
Pinkey Nainwani, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lu-
ong Nguy˜ên Thi., Huy`ên Nguy˜ên Thi. Minh, Vitaly

Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina
Ojala, Adédayo. Olúòkun, Mai Omura, Petya Osen-
ova, Robert Östling, Lilja Øvrelid, Niko Partanen,
Elena Pascual, Marco Passarotti, Agnieszka Pate-
juk, Guilherme Paulino-Passos, Siyao Peng, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitu-
lainen, Emily Pitler, Barbara Plank, Thierry Poibeau,
Martin Popel, Lauma Pretkalniņa, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Ti-
ina Puolakainen, Sampo Pyysalo, Andriela Rääbis,
Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar,
Livy Real, Siva Reddy, Georg Rehm, Michael
Rießler, Larissa Rinaldi, Laura Rituma, Luisa
Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide
Rovati, Valentin Ros, ca, Olga Rudina, Jack Rueter,
Shoval Sadde, Benoı̂t Sagot, Shadi Saleh, Tanja
Samardžić, Stephanie Samson, Manuela Sanguinetti,
Baiba Saulı̄te, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shi-
mada, Muh Shohibussirri, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith,
Isabela Soares-Bastos, Carolyn Spadine, Antonio
Stella, Milan Straka, Jana Strnadová, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta
Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Francis
Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van
Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars
Wallin, Jing Xian Wang, Jonathan North Washing-
ton, Seyi Williams, Mats Wirén, Tsegay Wolde-
mariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi
Zhu. 2018. Universal dependencies 2.3. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Adam Pauls and Dan Klein. 2009. K-best A* parsing.
In Proceedings of the Joint Conference of the An-
nual Meeting of the ACL and the International Joint
Conference on Natural Language Processing of the
AFNLP.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the Association
for Computational Linguistics: System Demonstra-
tions.

Federico Sangati, Willem Zuidema, and Rens Bod.
2009. A generative re-ranking model for depen-
dency parsing. In Proceedings of the International
Conference on Parsing Technologies.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative reranking for machine translation. In
Proceedings of the Human Language Technology

http://hdl.handle.net/11234/1-2895
https://www.aclweb.org/anthology/P09-1108
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://www.aclweb.org/anthology/W09-3839
https://www.aclweb.org/anthology/W09-3839
https://www.aclweb.org/anthology/N04-1023

1333

Conference of the North American Chapter of the
Association for Computational Linguistics.

Robert Endre Tarjan. 1977. Finding optimum branch-
ings. Networks, 7.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-best combination of syntactic parsers.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing
Huang. 2015. A re-ranking model for dependency
parser with recursive convolutional neural network.
In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics and the Interna-
tional Joint Conference on Natural Language Pro-
cessing, volume 1.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020.
Please mind the root: Decoding arborescences for
dependency parsing. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

https://doi.org/10.1002/net.3230070103
https://doi.org/10.1002/net.3230070103
https://www.aclweb.org/anthology/D09-1161
https://doi.org/10.3115/v1/P15-1112
https://doi.org/10.3115/v1/P15-1112
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://doi.org/10.18653/v1/2020.emnlp-main.390

1334

A Supplementary Materials for Section 1 (Introduction)

Results Table for Fig. 1

Language |Train| |Test| Root Constraint Violation Rate (%)
K = 1 K = 5 K = 10 K = 20 K = 50

Czech 68495 10148 0.45 5.07 6.18 6.76 7.67
Russian 48814 6491 0.49 5.07 6.58 7.66 8.99
Estonian 24633 3214 0.93 5.59 7.02 8.24 9.42
Korean 23010 2287 0.96 6.68 9.51 11.91 14.74
Latin 16809 2101 0.52 5.17 5.57 6.25 7.62
Norwegian 15696 1939 0.52 4.26 5.20 6.22 7.38
Ancient Greek 15014 1047 0.57 4.74 7.00 8.38 10.69
French 14450 416 1.68 3.85 4.95 5.81 6.98
Spanish 14305 1721 0.17 2.25 3.25 3.96 4.89
Old French 13909 1927 0.52 6.81 9.41 11.38 13.01
German 13814 977 1.54 5.12 6.37 7.63 9.06
Polish 13774 1727 0.00 4.76 7.86 10.11 13.00
Hindi 13304 1684 0.18 1.34 2.19 2.98 4.04
Catalan 13123 1846 0.54 2.32 2.97 3.68 4.51
Italian 13121 482 0.21 4.02 5.66 7.25 9.19
English 12543 2077 0.48 9.12 10.73 11.12 11.34
Dutch 12264 596 0.67 3.39 4.18 4.82 5.59
Finnish 12217 1555 0.39 4.72 6.12 7.39 9.15
Classical Chinese 11004 2073 0.96 22.52 25.95 28.09 29.91
Latvian 10156 1823 0.88 7.05 8.77 9.95 11.31
Bulgarian 8907 1116 0.27 4.66 6.73 8.16 10.29
Slovak 8483 1061 0.38 4.81 5.34 5.29 5.29
Portuguese 8328 477 0.42 3.31 4.15 4.76 5.75
Romanian 8043 729 0.41 1.26 1.66 2.16 2.81
Japanese 7125 550 0.00 5.13 6.24 7.20 8.79
Croatian 6914 1136 0.88 2.90 3.71 4.44 5.62
Slovenian 6478 788 0.38 2.66 3.53 4.59 5.79
Arabic 6075 680 0.29 3.79 4.15 4.72 5.27
Ukrainian 5496 892 0.90 7.49 9.15 10.13 11.72
Basque 5396 1799 0.67 3.64 5.06 6.67 8.71
Hebrew 5241 491 1.02 2.81 4.01 5.04 5.90
Persian 4798 600 0.67 2.43 3.47 4.28 5.25
Indonesian 4477 557 1.26 4.06 5.48 6.65 8.25
Danish 4383 565 0.53 4.35 5.59 6.35 7.45
Swedish 4303 1219 1.23 4.63 6.08 7.09 8.73
Old Church Slavonic 4124 1141 1.05 14.32 17.64 19.88 22.05
Urdu 4043 535 1.12 2.47 3.08 3.60 4.39
Chinese 3997 500 1.80 4.80 5.90 7.68 9.31
Turkish 3664 983 2.54 12.47 15.53 17.09 18.73
Gothic 3387 1029 0.78 8.65 11.18 13.10 14.86
Serbian 3328 520 0.19 2.04 2.60 3.16 4.23
Galician 2272 861 1.16 2.07 2.36 2.88 3.46
North Sami 2257 865 1.27 7.49 10.15 12.43 15.54
Armenian 1975 278 0.00 7.34 8.42 9.64 10.81
Greek 1662 456 0.44 3.20 4.19 4.80 5.82
Uyghur 1656 900 0.56 7.18 9.64 12.24 15.57
Vietnamese 1400 800 3.38 6.78 8.25 9.56 11.39
Afrikaans 1315 425 6.35 13.65 14.73 16.12 18.26
Wolof 1188 470 1.49 6.89 8.32 9.91 12.17
Maltese 1123 518 0.58 5.17 6.70 8.12 9.73
Telugu 1051 146 0.00 27.81 32.81 36.16 36.99
Scottish Gaelic 1015 536 0.75 7.16 8.97 10.20 11.75
Hungarian 910 449 4.23 7.44 8.66 9.82 10.75
Irish 858 454 2.42 7.14 8.68 10.23 11.73
Tamil 400 120 0.00 1.17 1.50 1.83 3.05
Marathi 373 47 2.13 20.85 21.70 27.34 33.36
Belarusian 319 253 0.79 5.61 9.05 8.99 7.27
Lithuanian 153 55 7.27 9.82 10.36 10.82 12.47
Kazakh 31 1047 2.58 7.97 10.68 13.45 17.41
Upper Sorbian 23 623 6.42 9.34 10.72 11.78 13.45
Kurmanji 20 734 23.57 27.06 29.22 30.87 33.33
Buryat 19 908 6.61 10.37 13.00 15.48 19.13
Livvi 19 106 12.26 14.15 15.00 15.99 17.68

1335

B Supplementary Materials for Section 3 (Finding the Second Best Tree)

Theorem 1. For any graph G and e ∈ G(1)

G(2) = (G− e)(1) (6)

where

e = argmax
e′∈G(1)

w
(
(G− e′)(1)

)
(7)

Proof. There must be at least one edge e ∈ G(1) such that e 6∈ G(2). Therefore, there exists an
e ∈ G(1) such that G(2) = (G− e)(1). Now suppose by way of contradiction that e is not as given
in (7). If we choose an e′ that satisfies (7), then by definition w

(
(G− e′)(1)

)
> w

(
(G− e)(1)

)
. As

(G− e′)(1) 6= G(1), we arrive at a contradiction. �

Lemma 1. For any graph G, if G(1) =
−A
G , then for some e ∈ G(1) and e′ ∈ b(G, e,G(1))

G(2) = G(1) r {e} ∪ {e′} (8)

Proof. By Theorem 1, we haveG(2) = (G− e)(1) where e = (iA j) is chosen according to (7). Consider

the graph G− e; we have that
−−−A
G− e = G(1) r {e} ∪ {e′} where e′ is the second best incoming edge to j

in G by the definition of the greedy graph.

1. Case e′ ∈ b(G, e,G(1)): Then
−−−A
G− e is a tree and (G− e)(1) =

−−−A
G− e.

2. Case e′ ∈ r(G, e,G(1)): Then,
−−−A
G− e has a cycle C by construction. Since this is a greedy graph,

cycle C is critical. In the expansion phase of the 1-best algorithm, we will break the cycle C.

(a) Case break C at j: Then, e′ 6∈ (G− e)(1) and we must choose an edge e′′ = (i′A j) to be in
(G− e)(1). We require that e′′ ∈ b(G, e,G(1)) as we would otherwise re-introduce a cycle in
the expansion phase, which is not possible. Therefore, G(2) = G(1) r {e} ∪ {e′′}.

(b) Case break C at j′ 6= j: Then, there exists an edge f = (i′′A j′) ∈ C (and in G(1))
which is not in G(2). Instead, we choose f ′ = (i′A j′) to be in G(2). Therefore, G(2) =
G(1) r {e, f} ∪ {e′, f ′}. However, it is not possible for f ′ and e to form a cycle and so
d = G(1) r {f} ∪ {f ′} ∈ A(G) and w(d) > w

(
G(2)

)
. This is a contradiction as only

w
(
G(1)

)
> w

(
G(2)

)
.

�

Lemma 2. For anyG with a critical cycle C, eitherG(2)=(G/C)
(2) # C (with w

(
G(2)

)
=w

(
(G/C)

(2)
)
)

or G(2)=(G− e)(1) (with w
(
G(2)

)
=w

(
G(1)

)
− wG(e)) for some e ∈ C ∩G(1).

Proof. It must be that G(2) = (G/C)
(2) # C or G(2) 6= (G/C)

(2) # C.

1. Case G(2) = (G/C)
(2) # C: Since the weight of a tree is preserved during expansion, we are done.

2. Case G(2) 6= (G/C)
(2) # C: Then, for all e′∈(G/C)(1), π(e′)∈G(2). Therefore, if j is the entrance

site of C in (G/C)
(1), G(2)=π((G/C)

(1)) ∪ C(2)
j . As C(1)

j =
−A
Cj , by Corollary 1, C(2)

j =(Cj − e)(1)

for e ∈ C(1)
j and w

(
C

(2)
j

)
= w

(
C

(1)
j

)
− wCj (e). Thus, G(2) = (G− e)(1) where e ∈ C∩d and

w
(
G(2)

)
=w

(
G(1)

)
− wG(e).

�

Theorem 2. For any graph G, executing next(G) returns G(1) and 〈w, e〉 such that G(2) = (G− e)(1)
and w

(
G(2)

)
= w.

1336

Proof. next(G) returns G(1) by the correctness of opt. We prove that w, e satisfy the above conditions.

1. Case G(1) =
−A
G: Then, by Corollary 1 we can find the best edge to remove and the weight of G(2).

2. Case G(1) 6=
−A
G: Then, G has a critical cycle C. By Lemma 2, we can either recursively call

next
(
G/C

)
or examine the edges in C ∩G(1) to find the best edge to remove and the weight of G(2).

�

C Supplementary Materials for Section 4 (Finding the K th Best Tree)

Lemma 3. For any graph G and K > 1, there exists a subgraph G′ ⊆ G and 1 ≤ l < K such that
G(l) = G′(1) and G(K) = G′(2).

Proof. There must exist some subgraphG′ ⊆ G such thatG(K) = G′(2). Suppose by way of contradiction
that there does not exist an l < K such that G(l) = G′(1). However, since w

(
G′(1)

)
> w

(
G(K+1)

)
, G′(1)

must be in the K-highest weighted trees. Therefore, there must exist an l such that G(l) = G′(1) �

Theorem 3. For any graph G and K>0, at any iteration 1 ≤ k ≤ K, kbest(G,K) returns G(k).

Proof. We prove this by induction on k.
Base Case: Then, k = 1 and G(1) is returned by Theorem 2.
Inductive Step: Assume that for all l ≤ k, at iteration l, G(l) is returned. Now consider iteration k + 1, by
Lemma 3, we know that G(k+1) = G′(2) where G′(1) = G(l) for some l ≤ k. By the induction hypothesis,
G(l) is returned at the lth iteration, and by Theorem 2, we have pushed G′(2) onto the queue. Therefore,
we will return G(k+1). �

D Supplementary Materials for Section 5 (Finding the K th Best Dependency Tree)

Lemma 4. For any graph G and edge eρ = (ρA j) ∈ G[1], G[2] = (G− eρ)[1] or G[2] = (G+ eρ)
[2].

Proof. If eρ 6∈ G[2], then clearly G[2] = (G− eρ)[1]. Otherwise, eρ ∈ G[2]. As eρ ∈ G[1], G[2] =
(G+ eρ)

[2]. �

Lemma 5. For any graph G and K > 1, if e = (ρA j) ∈ G[K], then either e is not in any of the
K−1-best trees or there exists a subgraph G′ ⊆ G and 1 ≤ l < K such that G[l] = G′[1], e ∈ G′[1] and
G[K] = G′[2].

Proof. It must be that either there exists an 1 ≤ l < K such that e ∈ G[l] (Case 1) or no such l exists
(Case 2).

1. Consider the graph G+ e. Under our definition of edge-inclusion graphs for dependency trees,
A(G+ e) = D(G+ e). Then, by Lemma 3, there exists a l′ and G′ such that (G[l′] = G′[1] and
G[K] = G′[2].

2. Then, e is not in any of the (K−1)-best trees.

�

Theorem 4. For any graph G and K ≥ 1, at iteration 1 ≤ k ≤ K, kbest dep(G,K) returns G[k].

Proof. We prove this by induction on k.
Base Case: Then, k = 1 and G(1) is returned by the correctness of opt.
Inductive Step: Assume that for all l ≤ k, at iteration l, G[l] was returned. Now consider iteration k + 1,
by Lemma 5, we know that eitherG[k+1] has a unique root edge to the k-best trees (Case 1) or e = (ρA j)
and there exists a G′ and l ≤ k such that G′(1) = G(l), e ∈ G(l), and G[k+1] = G′[2] (Case 2).

1337

1. There always exists a tree in the queue that has a unique root edge to all trees that came before it.
Furthermore, it is the highest such tree by the correctness of opt.

2. By our induction hypothesis, G[l] is returned at the lth iteration, and by Theorem 2, we have pushed
G′ + e[2] onto the queue. Therefore, we will return G[k+1].

�

