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Abstract

Multilingual neural machine translation has
shown the capability of directly translating be-
tween language pairs unseen in training, i.e.
zero-shot translation. Despite being conceptu-
ally attractive, it often suffers from low output
quality. The difficulty of generalizing to new
translation directions suggests the model repre-
sentations are highly specific to those language
pairs seen in training. We demonstrate that a
main factor causing the language-specific rep-
resentations is the positional correspondence
to input tokens. We show that this can be
easily alleviated by removing residual connec-
tions in an encoder layer. With this mod-
ification, we gain up to 18.5 BLEU points
on zero-shot translation while retaining qual-
ity on supervised directions. The improve-
ments are particularly prominent between re-
lated languages, where our proposed model
outperforms pivot-based translation. More-
over, our approach allows easy integration of
new languages, which substantially expands
translation coverage. By thorough inspections
of the hidden layer outputs, we show that
our approach indeed leads to more language-
independent representations.1

1 Introduction

Multilingual neural machine translation (NMT) sys-
tem encapsulates several translation directions in
a single model (Firat et al., 2017; Johnson et al.,
2017). These multilingual models have been shown
to be capable of directly translating between lan-
guage pairs unseen in training (Johnson et al., 2017;
Ha et al., 2016). Zero-shot translation as such is
attractive both practically and theoretically. Com-
pared to pivoting via an intermediate language, the
direct translation halves inference-time computa-

1Code and scripts available in: https://github.
com/nlp-dke/NMTGMinor/tree/master/
recipes/zero-shot

encoder
a  big  cat

encoder
un  gato  grande

h1 h2 h3 h1 h3h2

Figure 1: An example of language-specific encoder
outputs as a results of the strong positional correspon-
dence to input tokens (even assuming the word embed-
dings are cross-lingually mapped).

tion and circumvents error propagation. Consider-
ing data collection, zero-shot translation does not
require parallel data for a potentially quadratic num-
ber of language pairs, which is sometimes imprac-
tical to acquire especially between low-resource
languages. Using less supervised data in turn re-
duces training time. From a modeling perspective,
zero-shot translation calls for language-agnostic
representations, which are likely more robust and
can benefit low-resource translation directions.

Despite the potential benefits, achieving high-
quality zero-shot translation is a challenging task.
Prior works (Arivazhagan et al., 2019; Zhang et al.,
2020a; Rios et al., 2020) have shown that standard
systems tend to generate poor outputs, sometimes
in an incorrect target language. It has been further
shown that the encoder-decoder model captures
spurious correlations between language pairs with
supervised data (Gu et al., 2019). During training,
the model only learns to encode the inputs in a form
that facilitates translating the supervised directions.
The decoder, when prompted for zero-shot trans-
lation to a different target language, has to handle
inputs distributed differently from what was seen
in training, which inevitably degrades performance.
Ideally, the decoder could translate into any tar-
get language it was trained on given an encoded
representation independent of input languages. In
practice, however, achieving a language-agnostic
encoder is not straightforward.

https://github.com/nlp-dke/NMTGMinor/tree/master/recipes/zero-shot
https://github.com/nlp-dke/NMTGMinor/tree/master/recipes/zero-shot
https://github.com/nlp-dke/NMTGMinor/tree/master/recipes/zero-shot
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In a typical Transformer encoder (Vaswani et al.,
2017), the output has a strong positional corre-
spondence to input tokens. For example in the
English sentence in Figure 1, encoder outputs
h1,2,3 correspond to “a”, “big”, “cat” respectively.
While this property is essential for tasks such as se-
quence tagging, it hinders the creation of language-
independent representations. Even assuming that
the input embeddings were fully mapped on a lex-
ical level (e.g. “cat” and “gato” have the same
embedding vector), the resulting encoder outputs
are still language-specific due to the word order
differences. In this light, we propose to relax this
structural constraint and offer the model some free-
dom of word reordering in the encoder already. Our
contributions are as follow:

• We show that the positional correspondence
to input tokens hinders zero-shot translation.
We achieve considerable gains on zero-shot
translation quality by only removing residual
connections once in a middle encoder layer.

• Our proposed model allows easy integration
of new languages, which enables zero-shot
translation between the new language and all
other languages previously trained on.

• Based on a detailed analysis of the model’s in-
termediate outputs, we show that our approach
creates more language-independent represen-
tations both on the token and sentence level.

2 Disentangling Positional Information

Zero-shot inference relies on a model’s general-
izability to conditions unseen in training. In the
context of zero-shot translation, the input should
ideally be encoded into an language-agnostic repre-
sentation, based on which the decoder can translate
into any target language required, similar to the
notion of an interlingua. Nevertheless, the ideal of
“any input language, same representation” cannot
be easily fulfilled with a standard encoder, as we
have shown in the motivating example in Figure 1.

We observe that the encoder output has a posi-
tional correspondence to input tokens. Formally,
given input token embeddings (x1, . . . ,xn), in the
encoder output (h1, . . . ,hn), the i-th hidden state
hi mostly contains information about xi. While
this structure is prevalent and is indeed necessary
in many tasks such as contextual embedding and se-
quence tagging, it is less suitable when considering
language-agnostic representations. As a sentence
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Figure 2: Illustrations of our proposed modifications
to an original encoder layer: dropping residual connec-
tions once (§2.1); making attention query based on po-
sition encoding (§2.2). Before each self-attention (SA)
and feed forward (FF) layer we apply layer normaliza-
tion, which is not visualized here for brevity.

in different languages are likely of varying lengths
and word orders, the same semantic meaning will
get encoded into different hidden state sequences.

There are two potential causes of this positional
correspondence: residual connections and encoder
self-attention alignment. We further hypothesize
that, by modifying these two components accord-
ingly, we can alleviate the positional correspon-
dence. Specifically, we set one encoder layer free
from these constraints, so that it could create its
own output ordering instead of always following a
one-to-one mapping with its input.

2.1 Modifying Residual Connections

In the original Transformer architecture from
Vaswani et al. (2017), residual connections (He
et al., 2016) are applied in every layer, for both
the multihead attention and the feed-forward layer.
By adding the input embeddings to the layer out-
puts, the residual connections are devised to facili-
tate gradient flow to bottom layers of the network.
However, since the residual connections are present
throughout all layers, they strictly impose a one-to-
one alignment between the inputs and outputs. For
the encoder, this causes the outputs to be position-
ally corresponding to the input tokens.

We propose to relax this condition, such that the
encoder outputs becomes less position- and hence
language-specific. Meanwhile, to minimize the im-
pact on the model architecture and ensure gradient
flow, we limit this change to only one encoder layer,
and only its multihead attention layer. Figure 2(b)
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gives a visualization of this change in comparison
to the original encoder in Figure 2(a).

2.2 Position-Based Self-Attention Query

Besides the residual connections, another poten-
tial reason for the positional correspondence is
the encoder self-attention alignment. Via the self-
attention transform, each position is a weighted
sum from all input positions. While the weights
theoretically can distribute over all input positions,
they are often concentrated locally, particularly
with output position i focusing on input position i.
Previous works on various sequence tasks (Yang
et al., 2020; Zhang et al., 2020b) have shown
heavy weights on the diagonal of the encoder self-
attention matrices.

In this light, the motivation of our method starts
with the formation of the self-attention weight ma-
trix: score(Q,K) = QKT , where Q and K and
the query and key matrices. This n× n matrix en-
capsulates dot product at each position against all
n positions. Since the dot product is used as a sim-
ilarity measure, we hypothesize that when Q and
K are similar, the matrix will have heavy weights
on the diagonal, thereby causing the positional cor-
respondence. Indeed, Q and K are likely similar
since they are projections from the same input. We
therefore propose to reduce this similarity by re-
placing the projection base of the self-attention
query by a set of sinusoidal positional encodings.
Moreover, to avoid possible interaction with posi-
tional information retained in K, we use a wave
length for this set of sinusoidal encodings that is
different from what is added onto encoder input em-
beddings. Figure 2(c) contrasts our position-based
attention query with the original model in Figure
2(a), where the key, query, value are all projected
from the input to the self-attention layer.

3 Experimental Setup

Our experiments cover high- and low-resource lan-
guages and different data conditions. We choose
an English-centered setup, where we train on X↔
en parallel data, and test the zero-shot translation
between all non-English languages. This scenario
is particularly difficult for zero-shot translation, as
half of the target-side training data is in English.
Indeed, recent works (Fan et al., 2020; Rios et al.,
2020) have outlined downsides of the English-
centered configuration. Nevertheless, intrigued by
the potential of covering N2 translation directions

by training on 2N directions, we still explore this
scenario.

3.1 Datasets

Our datasets originate from three sources: IWSLT
2017 (Cettolo et al., 2017), Europarl v7 (Koehn,
2005), and PMIndia (Haddow and Kirefu, 2020).
The IWSLT and Europarl data are taken from the
MMCR4NLP corpus (Dabre and Kurohashi, 2017).
An overview of the datasets is in Table 1.

To investigate the role of training data diversity,
we construct two conditions for Europarl, where
one is fully multiway aligned, and the other has no
multiway alignment at all. Both are subsets of the
full dataset with 1M parallel sentences per direc-
tion. Moreover, we study the challenging case of
PMIndia with little training data, distinct writing
systems, and a large number of agglutinate lan-
guages that are specially difficult to translate into.
Table 2 outlines the languages in our experiments.

Dataset X ↔ en
# zero-shot
directions

# sent. per
direction

IWSLT {it, nl, ro} 6 145K

PMIndia
{bn, gu, hi,
ml, mr, kn,
or, te, pa}

72 26-53K

Europarl:
w/o overlap {da, de,

es, fi, fr,
it, nl, pt}

56
119K

multiway 119K
full 1M

Table 1: Overview of the datasets.

Code Name Family Script

it Italian Romance

Latin

nl Dutch Germanic
ro Romanian Romance
da Italian Romance
de German Germanic
es Spanish Romance
fi Finnish Uralic
fr French Romance
pt Portugese Romance

bn Bengali Indo-Aryan Bengali
gu Gujarati Indo-Aryan Gujarati
hi Hindi Indo-Aryan Devanagari
kn Kannada Dravidian Kannada
ml Malayalam Dravidian Malayalam
mr Marathi Indo-Aryan Devanagari
or Odia Indo-Aryan Odia
pa Punjabi Indo-Aryan Gurmukhi
te Telugu Dravidian Telugu

Table 2: Overview of the languages in our experiments.
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3.2 Model Details and Baselines
Training Details By default we use Transformer
(Vaswani et al., 2017) with 5 encoder and decoder
layers. For the Europarl datasets with more train-
ing data, we enlarge the model to 8 encoder and
decoder layers. To control the output language,
we use a target-language-specific begin-token as
well as language embeddings concatenated with
decoder word emebeddings2, similar to Pham et al.
(2019). We use 8 attention heads, embedding size
of 512, inner size of 2048, dropout rate of 0.2, la-
bel smoothing rate of 0.1. We use the learning rate
schedule from Vaswani et al. (2017) with 8,000
warmup steps. The source and target word embed-
dings are shared. Furthermore, in the decoder, the
parameters of the projection from hidden states to
the vocabulary are tied with the transposition of the
word lookup table.

Moreover, we include variational dropout (Gal
and Ghahramani, 2016) as a comparison since it
was used in a previous work on zero-shot trans-
lation (Pham et al., 2019) instead of the standard
element-wise dropout. With variational dropout,
all timesteps in a layer output share the same mask.
This differs from the standard dropout, where each
element in each timestep is dropped according to
the same dropout rate. We hypothesize that this
technique helps reduce the positional correspon-
dence with input tokens by preventing the model
from relying on specific word orders.

We train for 64 epochs and average the weights
of the 5 best checkpoints ordered by dev loss. By
default, we only include the supervised translation
directions in the dev set. The only exception is
the Europarl-full case, where we also include the
zero-shot directions in dev set for early stopping.

When analyzing model hidden representations
through classification performance (Subsection 5.1
and 5.2), we freeze the trained encoder-decoder
weights and train the classifier for 5 epochs. The
classifier is a linear projection from the encoder hid-
den dimension to the number of classes, followed
by softmax activation. As the classification task is
lightweight and convergence is fast, we reduce the
warmup steps to 400 while keeping the learning
rate schedule unchanged.

Proposed Models As motivated in Section 2,
we modify the residual connections and the self-

2The concatenation of language embedding and decoder
word embedding is then projected down to the embedding
dimension to form the input embedding to the decoder.

attention layer in a middle encoder layer. Specif-
ically, we choose the 3-rd and 5-th layer of the 5-
and 8-layer models respectively. We use “Resid-
ual” to indicate residual removal and “Query” the
position-based attention query. For the projection
basis of the attention query, we use positional en-
coding with wave length 100.

Zero-Shot vs. Pivoting We compare the zero-
shot translation performance with pivoting, i.e. di-
rectly translating the unseen direction X → Y vs.
using English as an intermediate step, as in X →
English → Y. The pivoting is done by the base-
line multilingual model, which we expect to have
similar performance to separately trained bilingual
models. For a fair comparison, in the Europarl-
full case, pivoting is done by a baseline model
trained till convergence with only supervised dev
data rather than the early-stopped one.

3.3 Preprocessing and Evaluation

For the languages with Latin script, we first ap-
ply the Moses tokenizer and truecaser, and then
learn byte pair encoding (BPE) using subword-nmt
(Sennrich et al., 2016). For the Indian languages,
we use the IndicNLP library3 and SentencePiece
(Kudo and Richardson, 2018) for tokenization and
BPE respectively. We choose 40K merge opera-
tions and only use tokens with minimum frequency
of 50 in the training set. For IWSLT, we use the of-
ficial tst2017 set. For PMIndia, as the corpus does
not come with dev and test sets, we partition the
dataset ourselves by taking a multiway subset of all
languages, resulting in 1,695 sentences in the dev
and test set each. For Europarl, we use the test sets
in the MMCR4NLP corpus (Dabre and Kurohashi,
2017). The outputs are evaluated by sacreBLEU4

(Post, 2018).

3.4 Adaptation Procedure

To simulate the case of later adding a new language,
we learn a new BPE model for the new language
and keep the previous model unchanged. Due to the
increased number of unique tokens, the vocabulary

3https://github.com/anoopkunchukuttan/
indic_nlp_library

4We use BLEU+case.mixed+numrefs.1+smooth
.exp+tok.13a+version.1.4.12 by default. On
PMIndia, we use the SPM tokenizer (tok.spm instead of
tok.13a) for better tokenization of the Indic languages. At
the time of publication, the argument tok.spm is only avail-
able as a pull request to sacreBLEU: https://github.
com/mjpost/sacrebleu/pull/118. We applied the
pull request locally to use the SPM tokenizer.

https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/anoopkunchukuttan/indic_nlp_library
https://github.com/mjpost/sacrebleu/pull/118
https://github.com/mjpost/sacrebleu/pull/118
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Dataset
Supervised Directions Zero-Shot Directions

Baseline Residual +Query Pivot Baseline Residual +Query

(1) IWSLT 29.8 29.4 29.4 19.1 10.8 17.7 (+6.9) 17.8
(2) Europarl multiway 34.2 33.9 33.1 25.9 11.3 26.1 (+14.8) 25.1
(3) Europarl w/o overlap 35.6 35.4 34.9 27.1 8.2 26.7 (+18.5) 25.8
(4) Europarl full 35.4 36.4 35.9 28.4 17.5 27.5 (+10.0) 26.5
(5) PMIndia 30.4 29.9 29.2 22.1 0.8 2.3 (+1.5) 1.1

Table 3: BLEU5scores on supervised and zero-shot directions. On IWSLT and Europarl (Row (1)-(4)), removing
residual connections once substantially improves zero-shot translation while retaining performance on supervised
directions. On PMIndia (Row 5), our approach can be improved further by additional regularization (Table 5).

Dataset Family Baseline Pivot Residual
Europarl
multiway

Germanic 6.9 25.9 26.2 (+0.3)
Romance 10.2 32.8 33.1 (+0.3)

Europarl
w/o overlap

Germanic 11.8 24.8 25.5 (+0.7)
Romance 13.5 31.0 32.3 (+1.3)

Table 4: Zero-shot BLEU scores between languages
of the same families on Europarl multiway and non-
overlap (Row (2) and (3) from Table 3). Our approach
outperforms pivoting via English.

of the previously-trained model is expanded. In
this case, for the model weights related to the word
lookup table size, we initialize them as the average
of existing embedding perturbed by random noise.

4 Results

Our approach substantially improves zero-shot
translation quality, as summarized in Table 3. The
first observation is that modification in residual
connections is essential for zero-shot performance6.
We gain 6.9 and up to 18.5 BLEU points over the
baseline on IWSLT and Europarl (Row 1 to 4) re-
spectively. When inspecting the model outputs, we
see that the baseline often generates off-target trans-
lation in English, in line with observations from
prior works (Arivazhagan et al., 2019; Zhang et al.,
2020a). Our proposed models are not only consis-
tent in generating the required target languages in
zero-shot conditions, but also show competitive per-
formance to pivoting via English. The effects are
particularly prominent between related languages.
As shown in Table 4, on Europarl, zero-shot out-
performs the pivoting when translating between

5Due to the large number of languages, we report the
BLEU scores averaged over all directions here, and refer the
readers to the appendix for detailed results.

6We also experimented with: 1) removing the residual in
more layers, but observed large negative impact on conver-
gence; 2) replacing the residual connections by meanpooled
sentence embeddings, but the gains on zero-shot directions
were less than removing the residual connections.

languages from the same families. This is an at-
tractive property especially when the computation
resource is limited at inference time.

In the very challenging case of PMIndia (Row
5), while removing residual does improve the zero-
shot performance, the score of 2.3 indicates that the
outputs are still far from being useful. Nonetheless,
we are able to remedy this by further regularization
as we will present in Subsection 4.1.

Contrary to the large gains by removing residual
connections, the attention query modification is not
effective when combined with residual removal.
This suggests that the primary source of position-
specific representation is the residual connections.

Moreover, by contrasting Row 2 and 3 of Table
3, we show the effect of training data diversity. In
real-life, the parallel data from different language
pairs are often to some degree multiway. Multiway
data could provide an implicit bridging that facili-
tates zero-shot translation. With non-overlapping
data, gains can come from training with a larger
variety of sentences. Given these two opposing
hypotheses, our results suggest that the diverse
training data is more important for both supervised
and zero-shot performance. With non-overlapping
data, we first obverse improved supervised transla-
tion performance by around 1.5 points for all three
model configurations (Baseline, Residual, Resid-
ual+Query). Meanwhile, the zero-shot score also
increases from 26.1 to 26.7 points with our model
(Residual). The baseline, on the contrary, loses
from 11.3 to 8.2 points. This suggests that our
model can better utilize the diverse training data
than the baseline under zero-shot conditions.

4.1 Effect of Additional Regularization

In Subsection 3.2, we hypothesized that variational
dropout helps reduce position-specific representa-
tion. Table 5 shows the outcome of replacing the
standard dropout by this technique. First, vari-
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ational dropout also improves zero-shot perfor-
mance over the baseline, yet not as strongly as
residual removal. On IWSLT and Europarl, there is
no additive gain by combining both techniques. On
PMIndia, however, combining our model and varia-
tional dropout is essential for achieving reasonable
zero-shot performance, as shown by the increase
from 2.4 to 14.3 points. Why is the picture differ-
ent on PMIndia? We identify two potential reasons:
1) the low lexical overlap7 among the languages
(8 different scripts in the 9 Indian languages); 2)
the extreme low-resource condition (30K sentences
per translation direction on average).

To understand this phenomenon, we create an
artificial setup based on IWSLT with 1) no lexi-
cal overlap by appending a language tag before
each token; 2) extremely low resource by taking a
subset of 30K sentences per translation direction.
The scores in Table 6 show the increasing benefit
of variational dropout given very low amount of
training data and shared lexicon. We interpret this
through the lens of generalizable representations:
With low data amount or lexical overlap, the model
tends to represent its input in a highly language-
specific way, hence hurting zero-shot performance.

Dataset
Zero-Shot Directions

Baseline +vardrop Residual +vardrop

IWSLT 10.8 14.9 17.7 17.7
Europarl 8.2 25.1 26.7 26.4
PMIndia 0.8 2.3 2.4 14.3

Table 5: Zero-shot BLEU scores by variational
dropout (“+vardrop”) on IWSLT, Europarl non-
overlap, and PMIndia. On the first two datasets, com-
bining residual removal and variational dropout has no
synergy. On PMIndia with little data and low lexical
overlap, the combination of the two is essential.

Condition Residual + vardrop

(1) Normal 17.7 17.7 (+0.0)
(2) (1)+little data 11.9 12.9 (+1.0)
(3) (2)+no lexical overlap 9.7 12.2 (+2.5)

Table 6: Zero-shot BLEU scores of on a subset of
IWSLT artificially constructed with little training data
and no shared lexicon. The benefit of regularizing by
variational dropout becomes prominent as the amount
of training data and shared lexicon decreases.

7We also tried mapping the 9 Indian languages into the
Devanagari script, but got worse zero-shot performance com-
pared to the current setup.

4.2 Adaptation to Unseen Language
So far our model has shown promising zero-shot
performance. Here we extend the challenge of
zero-shot translation by integrating a new language.
Specifically, we finetune a trained English-centered
many-to-many system with a new language using a
small amount of Xnew ↔ English parallel data. At
test time, we perform zero-shot translation between
Xnew and all non-English languages previously in-
volved in training. This practically simulates the
scenario of later acquiring parallel data between a
low-resource language and the central bridging lan-
guage in an existing system. After finetuning with
the new data, we can potentially increase transla-
tion coverage by 2N directions, with N being the
number of languages originally in training. We
finetune a trained system on IWSLT (Row 1 in Ta-
ble 3) using a minimal amount of de ↔ en data
with 14K sentences. When finetuning we include
the original Xold ↔ en training data, as otherwise
the model would heavily overfit. This procedure is
relatively lightweight, since the model has already
converged on the original training data.

In Table 7, our model outperforms the baseline
on zero-shot translation, especially when translat-
ing from the new language (Xnew →). When in-
specting the outputs, we see the baseline almost
always translate into the wrong language (English),
causing the low score of 1.8. We hypothesize that
the baseline overfits more on the supervised di-
rection (Xnew → en), where it achieves the higher
score of 18.5. In contrast, our model is less suscep-
tible to this issue and consistently stronger under
zero-shot conditions.

Supervised Zero-Shot

Baseline Residual Baseline Residual

Xnew → 18.5 17.3 1.8 6.7
→ Xnew 13.6 13.4 8.3 10.7

Table 7: Effects of adaptation to new language (de↔
en on IWSLT. Zero-shot translation directions are de
↔ {it, nl, ro}. Our model has significantly stronger
zero-shot performance.

5 Discussions and Analyses

To see beyond BLEU scores, we first analyze how
much position- and language-specific information
is retained in the encoder hidden representations
before and after applying our approaches. We then
study circumstances where zero-shot translation
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tends to outperform its pivoting-based counterpart.
Lastly, we discuss the robustness of our approach
to the impact of different implementation choices.

5.1 Inspecting Positional Correspondence
To validate whether the improvements in zero-shot
performance indeed stem from less positional corre-
spondence to input tokens, we assess the difficulty
of recovering input positional information before
and after applying our proposed method. Specifi-
cally, we train a classifier to predict the input token
ID’s (which word it is) or position ID’s (the word’s
absolute position in a sentence) based on encoder
outputs. Such prediction tasks have been used to
analyze linguistic properties of encoded represen-
tation (Adi et al., 2017). Our classifier operates
on each timestep and uses a linear projection from
the embedding dimension to the number of classes,
i.e. number of unique tokens in the vocabulary or
number of maximum timesteps.

Table 8 compares the classification accuracy of
the baseline and our model. First, the baseline en-
coder output has an exact one-to-one correspon-
dence to the input tokens, as evidenced by the
nearly perfect accuracy when recovering token ID’s.
This task becomes much more difficult under our
model. We see a similar picture when recovering
the position ID’s.

Dataset Model Token ID Position ID

IWSLT Baseline 99.9% 93.3%
Residual 48.5% 51.4%

Europarl Baseline 99.5% 85.1%
non-overlap Residual 71.6% 22.5%

PMIndia Baseline 99.6% 90.1%
Residual 63.3% 26.9%

Table 8: Accuracy of classifiers trained to recover in-
put positional information (token ID or position ID)
based on encoder outputs. Lower values indicate higher
difficulty of recovering the information, and therefore
less positional correspondence to the input tokens.

layer 1 layer 2 layer 3 layer 4 layer 5
0

25
50
75

100

A
cc

ur
ac

y
(%

)

Baseline Residual

Figure 3: Accuracy of recovering position ID’s after
each encoder layer on IWSLT. When we remove the
residual connection in the 3rd encoder layer, classifica-
tion is much more difficult.

We also try to recover the position ID’s based on
the outputs from each layer. As shown in Figure
3, the accuracy drops sharply at the third layer,
where the residual connection is removed. This
shows that the devised transition point at a middle
encoder layer is effective.

5.2 Inspecting Language Independence
To test whether our model leads to more language-
independent representations, we assess the similar-
ity of encoder outputs on the sentence and token
level using the two following methods:

SVCCA The singular vector canonical correla-
tion analysis (SVCCA; Raghu et al., 2017) mea-
sures similarity of neural network outputs, and has
been used to assess representational similarity in
NMT (Kudugunta et al., 2019). As SVCCA oper-
ates on fixed-size inputs, we meanpool the encoder
outputs and measure similarity on a sentence level.

Language Classification Accuracy Since more
similar representations are more difficult to distin-
guish, poor performance of a language classifier
indicates high similarity. Based on a trained model,
we learn a token-level linear projection from the en-
coder outputs to the number of classes (languages).

Findings As shown in Table 9, our model con-
sistently achieves higher SVCCA scores and lower
classification accuracy than the baseline, indicating
more language-independent representations. When
zooming into the difficulty of classifying the lan-
guages, we further notice much higher confusion
(therefore similarity) between related languages.
For instance, Figure 4 shows the confusion ma-
trix when classifying the 8 source languages in
Europarl. After residual removal, the similarity is
much higher within the Germanic and Romance
family. This also corresponds to cases where our
model outperforms pivoting (Table 4).

da de es fi fr it nl pt
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1.0

Figure 4: Confusion matrices when classifying lan-
guages in Europarl non-overlap (x: true, y: predicted).
Encoder outputs of related languages (Romance / Ger-
manic) are more similar after residual removal.
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Dataset
↑

Model
↑

SVCCA Score
↑

Accuracy
↓

IWSLT Baseline 0.682 95.9%
Residual 0.703 87.6%

Europarl Baseline 0.652 87.0%
non-overlap Residual 0.680 69.9%

PMIndia Baseline 0.621 74.1%
Residual 0.650 62.0%

Table 9: Average pairwise similarity of encoder out-
puts for between all languages in each dataset. Higher
SVCCA scores and lower classification accuracy indi-
cate higher similarity. We note that the SVCCA score
between random vectors is around 0.57.

Moreover, we compare the SVCCA scores after
each encoder layer, as shown in Figure 5. Confirm-
ing our hypotheses, the model outputs are much
more similar after the transition layer, as shown
by the sharp increase at layer 3. This contrasts the
baseline, where similarity increases nearly linearly.

layer 1 layer 2 layer 3 layer 4 layer 5
0.00
0.05
0.10
0.15

∆
SV

C
C

A
sc

or
es

Baseline Residual

Figure 5: Average SVCCA scores after each encoder
layer between all language pairs in IWSLT ({it, nl, ro,
en}). Scores are reported additive to scores between
random vectors. Similarity significantly increases after
the 3rd layer where we apply residual removal.

Given these findings and previous analyses in
Subsection 5.1, we conclude that our devised
changes in a middle encoder layer allows higher
cross-lingual generalizability in top layers while
retaining the language-specific bottom layers.

5.3 Understanding Gains of Zero-Shot
Translation Between Related Languages

In Subsection 4 we have shown that between re-
lated languages zero-shot translation surpasses piv-
oting performance. Here we manually inspect some
pivoting translation outputs (nl→en→de) and com-
pare them to zero-shot outputs (de→en). In general,
we observe that the translations without pivoting
are much more similar to the original sentences.
For instance in Table 4, when pivoting, the Dutch
sentence “geven het voorbeeld (give the example)”
is first translated to “set the example”, then to “set-
zen das Beispiel (set the example)” in German,
which is incorrect as the verb “setzen (set)” cannot

go together with the noun “Beispiel (example)”.
The zero-shot outputs, on the other hand, directly
translates “geven (give; Dutch)” to “geben (give;
German)”, resulting in a more natural pairing with
“Beispiel (example)”. With this example, we intend
to showcase the potential of bypassing the pivoting
step and better exploiting language similarity.

Input
(nl)

... geven in dit verband het verkeerde
voorbeeld, maar anderen helaas ook.

Pivot-in
(nl→en)

... are setting the wrong example here,
but others are unfortunately also.

Pivot-out
(en→de)

... setzen hier das falsche Beispiel ein,
andere sind leider auch.

Zero-shot
(nl→de)

... geben in diesem Zusammenhang das
falsche Beispiel, aber leider auch andere.

Table 10: An example of pivoting (nl→en→de) vs
zero-shot (nl→de). Pivoting via English leads to the
incorrect verb-noun pairing of “setzen das Beispiel (set
the example)” in German, while zero-shot output uti-
lizes language similarity to get higher output quality.

5.4 Where to Remove Residual Connections
In our main experiments, all proposed modifica-
tions take place in a middle encoder layer. After
comparing the effects of residual removal in each of
the encoder layers, our first observation is that the
bottom encoder layer should remain fully position-
aware. Removing the residual connections in the
first encoder layer degrades zero-shot performance
by 2.8 BLEU on average on IWSLT. Secondly, leav-
ing out residual connections in top encoder layers
(fourth or fifth layer of the five layers) slows down
convergence. When keeping the number of training
epochs unchanged from our main experiments, it
comes with a loss of 0.4 BLEU on the supervised
directions. This is likely due to the weaker gradient
flow to the bottom layers. The two observations
together support our choice of using the middle
encoder layer as a transition point.

5.5 Learned or Fixed Positional Embedding
While we use fixed trigonometric positional en-
codings in our main experiments, we also validate
our findings with learned positional embeddings
on the IWSLT dataset. First, the baseline still suf-
fers from off-target zero-shot translation (average
BLEU scores on supervised directions: 29.6; zero-
shot: 4.8). Second, removing the residual connec-
tion in a middle layer is also effective in this case
(supervised: 29.1; zero-shot: 17.1). These findings
suggest that our approach is robust to the form of
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positional embedding. Although learned positional
embeddings are likely more language-agnostic by
seeing more languages, as we still present source
sentences as a sequence of tokens, the residual con-
nections, when present in all layers, would still
enforce a one-to-one mapping to the input tokens.
This condition allows our motivation and approach
to remain applicable.

6 Related Work
Initial works on multilingual translation systems
already showed some zero-shot capability (Johnson
et al., 2017; Ha et al., 2016). Since then, several
works improved zero-shot translation performance
by controlling or learning the level of parameter
sharing between languages (Lu et al., 2018; Platan-
ios et al., 2018).

Recently, models with full parameter sharing
have gained popularity, with massively multilin-
gual systems showing encouraging results (Aharoni
et al., 2019; Zhang et al., 2020a; Fan et al., 2020).
Besides advantages such as compactness and ease
of deployment, the tightly-coupled model compo-
nents also open up new questions. One question is
how to form language-agnostic representations at a
suitable abstraction level. In this context, one ap-
proach is to introduce auxiliary training objectives
to encourage similarity between the representations
of different languages (Arivazhagan et al., 2019;
Pham et al., 2019). In this work we took a different
perspective: Instead of introducing additional ob-
jectives, we relax some of the pre-defined structure
to facilitate language-independent representations.

Another line of work on improving zero-shot
translation utilizes monolingual pretraining (Gu
et al., 2019; Ji et al., 2020) or synthetic data for the
zero-shot directions by generated by backtransla-
tion (Gu et al., 2019; Zhang et al., 2020a). With
both approaches, the zero-shot directions must be
known upfront in order to train on the correspond-
ing languages. In comparison, our adaptation pro-
cedure offers more flexibility, as the first training
step remains unchanged regardless of which new
language is later finetuned on. This could be suit-
able to the practical scenario of later acquiring data
for the new language. Our work is also related
to adaptation to new languages. While the exist-
ing literature mostly focused on adapting to one or
multiple supervised training directions (Zoph et al.,
2016; Neubig and Hu, 2018; Zhou et al., 2019;
Murthy et al., 2019; Bapna and Firat, 2019), our
focus in this work is to rapidly expand translation

coverage via zero-shot translation.
While our work concentrates on an English-

centered data scenario, another promising direction
to combat zero-shot conditions is to enrich avail-
able training data by mining parallel data between
non-English languages (Fan et al., 2020; Freitag
and Firat, 2020). On a broader scope of sequence-
to-sequence tasks, Dalmia et al. (2019) enforced
encoder-decoder modularity for speech recognition.
The goal of modular encoders and decoders is anal-
ogous to our motivation for zero-shot translation.

7 Conclusion
In this work, we show that the positional correspon-
dence to input tokens hinders zero-shot translation.
Specifically, we demonstrate that: 1) the encoder
outputs retain word orders of source languages; 2)
this positional information reduces cross-lingual
generalizability and therefore zero-shot translation
quality; 3) the problems above can be easily allevi-
ated by removing the residual connections in one
middle encoder layer. With this simple modifica-
tion, we achieve improvements up to 18.5 BLEU
points on zero-shot translation. The gain is espe-
cially prominent in related languages, where our
proposed model outperforms pivot-based transla-
tion. Our approach also enables integration of
new languages with little parallel data. Similar
to interlingua-based models, by adding two trans-
lation directions, we can increase the translation
coverage by 2N language pairs, where N is the
original number of languages. In terms of model
representation, we show that the encoder outputs
under our proposed model are more language-
independent both on a sentence and token level.
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Broader Impact
We proposed approaches to improve zero-shot
translation, which is especially suitable to low-
resource scenarios with no training data available
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lations unrelated to the input sentences.
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A Appendix: BLEU Scores per Translation Direction

A.1 Multiway IWSLT 2017

Direction Pivot (X→en→Y) Baseline +vardrop Residual +vardrop Residual+Query +vardrop
Su

pe
rv

is
ed

en-it - 30.4 30.1 29.8 29.8 30.0 29.7
en-nl - 27.9 27.7 27.4 27.6 27.4 26.9
en-ro - 23.2 22.9 22.9 22.4 23.3 22.2
it-en - 35.8 35.7 35.5 35.0 35.2 33.8
nl-en - 31.0 31.0 30.4 30.5 30.5 29.9
ro-en - 30.6 30.4 30.1 29.4 29.8 29.3
Average 29.8 29.6 29.4 29.1 29.4 28.6

Z
er

o-
sh

ot

it-nl 19.8 11.5 15.0 18.5 18.6 18.7 18.0
it-ro 18.3 11.8 15.8 17.8 17.7 18.2 17.3
nl-it 20.1 10.0 15.2 17.9 18.1 17.9 18.0
nl-ro 16.4 9.2 14.1 15.5 15.5 15.6 15.5
ro-it 21.1 12.2 15.8 19.6 19.8 19.5 19.6
ro-nl 18.5 10.3 13.4 16.8 16.6 16.7 16.5
Average 19.1 10.8 14.9 17.7 17.7 17.8 17.5

A.2 Europarl
A.2.1 Non-Overlapping Data

Direction Pivot (X→en→Y) Baseline +vardrop Residual +vardrop Residual+Query +vardrop

Su
pe

rv
is

ed

da-en - 38.3 38.5 38.1 38.2 37.7 37.3
de-en - 36.1 36.0 35.9 35.5 35.2 34.9
es-en - 43.0 43.2 43.0 42.9 42.5 42.1
fi-en - 32.6 32.8 32.4 31.9 31.9 31.0
fr-en - 39.4 39.5 39.1 39.0 38.8 37.5
it-en - 37.3 36.9 36.7 36.4 36.4 35.2
nl-en - 34.4 34.2 34.0 33.8 33.3 32.9
pt-en - 41.1 41.0 40.7 40.6 40.2 39.5
en-da - 36.5 36.7 36.2 36.1 35.8 35.7
en-de - 28.1 28.0 27.7 27.5 27.5 26.7
en-es - 42.5 42.6 42.2 42.2 41.7 41.6
en-fi - 22.5 22.2 22.2 21.6 21.3 20.8
en-fr - 37.7 38.0 37.8 37.5 37.4 37.0
en-it - 32.7 32.7 32.4 32.2 32.0 31.8
en-nl - 29.7 29.9 29.6 29.4 29.5 29.1
en-pt - 38.3 38.4 38.0 38.0 37.9 37.6
Average 35.6 35.7 35.4 35.2 34.9 34.4

Z
er

o-
sh

ot

da-de 24.2 5.2 21.9 25.0 24.5 23.9 23.7
da-es 33.1 15.8 32.4 32.8 32.5 32.3 31.6
da-fi 18.1 5.0 16.6 18.1 17.1 17.2 16.6
da-fr 30.6 9.9 28.1 29.4 29.3 28.9 28.4
da-it 26.1 11.5 24.3 24.8 25.0 24.8 24.3
da-nl 26.3 6.5 24.3 25.8 26.0 25.5 25.5
da-pt 29.9 14.4 28.6 29.3 29.1 28.8 28.4
de-da 29.2 9.5 26.9 29.2 29.1 27.5 28.3
de-es 32.1 11.6 31.2 32.1 31.6 31.0 30.9
de-fi 17.9 4.2 16.7 17.5 16.7 16.3 16.1
de-fr 29.9 7.3 27.8 28.9 29.2 28.4 28.6
de-it 25.6 8.8 23.4 24.6 24.5 23.7 23.6
de-nl 25.9 5.5 23.7 26.1 26.1 25.2 25.4
de-pt 29.2 10.8 28.0 28.9 28.4 28.2 27.9
es-da 31.4 10.2 28.1 31.0 30.5 29.5 29.6
es-de 24.8 4.3 21.4 24.3 23.8 23.4 23.1
es-fi 19.4 4.5 17.3 18.6 17.5 17.7 17.0
es-fr 34.8 9.1 33.4 34.8 34.9 34.2 34.1
es-it 29.6 9.8 28.7 29.7 29.6 29.1 28.9
es-nl 26.8 5.9 24.3 26.5 26.1 25.3 25.5
es-pt 35.1 13.6 35.3 35.9 36.0 35.5 35.5
fi-da 26.3 9.8 23.6 25.4 24.9 24.1 24.3
fi-de 20.8 4.0 17.8 20.2 19.4 18.8 18.9
fi-es 29.2 11.9 27.8 28.4 27.6 27.3 26.6
fi-fr 27.2 7.6 24.3 25.4 25.4 24.7 24.3
fi-it 23.2 8.4 20.9 21.8 21.4 20.9 20.1
fi-nl 22.8 5.3 20.2 22.0 21.6 20.7 20.9
fi-pt 26.5 10.8 25.0 25.3 24.8 24.0 23.9
fr-da 29.4 8.6 25.6 28.6 28.3 26.8 26.4
fr-de 23.6 3.4 19.3 23.1 22.7 21.6 21.3
fr-es 35.9 11.8 35.5 36.4 36.2 35.1 34.7
fr-fi 17.9 3.9 15.7 17.2 16.0 15.8 15.2
fr-it 28.4 8.0 27.3 28.7 28.3 27.7 26.8
fr-nl 26.3 5.0 22.8 25.9 25.4 24.9 24.7
fr-pt 32.8 11.5 31.8 33.3 33.1 32.6 31.9
it-da 27.6 8.3 24.3 26.8 26.7 25.2 25.4
it-de 22.3 3.5 18.1 21.3 21.1 20.2 20.0
it-es 33.7 10.9 33.9 34.4 34.4 33.5 33.0
it-fi 17.0 3.4 13.4 15.9 13.8 14.6 13.0
it-fr 31.4 6.9 30.2 31.6 31.4 30.8 30.7
it-nl 24.9 5.0 21.6 24.0 23.7 23.4 23.3
it-pt 30.8 10.6 30.4 31.3 31.1 30.9 30.7
nl-da 27.7 10.1 25.5 27.7 27.8 26.6 27.0
nl-de 23.2 4.4 20.0 23.5 23.4 22.5 22.7
nl-es 30.7 12.6 30.0 30.8 30.6 30.1 29.8
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Direction Pivot (X→en→Y) Baseline +vardrop Residual +vardrop Residual+Query +vardrop

nl-fi 16.5 4.7 15.5 16.0 15.8 15.6 15.4
nl-fr 28.8 8.3 27.1 28.1 28.3 27.6 27.8
nl-it 24.5 9.2 22.5 23.9 23.8 23.1 23.3
nl-pt 28.2 12.2 27.0 27.5 27.3 27.2 27.1
pt-da 30.5 9.5 27.1 29.5 29.2 28.0 28.4
pt-de 24.3 3.5 20.6 23.6 23.2 22.4 22.5
pt-es 37.7 14.3 37.7 38.3 38.2 37.5 37.4
pt-fi 18.4 4.1 16.8 17.9 17.1 17.2 16.6
pt-fr 34.1 7.7 32.6 33.9 34.1 33.4 33.3
pt-it 29.3 8.7 27.9 29.2 29.0 28.7 28.3
pt-nl 26.4 5.4 23.7 25.7 25.6 24.8 25.2
Average 27.1 8.2 25.1 26.7 26.4 25.8 25.6

A.2.2 Multiway Data

Direction Pivot (X→en→Y) Baseline Residual Residual+Query

Su
pe

rv
is

ed

da-en - 36.3 36.1 35.0
de-en - 33.6 33.4 32.3
es-en - 40.5 40.1 39.1
fi-en - 30.3 30.1 29.2
fr-en - 37.0 36.8 35.2
it-en - 34.7 34.4 33.4
nl-en - 32.3 32.2 31.2
pt-en - 38.3 37.9 37.3
en-da - 35.7 35.7 34.8
en-de - 28.0 27.1 26.5
en-es - 42.0 41.4 41.2
en-fi - 21.3 20.8 20.5
en-fr - 37.5 37.2 36.7
en-it - 32.2 31.8 31.4
en-nl - 29.3 29.2 28.7
en-pt - 37.9 37.6 37.2
Average 34.2 33.9 33.1

Z
er

o-
sh

ot

da-de 23.3 10.0 23.9 22.8
da-es 31.6 11.8 32.2 31.4
da-fi 17.3 6.2 17.0 16.4
da-fr 29.5 14.4 29.0 27.8
da-it 25.1 14.3 24.8 24.2
da-nl 25.2 11.2 25.4 24.1
da-pt 28.6 12.9 28.9 28.3
de-da 27.5 14.8 28.4 26.9
de-es 30.5 10.1 31.4 30.7
de-fi 16.2 5.2 16.2 15.1
de-fr 28.7 11.6 28.5 27.2
de-it 24.3 12.4 24.1 23.1
de-nl 24.6 9.8 25.4 24.2
de-pt 27.7 10.5 28.3 27.0
es-da 30.3 16.4 30.0 28.9
es-de 23.8 9.4 24.0 22.3
es-fi 18.4 6.3 17.8 16.9
es-fr 33.3 15.6 34.0 32.8
es-it 28.4 17.3 29.4 28.5
es-nl 25.9 10.7 26.2 24.7
es-pt 33.2 16.1 35.4 34.6
fi-da 24.9 13.4 24.6 24.0
fi-de 19.6 7.9 19.4 18.3
fi-es 27.8 10.3 27.7 27.2
fi-fr 26.0 11.5 25.2 23.9
fi-it 21.8 11.8 21.2 20.5
fi-nl 21.9 9.0 21.4 20.4
fi-pt 25.1 11.0 24.8 24.0
fr-da 28.3 14.2 27.5 26.1
fr-de 22.6 8.3 22.1 20.5
fr-es 33.9 12.1 35.6 34.4
fr-fi 17.0 5.3 16.4 15.3
fr-it 26.9 15.3 28.1 26.9
fr-nl 25.1 9.6 25.0 23.9
fr-pt 31.0 12.8 32.5 31.3
it-da 26.7 13.8 26.3 25.2
it-de 21.5 7.7 21.0 19.4
it-es 32.2 11.7 33.9 33.4
it-fi 15.9 4.7 15.0 14.8
it-fr 29.9 12.2 31.2 29.8
it-nl 24.1 9.2 23.6 22.4
it-pt 29.5 12.2 30.7 29.8
nl-da 26.4 15.4 27.1 26.1
nl-de 22.0 9.3 22.8 21.6
nl-es 29.3 10.8 30.2 29.3
nl-fi 15.8 5.6 15.5 14.7
nl-fr 27.7 12.5 27.7 26.7
nl-it 23.3 13.4 23.6 22.6
nl-pt 26.7 12.1 27.1 26.2
pt-da 29.3 14.3 28.8 27.7
pt-de 23.4 8.3 23.0 21.6
pt-es 35.8 14.2 38.0 37.0
pt-fi 17.6 5.3 17.0 16.3
pt-fr 32.6 13.8 33.4 32.1
pt-it 27.9 16.0 28.6 28.1
pt-nl 25.5 9.3 25.4 24.3
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Direction Pivot (X→en→Y) Baseline Residual Residual+Query

Average 25.9 11.3 26.1 25.1

A.2.3 Full Data

Direction Pivot (X→en→Y) Baseline Residual Residual+Query

Su
pe

rv
is

ed

da-en - 38.2 39.2 38.7
de-en - 35.7 36.8 36.4
es-en - 43.3 44.1 43.6
fi-en - 32.4 33.5 33.0
fr-en - 39.8 40.5 40.1
it-en - 37.4 38.4 38.1
nl-en - 33.9 34.9 34.3
pt-en - 41.5 42.3 41.3
en-da - 35.7 36.8 36.3
en-de - 27.9 29.0 28.4
en-es - 41.9 43.0 42.4
en-fi - 22.0 22.9 22.3
en-fr - 37.7 38.3 37.8
en-it - 32.1 33.1 32.7
en-nl - 29.1 30.4 29.9
en-pt - 38.0 39.1 38.8
Average 35.4 36.4 35.9

Z
er

o-
sh

ot

da-de 26.1 13.6 25.5 24.8
da-es 34.5 27.5 33.7 33.0
da-fi 20.0 15.9 18.9 17.8
da-fr 31.8 21.7 30.1 29.3
da-it 27.5 16.8 26.3 25.9
da-nl 27.5 10.4 26.2 26.1
da-pt 31.0 24.8 30.6 29.3
de-da 30.5 16.1 29.7 28.7
de-es 33.6 22.8 32.6 31.6
de-fi 19.1 14.0 18.2 16.0
de-fr 31.3 17.3 30.1 29.4
de-it 26.7 14.0 25.5 24.5
de-nl 27.5 8.5 26.1 25.4
de-pt 30.5 21.8 29.8 27.9
es-da 32.9 18.5 31.2 30.3
es-de 26.5 13.9 24.7 24.5
es-fi 21.0 15.8 19.6 18.4
es-fr 36.2 24.1 34.9 34.3
es-it 31.1 18.7 31.0 30.2
es-nl 28.4 11.0 26.7 26.3
es-pt 36.4 30.2 36.8 35.9
fi-da 27.7 15.4 25.9 24.9
fi-de 22.3 11.2 20.5 19.9
fi-es 30.7 22.4 29.3 28.2
fi-fr 28.8 17.4 26.1 24.8
fi-it 24.4 13.5 22.9 22.2
fi-nl 24.2 8.6 22.2 21.6
fi-pt 28.0 20.9 26.7 25.0
fr-da 30.5 16.8 29.4 28.5
fr-de 25.0 12.4 23.8 23.0
fr-es 36.8 27.4 37.4 36.5
fr-fi 19.6 14.6 18.5 16.9
fr-it 29.6 16.5 29.8 29.1
fr-nl 27.5 9.8 26.6 25.7
fr-pt 33.7 26.8 34.6 33.0
it-da 29.1 15.7 28.2 26.7
it-de 23.9 11.3 22.0 21.6
it-es 34.8 26.1 35.4 34.5
it-fi 18.3 13.3 16.5 15.0
it-fr 32.5 19.6 30.3 29.3
it-nl 26.2 8.9 25.0 24.0
it-pt 31.9 24.9 32.5 31.5
nl-da 28.7 16.5 27.9 27.1
nl-de 24.3 12.4 23.2 23.5
nl-es 31.5 23.6 31.3 30.4
nl-fi 17.9 13.7 17.2 15.4
nl-fr 29.9 18.6 29.1 28.2
nl-it 25.5 15.4 24.4 23.9
nl-pt 29.0 22.4 28.5 26.9
pt-da 31.7 17.2 30.2 29.0
pt-de 25.7 13.0 24.4 23.7
pt-es 38.9 30.8 39.3 38.3
pt-fi 20.0 14.8 19.2 17.5
pt-fr 35.4 23.1 34.8 33.9
pt-it 30.4 17.7 30.3 29.5
pt-nl 27.9 10.4 26.2 25.5
Average 28.4 17.5 27.5 26.5

A.3 PMIndia
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Direction Pivot (X→en→Y) Baseline +vardrop Residual +vardrop Residual+Query

Su
pe

rv
is

ed

te-en - 31.2 30.2 30.7 30.2 29.7
kn-en - 31.4 31.1 31.3 31.1 30.3
ml-en - 28.9 27.9 28.2 27.9 27.9
bn-en - 25.6 25.4 25.0 25.4 25.0
gu-en - 35.3 34.7 34.7 34.7 33.5
hi-en - 37.8 37.1 37.0 37.1 35.8
mr-en - 29.0 28.7 28.8 28.7 28.1
or-en - 29.0 28.9 28.9 28.9 28.3
pa-en - 35.9 35.2 35.1 35.2 34.5
en-te - 16.3 16.7 16.1 16.1 15.7
en-kn - 33.4 33.4 32.6 32.6 32.2
en-ml - 20.4 20.8 20.3 20.3 20.1
en-bn - 22.6 22.5 21.9 21.9 21.8
en-gu - 39.3 39.6 38.9 38.9 38.0
en-hi - 32.5 32.6 31.5 31.5 30.8
en-mr - 25.7 25.7 25.4 25.4 24.8
en-or - 33.7 33.7 33.0 33.0 32.6
en-pa - 38.8 38.9 38.0 38.0 37.1
Average 30.4 30.2 29.9 29.8 29.2

Z
er

o-
sh

ot

te-kn 24.9 0.6 3.2 2.5 16.3 1.3
te-ml 15.8 1.0 3.8 3.2 10.8 1.5
te-bn 18.0 0.7 2.7 2.0 12.4 2.0
te-gu 28.9 1.2 2.4 2.3 19.3 0.9
te-hi 21.6 0.4 0.5 1.0 12.8 1.9
te-mr 19.5 1.2 3.8 2.6 12.6 1.7
te-or 25.4 0.7 2.3 2.6 17.2 1.1
te-pa 28.2 0.5 2.1 2.5 17.9 0.6
kn-te 12.8 0.6 2.0 2.0 8.4 0.7
kn-ml 16.0 0.9 3.6 3.1 10.9 1.8
kn-bn 17.9 0.9 2.6 2.3 12.1 2.2
kn-gu 29.3 1.1 2.6 2.4 19.9 0.8
kn-hi 22.2 0.4 0.5 1.0 12.9 0.4
kn-mr 19.7 1.2 3.6 2.9 12.8 1.7
kn-or 25.9 0.6 2.4 2.6 17.4 1.4
kn-pa 29.0 0.5 2.2 2.7 18.4 0.7
ml-te 11.9 0.6 2.3 1.9 8.2 0.7
ml-kn 24.0 0.5 3.3 2.8 16.0 1.2
ml-bn 17.5 0.9 2.8 2.3 12.0 2.0
ml-gu 27.3 1.1 2.4 2.3 17.9 0.9
ml-hi 20.5 0.4 0.5 1.1 11.9 0.4
ml-mr 18.9 1.3 3.9 3.0 12.1 1.8
ml-or 24.8 0.6 2.3 2.5 16.3 1.3
ml-pa 27.0 0.5 2.0 2.4 16.7 0.6
bn-te 10.7 0.5 2.4 1.9 7.4 0.7
bn-kn 21.6 0.7 2.9 2.8 14.2 1.3
bn-ml 14.0 1.0 3.9 3.2 9.3 1.7
bn-gu 25.3 1.1 2.7 2.1 17.8 1.0
bn-hi 18.9 0.5 0.7 1.1 11.9 0.5
bn-mr 17.4 1.6 4.2 3.0 11.7 1.8
bn-or 23.8 0.9 3.0 3.1 16.7 1.3
bn-pa 25.1 0.6 2.5 2.5 16.9 0.6
gu-te 13.2 0.4 1.6 1.6 8.4 0.5
gu-kn 26.6 0.5 2.3 2.7 16.6 1.2
gu-ml 16.9 0.7 3.0 2.6 10.7 1.5
gu-bn 19.2 0.7 1.8 1.9 12.5 1.8
gu-hi 25.6 0.4 0.5 1.3 15.7 0.4
gu-mr 21.4 1.4 3.2 2.8 14.5 1.7
gu-or 28.1 0.6 2.0 2.9 18.1 1.3
gu-pa 32.0 0.5 2.3 2.9 20.6 0.7
hi-te 14.0 0.4 1.1 1.4 8.5 0.5
hi-kn 28.0 0.5 1.3 1.9 15.6 1.0
hi-ml 17.7 0.6 1.9 2.2 10.4 1.1
hi-bn 20.0 0.5 1.2 1.4 12.9 1.2
hi-gu 34.9 1.0 1.6 1.9 21.1 0.8
hi-mr 22.6 1.0 2.6 2.4 14.5 1.6
hi-or 30.6 0.5 1.4 2.0 18.1 1.0
hi-pa 35.3 0.4 1.5 2.3 21.7 0.6
mr-te 11.9 0.5 1.9 1.8 8.0 0.7
mr-kn 24.1 0.6 2.8 2.5 15.7 1.4
mr-ml 15.6 0.9 3.5 2.9 10.4 1.5
mr-bn 17.4 0.9 2.4 2.2 12.1 2.1
mr-gu 28.5 1.1 2.5 2.2 19.5 0.9
mr-hi 21.6 0.5 0.7 1.4 13.4 0.6
mr-or 25.3 0.7 2.2 2.6 17.0 1.4
mr-pa 27.6 0.6 2.2 2.8 17.0 0.7
or-te 11.4 0.6 2.0 1.8 8.0 0.6
or-kn 23.1 0.7 2.9 3.0 15.5 1.5
or-ml 14.9 0.9 3.5 3.2 10.3 1.6
or-bn 17.5 0.9 3.0 2.6 12.7 2.3
or-gu 28.2 1.3 3.0 2.7 19.6 1.0
or-hi 21.7 0.4 0.8 1.5 13.9 0.5
or-mr 18.7 1.5 4.2 3.1 12.3 1.7
or-pa 27.7 0.6 2.7 3.1 18.7 0.7
pa-te 12.8 0.5 1.6 1.8 8.5 0.5
pa-kn 26.4 0.6 2.3 2.6 16.2 1.1
pa-ml 16.6 0.8 3.2 2.7 10.6 1.5
pa-bn 18.9 0.8 2.0 1.9 12.6 1.9
pa-gu 32.4 1.4 2.6 2.6 22.0 1.0
pa-hi 26.8 0.5 0.6 1.5 17.2 0.4
pa-mr 21.3 1.4 3.4 3.0 13.8 1.7
pa-or 28.0 0.7 2.2 2.7 18.6 1.2
Average 22.1 0.8 2.4 2.3 14.3 1.1


