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Abstract
Scientific knowledge is evolving at an unprece-
dented rate of speed, with new concepts con-
stantly being introduced from millions of aca-
demic articles published every month. In this
paper, we introduce a self-supervised end-to-
end system, SciConceptMiner, for the auto-
matic capture of emerging scientific concepts
from both independent knowledge sources
(semi-structured data) and academic publica-
tions (unstructured documents). First, we
adopt a BERT-based sequence labeling model
to predict candidate concept phrases with self-
supervision data. Then, we incorporate rich
Web content for synonym detection and con-
cept selection via a web search API. This
two-stage approach achieves highly accurate
(94.7%) concept identification with more than
740K scientific concepts. These concepts are
deployed in the Microsoft Academic1 produc-
tion system and are the backbone for its seman-
tic search capability.

1 Introduction

Scientific knowledge has been expanded at an ex-
ponential rate over the past decades and the fast-
growing volume of academic literature accentu-
ates a pressing need for automated capture of fine-
grained emerging concepts. Statistical topic mod-
els (Blei, 2012), such as latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003), have been well-
recognized for automatically extracting the topic
structure of large document collections for past
decades. However, it has two main limitations to
prevent it from being widely applied in a modern
large-scale document collection.

First, it is the scalability issue on the number of
topics an LDA can model. The latest development
(Chen et al., 2018) can process 131M documents
with 28B tokens efficiently, however, it only ex-
tracts 1,722 topics. With the fast-growing body

1https://academic.microsoft.com/

Figure 1: Trending Topics under concept Embedding.

of scholarly communications, a comprehensive
manually controlled vocabulary like Medical Sub-
ject Headings(MeSH) (Lowe and Barnett, 1994)
contains tens of thousands of subjects (concepts)
mostly in the bio-med domain; and an automated
scientific knowledge exploration system such as
Microsoft Academic Graph (MAG) (Shen et al.,
2018) has hundreds of thousands of topics across
all academic disciplines. A topic modeling system
that is scalable not only to the size of documents
but also to the number of topics is imperative.

Second, the result of an LDA model is a list of
frequency-based terms that form a topic. It requires
manual efforts to annotate such lists to generate
a human-readable theme or topic name. An au-
tomatic process of identifying topic themes with
authoritative names and meaningful descriptions is
desired to reduce costly human interventions.

In this paper, we introduce a self-supervised
end-to-end system, SciConceptMiner, for automat-
ically discovering scientific concepts from both
semi-structured independent knowledge sources
and unstructured academic documents. It first
obtains a list of concept candidates, either
from external knowledge repositories such as
Wikipedia (Völkel et al., 2006; Vrandečić and
Krötzsch, 2014) and Unified Medical Language
System (UMLS) (Bodenreider, 2004), or directly

https://academic.microsoft.com/
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Figure 2: An overview of the SciConceptMiner system.

mining concepts from a collection of academic
documents. Such concept lists are large and noisy.
They are in the scale of millions and dominated
by invalid or duplicate terms. We then send these
candidates as queries to a search engine API and
leverage rich Web content to identify legitimate
concepts, cluster synonyms, and discard improper
terms. The search API is also used to retrieve high-
quality concept descriptions.

One example is shown in Figure 1.2 Four out
of five trending topics (network embedding, triplet
loss, network representation learning, and zero shot
learning) under embedding are extracted by our
automatic concept extractor model trained on CS
corpus. It demonstrates that our designed model
can effectively capture the emerging trending topics
from the latest scientific articles.

The SciConceptMiner has been deployed to
identify concepts from millions of scholarly com-
munications in Microsoft Academic Graph (MAG)
(Sinha et al., 2015; Wang et al., 2019, 2020). The
MAG with the full list of 740K scientific concepts
can be freely accessed via the Microsoft Academic3

search website and MAG data set4.

2 System Description

As shown in Figure 2, the SciConceptMiner sys-
tem has two stages: the first is the concept can-
didates discovery from various data sources; the

2
This is a snapshot captured in March 2021 for Embedding concept at Microsoft Aca-

demic production system: https://academic.microsoft.com/topics/41608201.
3https://academic.microsoft.com/
4https://docs.microsoft.com/en-us/

academic-services/graph/

second is synonym detection and concept cluster-
ing via a Web search API.

In the concept candidates discovery stage, we
first integrate the semi-structured independent
knowledge sources, Wikipedia and UMLS, into
the system. Such an existing concept list in the
system with associated documents enables us to
train a concept extractor learning model with self-
supervision. We design a BERT-based sequence
labeling model to make a binary prediction on
whether a word or phrase in a sentence is a scien-
tific concept or not. This proposed model is trained
on self-supervised data generated from existing
concepts (from Wikipedia and UMLS) tagged to a
collection of academic documents. We do the con-
cept inference with the trained model to generate
concept candidates for the next stage.

Concept candidates, as the input to the sec-
ond stage, are either from external knowledge
sources or inferred from academic documents.
Both sources have high noisy ratios with different
natures. The independent source such as Wikipedia
has high-quality entities (well-defined names and
descriptions, rare duplication, and rich links and
relationships with each other) but type noisy (many
other types of entities than academic concepts).
The UMLS candidates and the inferred candidates
from an unstructured corpus have more irrelevant
phrases and concept synonyms. With the help of a
search engine API to retrieve top N documents by
using concept candidates as queries, we analyze the
returning web pages and associated URL domain
information collectively. This process would iden-

https://academic.microsoft.com/
https://docs.microsoft.com/en-us/academic-services/graph/
https://docs.microsoft.com/en-us/academic-services/graph/


50

tify around 3-5% of candidates from the first stage
as proper scientific concepts with consistently high
accuracy (94-95% based on sample results) across
all data sources, with over 740K concepts in total.

2.1 Concept Candidate Discovery

2.1.1 Semi-structured Independent
Knowledge Sources

There are many independent knowledge sources,
either manually curated or automatically created or
a hybrid of both. Among them, the most notable
ones are Wikipedia, WikiData5, DBpedia6, and
Yago7 in general domains and MeSH8, UMLS9 in
the bio-med fields. We have applied Wikipedia
and UMLS as sources for SciConceptMiner system
because of their data quality and comprehensive
coverage on scientific terms and phrases. Other
semi-structured sources can be integrated with the
current system design seamlessly as long as they
pass the quality and relevancy examination of their
contents.

Wikipedia: Wikipedia10 is the largest collabo-
ratively edited online encyclopedic knowledge. It
contains contents in more than 300 languages and
has over 6 million English articles as of July 2020.
It was the first external data source being integrated
into MAG considering its comprehensive coverage
on academic topics spanning from social sciences
to natural sciences, as well as technology and ap-
plied sciences. Each topic in Wikipedia (as a sepa-
rate article) is written in high quality and has rare
duplication (Lewoniewski, 2018). The key chal-
lenge of mining quality academic concepts from
Wikipedia is to identify the right type of entities, as
most articles in Wikipedia are missing entity type
information. We used graph link analysis (Milne
and Witten, 2008) for type prediction and had ex-
panded the concepts from an initial 3K to over
200K. The details are described in the Concept Dis-
covery section in (Shen et al., 2018). For concepts
from Wikipedia, we did not use the search engine
API to further filter as the resulting concept list is
already with high quality and rare duplication.

UMLS:
The Unified Medical Language System (UMLS)

5https://www.wikidata.org/
6https://wiki.dbpedia.org/
7https://yago-knowledge.org/
8https://www.nlm.nih.gov/mesh/meshhome.

html
9https://www.nlm.nih.gov/research/

umls/index.html
10https://www.wikipedia.org/

is a repository of biomedical vocabularies devel-
oped by the US National Library of Medicine
(NLM) with sources from multiple datasets and
standards. The latest 2020AA release contains
approximately 4.28 million medical concepts and
15.5 million unique concept names from over 200
sources. A system with large, complex data sources
typically has various inherent limitations on the
data quality. For UMLS, these include structural
inconsistencies such as cycles in graph hierarchy,
semantic inconsistencies between different vocabu-
laries, and missing hierarchical relationships (Bo-
denreider, 2004, 2007; Humphreys et al., 1998).

In the concept candidate discovery stage, we take
the full list of the concept names from UMLS and
first clean it with simple rules such as removing
digit-only terms, two-char terms, too long terms
(over 30 chars), etc. We further filter the remain-
ing terms with a corpus consisting of titles and
abstracts from 170 million English scientific arti-
cles in MAG and only keep terms that appeared
at least N times in above academic corpus. The
resulting list is ready to be sent to a search engine
API for duplication detection and concept selection
in the second stage.

2.1.2 Self-supervised Concept Extractor
Learning

The volume of new research being published is
rapidly increasing, with MAG adding over 1 mil-
lion new papers every month. This creates a unique
challenge to identify, describe, and categorize an
ever-evolving set of emerging concepts in a timely
fashion.

To tackle this challenge, we formulate the con-
cept detection as a self-supervised sequence label-
ing problem that allows us to extract concept can-
didates directly from unstructured academic docu-
ments. This is motivated by the recent development
of deep learning (DL) based Named Entity Recog-
nition (NER) models, which become dominant and
achieve state-of-the-art results (Lample et al., 2016;
Chiu and Nichols, 2016; Yadav and Bethard, 2019).
NER is the task of identifying named entities of a
specific type, such as person or location, in text. A
most recent survey (Li et al., 2020) proposed a new
taxonomy of DL-based NER with three parts: dis-
tributed representations for input, context encoder,
and tag decoder. We adopt this taxonomy to design
our concept extractor learning model.

Instead of a typical NER model which would
learn to identify several entity types at the same

https://www.wikidata.org/
https://wiki.dbpedia.org/
https://yago-knowledge.org/
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
https://www.wikipedia.org/
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Figure 3: Concept extractor learning with a BERT-
based sequence labeling model.

time, we reduce our model design to identify a sin-
gle entity type - scientific concept type. We propose
to treat scientific concept extraction as a sequence
labeling task. Tokens in the text are labeled with
the BIO notation. ‘B’, ‘I’, and ‘O’ represent the be-
ginning, inside, and outside of a scientific concept
chunk respectively. On a sampled set of scientific
articles in MAG, we do lexical matching using the
synonyms of our existing concepts harvested from
Wikipedia and UMLS as self-supervised labels. We
fine-tune a transformer-based BERT model (De-
vlin et al., 2018) (e.g. BERT-Large) as a con-
text encoder and use a Conditional Random Field
(CRF) layer as a tag decoder to train a binary clas-
sifier on each word in a sentence to detect concept
mentions.11 Figure 3 illustrates the design of our
concept extractor learning model. We infer scien-
tific concept candidates using the trained model on
a larger set of high-quality MAG documents, i.e.
those published in prestigious journals/conferences.
Figure 4 provides some self-supervised concept la-
beling samples as well as sample sentences with
inferred new concepts. These new concept candi-
dates are ready to be used in the next stage.

2.2 Synonym Detection and Concept
Selection

In the second stage, we classify the scientific con-
cept candidates detected in the first stage (either
from UMLS or from automatic concept extractor
models) into three broad categories: (1) synonyms
of existing concepts, (2) new concepts, or (3) low-
quality words/phrases we shall discard.

11
We re-use the BERT vocabularies and their pre-trained embedding without regenerat-

ing and retraining on academic corpus.

Figure 4: Self-supervised concept labeling samples.

This is accomplished by searching for each con-
cept candidate using the Bing Web Search API12

and clustering candidates into scientific concept
“identities” based on the URL relevance/reputation
and the consistency of the mentions among top
search results.

More specifically, if K out of top N URLs re-
turned by two concept candidates is the same, we
consider these two candidates are synonyms of
a concept. We also curate the allowed-list and
block-list of URL domains. The concept candi-
dates whose top search results are from well-known
domains of high-quality academic knowledge (in
the allowed-list) would be accepted, and otherwise,
they would be rejected. The block-list is used to
reject terms that also have results from domains in
the allowed list. That is usually the case for com-
mon words and phrases which returned with pages
in online dictionary domains.

This simple yet effective approach can help
trim around 92%-97% concept candidates as noisy
terms and keep 3%-7% of high-quality concepts,
synonyms, and well-written descriptions from do-
mains containing credible academic knowledge and
are in the allowed-list.

3 Evaluation and Analysis

3.1 Self-supervised concept extractor
learning

We use the BERT-Large-Cased as the pre-trained
language model and fine-tune the described con-

12
https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/
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cept extractor learner model with 4 epochs. We
generate the training corpus from MAG from CS
and Medicine domain respectively and split them
in 8:1:1 for train/dev/test. Table 1 shows the corpus
size used for training and inference.

Training Corpus CS Med

# of articles 500K 414K
# of sentences 3.4M 3.6M
# of tokens 72.8M 82.7M
# of concept tokens 8.9M 9.7M

Inference Corpus CS Med

# of articles 2.56M 2.07M
# of sentences 17.6M 18.1M
# of tokens 373.8M 413.4M
# of concept tokens 26.2M 91.2M

Inferred Concept Terms CS Med

# of distinct terms 1.06 M 4.66M
# of cur. concept terms 73,167 88,350
# of new concept terms 48,531 34,744
# of new distinct concepts 46,182 31,302
# of new terms for cur. concepts 16,021 11,389
# of discarded terms 921k 4.53K

Table 1: Training and Inference Corpus Stats.

To ensure that this model works for documents
across various scientific domains, we conduct ex-
periments training our model using documents in
different top domains (e.g. computer science and
medicine). We observe that higher-quality candi-
dates are generated using models trained from the
same domain corpus. For example, when we apply
the model trained with a CS corpus to predict con-
cepts in the medicine corpus, the F1 score drops
from 0.942 to 0.682. Therefore, we train different
models on the corpus from an individual top-level
domain, and the F1 scores of inference results on
in-domain and out-of-domain corpus are shown in
Table 2.

CS-Model Medicine-Model
CS-Test 0.942 0.649
Medicine-Test 0.682 0.912

Table 2: F1 scores of test sets on different models.

We have only conducted model training and in-
ference on CS and medicine corpus. Continued
training on other discipline corpora as well as ex-
ploring more effective concept extractor learning
models are among our ongoing efforts.

3.2 Concept Analysis Based on Data Sources
In this section, we conduct an evaluation of the
concept quality in terms of accuracy and coverage.
We estimate the coverage by evaluating potential
missed opportunities on discarded terms. We also
leverage MAG data to conduct the analysis of top
domain distribution and topic age distribution con-
ditioned on different data sources.

The stats in this section are collected on four
groups of concepts by their data sources: Wikipedia,
UMLS, automatically extracted concepts on Com-
puter Science (AutoCS or A-CS) and Medicine
(AutoMed or A-Med) corpus respectively. Since
the concepts discovered in SciConceptMiner are
already integrated into MAG, we use the paper-
concept relationship, concept hierarchy, and paper
metadata such as publication year in MAG to fa-
cilitate this analysis. The details on how to obtain
these relationships and meta-data are out of the
scope of this work and please refer to (Wang et al.,
2019; Shen et al., 2018) for more information.

3.2.1 Size, Impact, and Accuracy
In Table 3, we report the number of concepts, av-
erage number of papers associated with a concept,
average citation received of a paper tagged with
a concept, as well as the accuracy of concepts.
The independent knowledge sources (Wikipedia
and UMLS) provide similar topic sizes on a scale
of hundreds of thousands, while the automatic ex-
traction models identify about one-tenth of the size
from external sources. On average, the concepts
from Wikipedia are broader (with more papers as-
sociated) and have a higher impact (with more ci-
tations received), while concepts from UMLS are
more fine-grained with slightly smaller influence.
We evaluate the accuracy with the same approach
described in (Shen et al., 2018) and it achieves
a similar accuracy level between 94% and 95%
across all data sources.

Data Source Size Paper Cit. Acc.
Wiki 226,466 3,386 15.6 94.8%
UMLS 433,468 59 9.1 94.5%
AutoCS 46,182 1,462 10.1 94.8%
AutoMed 31,302 1,498 10.7 94.2%

Table 3: Concept size, impact, and accuracy.

3.2.2 Potential Opportunities on Discarded
Contents

It is generally challenging to evaluate the cover-
age of such a large-scale concept discovery system
since it is nearly impossible to identify the “ground
truth” of full coverage, even in a narrowed sub-
domain. In order to estimate the coverage, we iden-
tify the potential opportunities that we may have
missed by sampling and inspecting the discarded
inferred terms from learned concept extractor mod-
els. We sample 300 discarded terms in AutoCS and
AutoMed respectively and report the size and accu-
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racy13 in Table 4. In all terms with a positive label,
roughly one quarter to one third are new concepts
not in the current system, and the remaining 66%
to 75% are synonyms. Hence, we estimate that we
might have missed about 100K concepts and 200K
synonyms from the inference results of our concept
extractor models.

Source Discarded Size Accuracy
Auto-CS terms 4.53 M 3.3%
Auto-Med terms 921 K 12.7%

Table 4: Discarded term size and accuracy.

3.2.3 Topic Domain Distribution
About 75% of 740K concepts in MAG are orga-
nized into a six-level DAG (directed acyclic graph)
structure taxonomy, with top two levels manually
curated (19 domains and 270 sub-domains). We
use this taxonomy to aggregate all concepts to top-
level 19 domains and report the percentage distri-
bution on top 5 domains per data source and for
all concepts. As shown in Table 5, Bio-Med-Chem
3 domains dominate all concepts (67%),Wikipedia
(51%), UMLS (90%), and auto-extracted AutoMed
(73%). Technology and applied sciences such as
Computer Science and Material Science are the
second biggest categories for all concepts. These
two applied sciences together with Mathematics
and Engineering dominate the AutoCS data source
(58%).

ALL Wiki UMLS AutoCS AutoMed

Bio 28.4% 28.3% 35.4% - 41.3%
Med 24.2% 11.0% 35.9% 7.5% 16.2%
Chem 14.7% 11.6% 18.6% - 15.3%
ComSci 7.0% 9.3% - 25.8% 4.9%
MatSci 5.1% - 2.6% 13.8% 7.8%
Math - 6.0% - 8.5% -
Engr - - - 9.3% -
Other 20.7% 33.9% 7.5% 35.0% 14.5%

Table 5: Top domain distribution of concepts.

3.2.4 Topic Age Distribution
In Table 6, we report the average age of the papers
associated with a concept. The average publication
year (rounded off to the floor), as well as 5%, 50%
(the median), and 95% publication year of a con-
cept are also reported. It shows that concepts from
UMLS are generally discovered and used in ear-
lier years, lasting longer (25 years for the middle
90%), while AutoCS and AutoMed contain newer
concepts with shorter life span (17-18 years for the
middle 90%).

13
We split the sampled data of each category to 3 groups with 100 each and they are

evaluated by 3 judges. We report the average of positive label ratios.

Source Age Avg Y 5% Y 50% Y 95% Y
Wiki 18.2 2002 1983 2003 2013
UMLS 21.0 1999 1982 1997 2007
A-CS 14.1 2006 1990 2008 2017
A-Med 15.7 2004 1989 2006 2016

Table 6: Age distribution of concepts.

Figure 5 provides a yearly distribution from 2010
to 2019. It represents the percentage of papers
(associated with concepts in respective sources)
over the past 10 years.14 This is consistent with
our expectation as one of our primary goals of
leveraging the automatic concept extraction is to
discover emerging concepts in the latest scientific
documents.

Figure 5: Concept Age Distribution 2010-2019.

4 Conclusion

In this work, we demonstrated a large-scale scien-
tific concept discovery production system, SciCon-
ceptMiner, for automatically capturing academic
concepts from both semi-structured data and un-
structured documents. The system has two parts:
the first is the concept candidate identification,
and the second is synonym detection and concept
selection. We used a BERT-based sequence la-
beling model to learn concept phrases with self-
supervision and leverage a Web search API to clus-
ter synonyms and identify valid concepts.

SciConceptMiner has discovered more than
740K scientific concepts across all research do-
mains from Wikipedia, UMLS, and scholarly arti-
cles with high accuracy (94.7%). These concepts
are integrated to build the Microsoft Academic
Graph, which publishes one of the largest cross-
domain scientific taxonomy. It enables easy explo-
ration of scientific knowledge as well as facilitates
many downstream applications like information re-
trieval, question answering, and recommendations.

14
Please note that the percentage of papers of each year is calculated by dividing by all

papers for a source. Since the earlier years’ distributions are very close, we do not plot them.
The sum of each source over the past 10 years is less than 1.
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