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Abstract

We propose a new architecture for adapting
a sentence-level sequence-to-sequence trans-
former by incorporating multiple pretrained
document context signals and assess the im-
pact on translation performance of (1) dif-
ferent pretraining approaches for generating
these signals, (2) the quantity of parallel
data for which document context is available,
and (3) conditioning on source, target, or
source and target contexts. Experiments on
the NIST Chinese-English, and IWSLT and
WMT English-German tasks support four gen-
eral conclusions: that using pretrained con-
text representations markedly improves sam-
ple efficiency, that adequate parallel data re-
sources are crucial for learning to use doc-
ument context, that jointly conditioning on
multiple context representations outperforms
any single representation, and that source con-
text is more valuable for translation perfor-
mance than target side context. Our best multi-
context model consistently outperforms the
best existing context-aware transformers.

1 Introduction

Generating an adequate translation for a sen-
tence often requires understanding the context
in which the sentence occurs (and in which its
translation will occur). Although single-sentence
translation models demonstrate remarkable perfor-
mance (Chen et al., 2018; Vaswani et al., 2017;
Bahdanau et al., 2015), extra-sentential informa-
tion can be necessary to make correct decisions
about lexical choice, tense, pronominal usage, and
stylistic features, and therefore designing models
capable of using this information is a necessary step
towards fully automatic high-quality translation. A
series of papers have developed architectures that
permit the broader translation model to condition
on extra-sentential context (Zhang et al., 2018; Mi-
culicich et al., 2018), operating jointly on multiple

sentences at once (Junczys-Dowmunt, 2019), or
indirectly conditioning on target side document
context using Bayes’ rule (Yu et al., 2020b).

While noteworthy progress has been made at
modeling monolingual documents (Brown et al.,
2020), progress on document translation has been
less remarkable, and continues to be hampered by
the limited quantities of parallel document data
relative to the massive quantities of monolingual
document data. One recurring strategy for deal-
ing with this data scarcity—and which is the ba-
sis for this work—is to adapt a sentence-level
sequence-to-sequence model by making additional
document context available in a second stage of
training (Maruf et al., 2019; Zhang et al., 2018;
Miculicich et al., 2018; Haffari and Maruf, 2018).
This two-stage training approach provides an in-
ductive bias that encourages the learner to explain
translation decisions preferentially in terms of the
current sentence being translated, but these can be
modulated at the margins by using document con-
text. However, a weakness of this approach is that
the conditional dependence of a translation on its
surrounding context given the source sentence is
weak, and learning good context representations
purely on the basis of scarce parallel document data
is challenging.

A recent strategy for making better use of doc-
ument context in translation is to use pretrained
BERT representations of the context, rather than
learning them from scratch (Zhu et al., 2020). Our
key architectural innovation in this paper is an
architecture for two-staged training that enables
jointly conditioning on multiple context types, in-
cluding both the source and target language context.
Practically, we can construct a weak context repre-
sentation from a variety of different contextual sig-
nals, and these are merged with the source sentence
encoder’s representation at each layer in the trans-
former. To examine the potential of this architec-
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ture, we explore two high-level research questions.
First, using source language context, we explore
the relative impact of different kinds of pretrain-
ing objectives on the performance obtained (BERT
and PEGASUS), the amount of parallel document
training data required, and the size of surrounding
context. Second, recognizing that maintaining con-
sistency in translation would seem to benefit from
larger contexts in the target language, we compare
the impact of source language context, target lan-
guage context, and context containing both.

Our main findings are (1) that multiple kinds
of source language context improves performance
of document translation over existing contextual
representations, especially those that do not use pre-
trained context representations; (2) that although
fine-tuning using pretrained contextual representa-
tions improves performance, large performance is
strongly determined by the availability of contex-
tual parallel data; and (3) that while both source
and target language context provide benefit, source
language context is more valuable, unless the qual-
ity of the target language context translations is
extremely high.

2 Model Description

Our architecture is designed to incorporate multiple
sources of external embeddings into a pretrained
sequence-to-sequence transformer model. We exe-
cute this by creating a new attention block for each
embedding we wish to incorporate and stack them.
We then insert this attention stack as a branching
path in each layer of the encoder and decoder. The
outputs of the new and original paths are averaged
before being passed to the feed forward block at
the end of the layer. Details are discussed below
(§2.4), and the architecture is shown in Figure 1.
The model design follows the adapter pattern
(Gamma et al., 1995). The interface between the ex-
ternal model and translation model takes the form
of an attention block which learns to perform the
adaptation. The independence between the models
means that different input data can be provided to
each, which enables extra information during the
translation process. In this work, we leverage this
technique to: (1) enhance a sentence-level model
with additional source embeddings; (2) convert a
sentence-level model to a document-level model
by providing contextual embeddings. Like BERT-
fused (Zhu et al., 2020), we use pretrained masked
language models to generate the external embed-

dings.

2.1 Pre-Trained Models

We use two kinds of pretrained models: BERT (De-
vlin et al., 2019) and PEGASUS (Zhang et al.,
2020). Although similar in architecture, we conjec-
ture that these models will capture different signals
on account of their different training objectives.

BERT s trained with a masked word objective
and a two sentence similarity classification task.
During training, it is provided with two sentences
that may or may not be adjacent, with some of their
words masked or corrupted. BERT predicts the
correct words and determining if the two sentences
form a contiguous sequence. Intuitively, BERT pro-
vides rich word-in-context embeddings. In terms
of machine translation, it’s reasonable to postulate
that BERT would provide superior representations
of the source sentence and reasonable near sen-
tence context modulation. On the other hand, we
expect it to fail to provide contextual conditioning
when the pair of sentences are not adjacent. This
shortcoming is where PEGASUS comes in.

PEGASUS s trained with a masked sentence ob-
jective. During training, it is given a document
that has had random sentences replaced by a mask
token. Its task is to decode the masked sentences
in the same order they appear in the document. As
aresult, PEGASUS excels at summarization tasks,
which require taking many sentences and compress-
ing them into a representation from which another
sentence can be generated. In terms of providing
context for document translation, we conjecture
that PEGASUS will be able to discover signals
across longer ranges that modulate output.

2.2 Embedding Notation

To keep track of the type of embeddings being
incorporated in a particular configuration, we use
the notational convention Models;q.(Inputs).

e Model: B for BERT, P for PEGASUS, and D for
Document Transformer (Zhang et al., 2018).

e Side: s for the source and ¢ for the target lan-
guage.

e Inputs: ¢ for the current source (or target), i.e.,
x;, p for the previous source (target), and n for
the next one. Note that 3p means the three previ-
ous sources (targets), (€;—3, T;—2, T;—1).

e When multiple embeddings are used, we include
a = to indicate the order of attention operations.
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We can thus represent the BERT-fused document
model proposed by Zhu et al. (2020) as By(p,c)
since it passes the previous and current source sen-
tences as input to BERT.

2.3 Enhanced Models

The core of this work is to understand the benefits
that adding a diverse set of external embeddings
has on the quality of document translation. To this
effect, we introduce two new models that leverage
the output from both BERT and PEGASUS:

Multi-source := By(c) = Ps(c)

Multi-context := Bg(p,c) = Bs(c,n) = Py(3p,c,3n)

There are a few ways to integrate the output of
external models into a transformer layer. We could
stack them vertically after the self-attention block
(Zhang et al., 2018) or we could place them hor-
izontally and average all of their outputs together
like MAT (Fan et al., 2020). Our preliminary ex-
periments show that the parallel attention stack,
depicted in Figure 1, works best. Therefore, we
adopt this architecture in our experiments.

2.4 Parallel Attention Stack

If we let A = By(p,c), B = By(c,n), and C =
Py(3p,c,3n) refer to the output of the external pre-
trained models computed once per translation ex-
ample, then the Multi-context encoder layer is de-
fined as

Ry = AtnBlock(E;_1, Ey_1, Ey_1)
Sy = AmnBlock(A, A, E;_1)
Sb = AunBlock(B, B, S¢)
S¢ = AmunBlock(C, C, Sg)

T, — { DropBranch(Ry, Sy)
¢ %-(Iig%—S@)
E; = LayerNorm(FeedForward(Ty)) + Ty

training
otherwise

The intermediate outputs of the attention stack are
Sy = SZ = Sy. To reproduce BERT-fused, we
remove Sy and SZ from the stack and set S, di-
rectly to ArmmBlock(A, A, E,_1). We use atten-
tion block to refer to the attention, layer normaliza-
tion, and residual operations,

AtmBlock(K,V,Q) =
LayerNorm(Atm(K,V,Q)) + Q

While drop-branch (Fan et al., 2020) is defined as

DropBranch(M,N) =
I(u>.5) M+ 1(u<.5)-N

where u ~ Uniform(0, 1) and 1 is the indicator
function.

3 Experiment Setup

3.1 Datasets

We evaluate our model on three translation tasks,
the NIST Open MT Chinese—English task,! the
IWSLT’ 14 English-German translation task,” and
the WMT’14 English-German news translation
task.’ Table 1 provides a breakdown of the type,
quantity, and relevance of the data used in the vari-
ous dataset treatments. NIST provides the largest
amount of in domain contextualized sentence pairs.
IWSLT’ 14 and WMT’14 are almost an order of
magnitude smaller. See Appendix A for prepro-
cessing details.

NIST Chinese—English is comprised of LDC dis-
tributed news articles and broadcast transcripts. We
use the MTO06 dataset as validation set and MTO03,
MTO04, MTO05, and MTOS8 as test sets. The val-
idation set contains 1,649 sentences and the test
set 5,146 sentences. Chinese sentences are fre-
quently underspecified with respect to grammatical
features that are obligatory in English (e.g., number
for nouns, tense on verbs, and dropped arguments),
making it a common language pair to study for
document translation.

IWSLT’14 English-German is a corpus of trans-
lated TED and TEDx talks. Following prior work
(Zhu et al., 2020), we use the combination of
dev2010, dev2012, tst2010, tst2011, and tst2012
as the test set which contains 6,750 sentences. We
randomly selected 10 documents from the training
data for validation. We perform a data augmenta-
tion experiment with this dataset by additionally
including news commentary vi5. We denote this
treatment as IWSLT+ and consider this to be out of
domain data augmentation.

'https://www.nist.gov/itl/iad/mig/
open—-machine-translation—-evaluation
https://sites.google.com/site/
iwsltevaluation2014/mt-track

*http://statmt.org/wnt14/
translation—-task.html
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Figure 1: Architecture of our Multi-context model. The pretrained PEGASUS Encoder and BERT model along
with their inputs and resulting embeddings are shown on the left. In this configuration, a batch of two different
sentence pairs are passed to BERT per translation example. The left to right ordering of the three inputs going into
an attention block are: keys, values, queries. During training the average operation is replaced with drop-branch.
A partially shaded box indicates data while full shading is used for operations. A dashed border means the data
is constant for a given translation. We use dashed arrows for residual connections and blue arrows to indicate
embeddings that originate from outside the transformer model.

WMT’14 English—German is a collection of web
data, news commentary, and news articles. We use
newstest2013 for validation and newstest2014 as
the test set. For the document data, we use the orig-
inal WMT’ 14 news commentary v9 dataset. We
run two document augmentation experiments on
this dataset. The first, denoted as WMT+, replaces
news commentary v9 with the newer news com-
mentary v15 dataset. The second augmentation
experiment, denoted as WMT++, builds on the first
by additionally incorporating the Tilde Rapid 2019
corpus. The Rapid corpus is comprised of Euro-
pean Commission press releases and the language
style is quite different from the style used in the
News Commentary data. For this reason, we con-
sider Rapid to be out of domain data for this task.

3.2 Training

We construct enhanced models with additional at-
tention blocks and restore all previously trained pa-
rameters. We randomly initialize the newly added
parameters and exclusively update these during
training. For a given dataset, we train a model on
all the training data it is compatible with. This
means that for document-level models, only docu-
ment data is used, while for sentence-level models
both document and sentence data is used. In our
work, this distinction only matters for the WMT’ 14
dataset where there is a large disparity between the
two types of data.

Transformer models are trained on sentence pair
data to convergence. For NIST and IWSLT’ 14
we use transformer base while for WMT’ 14 we
use transformer big. We use the following vari-
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Dataset In Domain Out Domain
Sent Doc Sent Doc
NIST 1.45M 1.45M - -
IWSLT 173K 173K - -
IWSLT+ 173K 173K | 345K 345K
WMT 47M 200K - -
WMT+ 4.85M 345K - -
WMT++ | 4.85M 345K | 1.63M 1.63M
Table 1: We breakdown the type, quantity, and rel-

evance of parallel sentences used when training mod-
els for each dataset. Taking into account input require-
ments, models were trained on the sum of the in domain
and out of domain data for a given dataset treatment.
The ratio of in domain vs out of domain data per train-
ing batch was tuned on the validation set for each treat-
ment. We used the dataset descriptions to determine the
domain. For example, IWSLT’14 is a dataset of trans-
lated TED talks so we considered News Commentary
data which is composed of translated news articles to
be out of domain for this task.

ants of BERT from Google Research GitHub:*
BERT-Base Chinese on NIST, BERT-Base Uncased
on IWSLT’ 14, and BERT-Large Uncased (Whole
Word Masking) on WMT’14. We pretrain three
PEGASUS base models for the languages en, de,
and zh using the Multilingual C4 dataset as detailed
in TensorFlow’s dataset catalog.’ When training
our models, we only mask a single sentence per
training example and do not include a masked word
auxiliary objective. We use the public PEGASUS
large® on the English side of WMT’ 14, for every-
thing else, we use our models. See Appendix B for
batch size and compute details.

3.3 Evaluation

To reduce the variance of our results and help with
reproducibility, we use checkpoint averaging. We
select the ten contiguous checkpoints with the high-
est average validation BLEU. We do this at two
critical points: (1) with the transformer models
used to bootstrap enhanced models; (2) before cal-
culating the validation and test BLEU scores we
report. We use the sacreBLEU script (Post, 2018)’
on our denormalized output to calculate BLEU.

*nttps://github.com/google-research/
bert
Shttps://www.tensorflow.org/datasets/
catalog/cd4#cdmultilingual
*https://github.com/google-research/
pegasus
"nttps://github.com/mjpost/sacreBLEU

4 Results

In this section, we present our main results and
explore the importance of each component in the
multi-context model. Additionally, we investigate
the performance impact of document-level parallel
data scarcity, the value of source-side versus target-
side context, and the importance of target context
quality.

Table 2 compares our Multi-source and Multi-
context models to baselines of related prior work,
transformer (Vaswani et al., 2017), document trans-
former (Zhang et al., 2018), and the BERT-fused
model for machine translation (Zhu et al., 2020).
We see that a multi-embedding model outper-
forms all the single embedding models in each
of the datasets we try. However, the best multi-
embedding configuration varies by dataset. We find
that incorporating target-side context does not im-
prove performance beyond using source-side con-
text alone. We will present our ablation studies in
the subsequent sections to further shed light on the
causes of this pattern of results. To preserve the
value of test set, we report results on the validation
set for these experiments.

4.1 Source Context vs. Target Context

In some language pairs, the source language is
underspecified with respect to the obligatory infor-
mation that must be given in the target language.
For example, in English every inflected verb must
have tense and this is generally not overtly marked
in Chinese. In these situations, being able to condi-
tion on prior translation decisions would be valu-
able. However, in practice, the target context is
only available post translation, meaning there is a
risk of cascading errors. In this section, we seek
to answer two questions: (1) how does the quality
of target context affect document-level translation;
(2) whether incorporating high-quality target con-
text into source only models adds additional value.

To answer the first question, we evaluate the
target context model P,(3p,3n) using various trans-
lations as context. Table 3 shows the BLEU scores
achieved by the target context models on the vali-
dation set. The lowest quality context comes from
using the output of the baseline transformer model
to furnish the context (valid BLEU of 48.76); the
middle level comes from a model that conditions
on three views of source context (valid BLEU of
52.8) and the third is an oracle experiment that
uses a human reference translation. We see that the
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Zh|[En En|De En|De

Model Type Embeddings NIST IWSLT WMT

Base. Transformer sent - 46.69 28.68 28.46
lines Doc Transformer doc Dy(p,c) 47.28 28.74 -

BERT-fused doc B(p,c) 50.08 29.44 28.35

This Multi-source sent  By(c) = Py(c) 49.72 30.17 29.65

work Multi-context doc Bs(p,c) = Bs(c,n) = Py(3p,c,3n) 51.07 29.97 28.11

+ target doc Multi-context = Py(3p,3n) 50.93 30.10 28.26

Table 2: Our two main findings, sacreBLEU on Test. (1) Source embedding enrichment, represented by our Multi-
source model, provides a substantial boost to the baseline transformer model. (2) With adequate quantities of
paired document training data, models that incorporate extra-sentential context provide an additional performance

gain.
NIST Zh — En
Target Context Quality
Model Context Quality T Valid
Transformer - 48.76
48.76 49.35
P,(3p,3n) 52.80 49.83
100.00 50.32

Table 3: The value of using context on the target side
of a translation is dependent on its quality. We test this
in the limit by providing oracle context, which uses one
of the references as context. We report BLEU scores on
the validation set. The numbers in the second column
are the BLEU scores of the translations used as the con-
text, indicating the quality of the context.

BLEU score improves as the quality of the target
context improves; however, the impact is still less
than the Multi-context source model—even in the
oracle case!

Next, we explore whether leveraging both source
and target context works better than only using
source context. To control for the confounding
factor of target context quality, we remove one
of the references from the validation dataset and
use it only as context. We believe this provides
an upper bound on the effect of target context for
two reasons: (1) it’s reasonable to assume that, at
some point, machine translation will be capable
of generating human quality translations; (2) even
when this occurs, we will not have access to the
style of a specific translator ahead of time. For
these reasons, we calculate BLEU scores using only
the three remaining references. We can see in Table
4 that adding human quality target context to Multi-
context only produces a 0.14 BLEU improvement.
This challenges the notion that target context can
add more value than source context alone.

NIST Zh — En
Two Sided Context
Side Model Valid
Transformer 42.51
tgt P.(3p,3n) 43.51
src Multi-source 44.42
src Multi-context 45.93

both Multi-context = P,(3p,3n) 46.07

Table 4: We remove one of the references from the
validation dataset and use it to provide target context
only. The numbers are lower compared to other tables
because the BLEU score is calculated w.r.t three refer-
ences instead of four. Using human level target context
offers little value over using source context alone.

4.2 Context Ablation

To assess the importance of the various embeddings
incorporated in the Multi-context model, we per-
form an ablation study by adding one component
at a time until we reach its full complexity. Table 5
shows the study results. We can see that much of
the improvement comes from the stronger sentence-
level model produced by adding BERT’s encoding
of the source sentence—a full 2.25 BLEU improve-
ment. The benefit of providing contextual embed-
dings is more incremental, yet consistent. Adding
the previous sentence gives us 0.44 BLEU, adding
additional depth provides another .49, and includ-
ing the next sentence adds .37. Finally, adding
PEGASUS’ contextual embedding on top of all
this results in a boost of .49. Holistically, we can
assign 2.45 BLEU to source embedding enrichment
and 1.59 to contextual representations.

4.3 Data Scarcity

NIST is a high resource document dataset contain-
ing over 1.4M contextualized sentence pairs. In
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NIST Zh — En

Embedding Ablation
Embeddings Valid
Transformer 48.76
By(c) 51.01
By(c) = Pg(c) 51.21
Bs(p,c) 51.45
Bg(p,c) = By(p,c) 51.94
Bs(p,c) = Bs(c,n) 52.31
By(p,c) = Py(3p,c,3n) 52.30
By(p,c) = By(p,c) = By(c,n) 52.10
By(p,c) = By(c,n) = Py(3p,c,3n) 52.80

Table 5: We perform ablation experiments on the NIST
validation dataset to better understand the performance
increase of the Multi-context model. We conclude that,
in this document rich environment, multiple sources
of embedding enrichment and document context con-
tribute to performance. Adding additional parameters
also helps but we only see this when going from one to
two blocks. Parameter control experiments are shown
in light grey.

this section, we investigate to what extent the quan-
tities of parallel documents affect the performance
of our models. To do so, we retrain enhanced mod-
els with subsets of the NIST training dataset. It
is important to note that the underlying sentence
transformer model was not retrained in these ex-
periments meaning that these experiments simulate
adding document context to a strong baseline as
done in Lopes et al. (2020). Figure 2 shows the
BLEU scores of different models on the NIST vali-
dation set with respect to the number of contextu-
alized sentences used for training. We can see that
it requires an example pool size over 300K before
these models outperform the baseline. We conjec-
ture that sufficient contextualized sentence pairs
are crucial for document-level models to achieve
good performance, which would explain why these
models don’t perform well on the IWSLT 14 and
WMT’ 14 datasets.

Further, this pattern of results helps shed light on
the inconsistent findings in the literature regarding
the effectiveness of document context models. A
few works (Kim et al., 2019; Li et al., 2020; Lopes
et al., 2020) have found that the benefit provided by
many document context models can be explained
away by factors other than contextual conditioning.
We can now see from Figure 2 that these experi-
ments were done in the low data regime. The ran-
domly initialized context model needs around 600K

training examples before it significantly outperform
the baseline, while the pretrained contextual mod-
els reduce this to about 300K. It is important to
note that none of the conextual models we tried
outperformed the baseline below this point. This
indicates that data quantity is not the only factor
that matters but it is a prerequisite for the current
class of document context architectures.

4.4 Document Data Augmentation

We further validate our hypothesis about the im-
portance of sufficient contextualized data by exper-
imenting with document data augmentation, this
time drawing data from different domains. We
augment the IWSLT dataset with news commen-
tary v15, an additional 345K document context
sentence pairs, and repeat the IWSLT experiments.
During training, we sample from the datasets such
that each batch contains roughly 50% of the origi-
nal IWSLT data. To ensure a fair comparison, we
first finetune the baseline transformer model on the
new data, which improves its performance by 1.61
BLEU. We use this stronger baseline as the foun-
dation for the other models and show the results in
Table 6. Although Multi-context edges ahead of
Multi-source, the significance lies in the relative
impact additional document data has on the two
classes of models. The average improvement of
the sentence-level models is 1.58 versus the 1.98
experienced by the document models. Huo et al.
(2020) observed a similar phenomenon when us-
ing synthetic document augmentation. This further
emphasizes the importance of using sufficient con-
textualized data when comparing the impact of var-
ious document-level architectures, even when the
contextualized data is drawn from a new domain.

4.5 Three Stage Training

WMT’ 14 offers an opportunity to combine the
insights gained from the aforementioned experi-
ments. This dataset provides large quantities of
sentence pair data and a small amount of document
pair data. Not surprisingly, both BERT-fused® and
Multi-context struggle in this environment. On the
other hand, Multi-source benefits from the abun-
dance of sentence pair data.

In order to make the most of the training data,

$Here we mention that, while we were able to reproduce
the baseline relative uplift of BERT-fused on the other datasets,
we were unable to do so on the WMT’ 14 dataset. We do
not know what document data they used and this probably
accounts for the differences observed.
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Impact of Data Scarcity
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Figure 2: Document context models require sufficient contextualized training data in order to be effective. We
simulate data scarcity on the NIST dataset by randomly sampling a subset of the data and using it to train the various
models. In order to outperform the baseline, pretrained models need 300k examples while the Doc Transformer

needs 600K examples.

IWSLT’ 14 En — De
Document Augmentation

Type Model IWSLT IWSLT+

Sent Transformer 28.68 30.29
Multi-source 30.17 31.71

Doc BERT-fused 29.44 31.50
Multi-context ~ 29.97 31.86

Table 6: Model performance before and after docu-
ment data augmentation. We see that most of the im-
provement is coming from source embedding enrich-
ment. Data augmentation is required for document-
level models to additionally learn to leverage contex-
tual information. The document-level models benefit
significantly more from additional document data than
the sentence-level models.

we add a third stage to our training regime. As be-
fore, in stage one, we train the transformer model
with the sentence pair data. In stage two, we train
the Multi-source model also using the sentence pair
data. In stage three, we add an additional Py(3p,3n)
attention block to the Multi-source model and train
it with document data. We perform two document
augmentation experiments. In the first, we replace
news commentary v9 with v15. In the second, we
train on a mix of news commentary v15 and Tilde
Rapid 2019. The optimal mix was 70% and 30%
respectably, which we found by tuning on the vali-
dation dataset. For each of the augmentation exper-
iments, we created new Multi-source baselines by
fine-tuning the original baseline on the new data.

When training these new baselines we only up-
dated the parameters in the B(c) and Pg(c) atten-
tion blocks. In contrast, when training the treatment
models, we froze these blocks and only updated
the parameters in the Ps(3p,3n) block. In this way,
both the new baselines and treatments started from
the same pretrained Multi-source model, were ex-
posed to the same data, and had only the parameters
under investigation updated.

We see in Table 7 that this method can be used
to provide the document-level model with a much
stronger sentence-level model to start from. As we
saw in the previous data augmentation experiments
(§4.4), document augmentation helps the document-
level model more than the sentence-level model. It
is interesting to note that out of domain document
data helps the document-level model yet hurts the
sentence-level model.’

5 Related Work

This work is closely related to two lines of research:
document-level neural machine translation and rep-
resentation learning via language modeling.
Earlier work in document machine translation
exploits the context by taking a concatenated string
of adjacent source sentences as the input of neu-
ral sequence-to-sequence models (Tiedemann and

“While tuning on the validation dataset, we observed that
the optimal proportion of Rapid data to include for the new
baseline was 0%. Meaning, don’t include any of the off do-
main data. However, we needed a fair comparison baseline so
left it at 30% when making Table 7.
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WMT’14 En — De
Three Stage Training

Stage | Model Data Test
1 Transformer sent 28.46
2 Multi-source sent-WMT 29.64
Multi-source sent-WMT+  29.74
sent-WMT++ 29.62
3 Multi-source doc-WMT 29.60
= P,(3p.3n) doc-WMT+ 29.78
doc-WMT++ 29.89

Table 7: Results from using a three staged training

approach. When there is large disparity between the
amount of sentence pair data and document data, this
method enables training new attention blocks with the
maximum amount of available data given their input
restrictions.

Scherrer, 2017). Follow-up work adds additional
context layers to the neural sequence-to-sequence
models in order to have a better encoding of the
context information (Zhang et al., 2018; Miculi-
cich et al., 2018, inter alia). They vary in terms
of whether to incorporate the source-side context
(Bawden et al., 2018; Zhang et al., 2018; Miculi-
cich et al., 2018) or target-side context (Tu et al.,
2018), and whether to condition on a few adjacent
sentences (Jean et al., 2017; Wang et al., 2017; Tu
et al., 2018; Voita et al., 2018; Zhang et al., 2018;
Miculicich et al., 2018) or the full document (Haf-
fari and Maruf, 2018; Maruf et al., 2019). Our work
is similar to this line of research since we have also
introduced additional attention components to the
transformer. However, our model is different from
theirs in that the context encoders were pretrained
with a masked language model objective.

There has also been work on leveraging mono-
lingual documents to improve document-level ma-
chine translation. Junczys-Dowmunt (2019) cre-
ates synthetic parallel documents generated by
backtranslation (Sennrich et al., 2016; Edunov
et al., 2018) and uses the combination of the origi-
nal and the synthetic parallel documents to train the
document translation models. Voita et al. (2019)
train a post-editing model from monolingual docu-
ments to post-edit sentence-level translations into
document-level translations. Yu et al. (2020b,a)
uses Bayes’ rule to combine a monolingual doc-
ument language model probability with sentence
translation probabilities.

Finally, large-scale representation learning with
language modeling has achieved success in im-

proving systems in language understanding, lead-
ing to state-of-the-art results on a wide range of
tasks (Peters et al., 2018; Devlin et al., 2019; Rad-
ford et al., 2018; McCann et al., 2017; Yang et al.,
2019; Chronopoulou et al., 2019; Lample and Con-
neau, 2019; Brown et al., 2020). They have also
been used to improve text generation tasks, such
as sentence-level machine translation (Song et al.,
2019; Edunov et al., 2019; Zhu et al., 2020) and
summarization (Zhang et al., 2019, 2020; Dong
et al., 2019), and repurposing unconditional lan-
guage generation (Ziegler et al., 2019; de Oliveira
and Rodrigo, 2019). Our work is closely related to
that from Zhu et al. (2020), where pretrained large-
scale language models are applied to document-
level machine translation tasks. We advance this
line of reasoning by designing an architecture that
uses composition to incorporate multiple pretrained
models at once. It also enables conditioning on
different inputs to the same pretrained model, en-
abling us to circumvent BERT’s two sentence em-
bedding limit.

6 Conclusion

We have introduced an architecture and training
regimen that enables incorporating representations
from multiple pretrained masked language models
into a transformer model. We show that this tech-
nique can be used to create a substantially stronger
sentence-level model and, with sufficient document
data, further upgraded to a document-level model
that conditions on contextual information. Through
ablations and other experiments, we establish doc-
ument augmentation and multi-stage training as
effective strategies for training a document-level
model when faced with data scarcity. And that
source side context is sufficient for these models,
with target context adding little additional value.
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A Preprocessing

A.1 Text

We perform text normalization on the datasets be-
fore tokenization.

e All languages - Unicode canonicalization
(NKFD from), replacement of common mul-
tiple encoding errors present in training data,
standardization of quotation marks into “di-
rectional” variants.

e English - Replace non-American spelling vari-
ants with American spellings using the aspell
library.!? Punctuation was split from English
words using a purpose-built library.

e Chinese - Convert any traditional Chinese
characters into simplified forms and segment
into word-like units using the Jieba segmenta-
tion tool.!!

e English & German for WMT’14 - Lower-
case first word of sentence unless it was in
a whitelist of proper nouns and common ab-
breviations.

e English & German for IWSLT’ 14 - Lowercase
all words.

e Chinese & English for NIST - Lowercase all
words.

A.2 Tokenization

We encode text into sub-word units using the
sentencepiece tool (Kudo and Richardson,
2018). When generating our own subword segmen-
tation, we used the algorithm from Kudo (2018)
with a minimum character coverage of 0.9995.
Other than for BERT, we use TensorFlow Senten-
cepieceTokenizer for tokenization given a senten-
cepiece model.

e BERT (all) - Used vocabulary provided with
download and TensorFlow BertTokenizer.

o PEGASUS large & EN small - Used sentence-
piece model provided with PEGASUS large
download.

e PEGASUS Zh small - Generated subword vo-
cabulary of 34K tokens from the NIST dataset.

Yhttp://wordlist.aspell.net/
varcon—-readme/
"nttps://github.com/fxsjy/jieba

e PEGASUS De small - Generated subword vo-
cabulary of 34K tokens from the WMT’ 14
dataset.

o Transformers - Generated joint subword vo-
cabulary of 34K tokens for NIST & WMT’ 14
and 20K for IWSLT 14.

B Compute

We train and evaluate on Google TPU v2. We use
a 4x2 configuration which contains 16 processing
units. We use the following global batch sizes
during training (examples / tokens):

e Transformer baselines: (1024 / 131,072)
o WMT’ 14 Multi-source: (1024 / 131,072)
o WMT’ 14 others: (128 / 16,384)

e NIST: (256 /32,767)

o IWSLT 14: (256 /32,767)

Using a global batch size of 32 and a beam width
of 5, the following are the number of samples per
second our models and key baselines managed dur-
ing inference:

e Transformer: 11.94
e BERT-fused: 7.37
e Multi-source: 5.45

e Multi-context: 4.80

C Qualitative Analysis

We manually inspected the translations outputs
from the Multi-source model and Multi-context
model and have found that the Multi-context model
indeed does better in terms maintaining the con-
sistency of lexical usage across sentences. Unlike
English, Chinese does not mark nouns for plural
vs singular nor verbs for tense. Therefore, this
needs to be inferred from context to generate ac-
curate English translations. It is not possible for a
sentence-level MT system to capture this informa-
tion when the relevant context is not in the current
sentence. Tables 8, 9, and 10 provide various exam-
ples where the sentence-level model cannot know
this information and the document-level model is
able to correctly condition on it.
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Example 1
Consistency of Tense

Source: Ko wia oS i W B v Ll = R 0 W e o AN 1Rl =R - 511
B AP AR LR
Reference: Mr. Jin said that Wang Xuan started to focus on mentoring young people when

he was in his 50s. He constantly stressed that he wanted to pave the way for
young people and that he wanted to be their stepping stone.

Multi-source:

Mr. Chin says that when he was in his fifties, Wang began to pay attention to
cultivating young people. He has always stressed that to pave the way, he must
be willing to serve as a ladder for young people.

Multi-context:

Mr. Jin said that when he was in his fifties, Wang Xuan began to pay attention
to cultivating young people. He always stressed that he wanted to pave the way,
to be willing to serve as a ladder, and to give young people a way.

Table 8: This came from an article describing an interview with a celebrity. The entire article used past tense.

Example 2
Consistency of Proper Noun

Source: ELBUR R RS X Fd E 2 R -
Reference: The Pakistani government will never allow such attempt to materialize.

Multi-source:

The Palestinian government will never let this attempt succeed.

Multi-context:

The Pakistani government will never let this attempt succeed.

Table 9: The pronoun ELEUfF is ambiguous since E could be short for ELFY (Brazil), EL#)H71H (Palestine), &=
F:H73H (Pakistan). The model has to refer to the context to know that E2 refers to Pakistan in this instance since
this is where the entire article takes place.

Example 2
Consistency of Pronoun

Source: A TR —K, XA IER B AR B8], 7R oK B 5T
I, ZEORIA], HLAGELHE T,
Reference: On that day ten years ago, when this teacher was taking a nap at home during

noontime break, the telephone rang suddenly.

Multi-source:

That was ten years ago. When this teacher was taking advantage of his lunch
break, he was sleeping at home. Suddenly, the phone rang.

Multi-context:

One day ten years ago, when this teacher was taking advantage of her lunch
break, she was sleeping at home. Suddenly, the telephone rang.

Table 10: This is a story about a mother. The pronouns she/her have been used across the document. One cannot
infer the gender of the teacher from the source sentence alone. Thus, the context model has to refer to the other
sentences in order to get this correct.
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