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Abstract

In this paper, we release an open-source li-
brary, called TextBox, to provide a unified,
modularized, and extensible text generation
framework. TextBox aims to support a broad
set of text generation tasks and models. In
our library, we implement 21 text generation
models on 9 benchmark datasets, covering the
categories of VAE, GAN, and pretrained lan-
guage models. Meanwhile, our library main-
tains sufficient modularity and extensibility by
properly decomposing the model architecture,
inference, and learning process into highly
reusable modules, which allows users to eas-
ily incorporate new models into our frame-
work. The above features make TextBox es-
pecially suitable for researchers and practi-
tioners to quickly reproduce baseline models
and develop new models. TextBox is imple-
mented based on PyTorch, and released un-
der Apache License 2.0 at the link https:

//github.com/RUCAIBox/TextBox.

1 Introduction

Text generation, which has emerged as an impor-
tant branch of natural language processing (NLP),
is often formally referred as natural language gen-
eration (NLG) (Li et al., 2021b). It aims to produce
plausible and understandable text in human lan-
guage from input data (e.g., a sequence, keywords)
or machine representation. Because of incredible
performance of deep learning models, many classic
text generation tasks have achieved rapid progress,
such as machine translation (Vaswani et al., 2017),
dialogue systems (Li et al., 2016b), text summariza-
tion (See et al., 2017), graph-to-text generation (Li
et al., 2021a), and more.

To facilitate the development of text generation
models, a few remarkable open-source libraries

†Equal contribution.
∗Corresponding author.

have been developed (Britz et al., 2017; Klein et al.,
2017b; Miller et al., 2017b; Zhu et al., 2018; Hu
et al., 2019). These frameworks are mainly de-
signed for some or a small number of specific tasks,
particularly machine translation and dialogue sys-
tems. They usually focus on a special kind of tech-
niques for text generation such as generative adver-
sarial networks (GAN), or have limitations in cov-
ering commonly-used baseline implementations.
Even for an experienced researcher, it is difficult
and time-consuming to implement all compared
baselines under a unified framework. Therefore, it
is highly desirable to re-consider the implementa-
tion of text generation algorithms in a unified and
modularized framework.

In order to alleviate the above issues, we initi-
ate a project to provide a unified framework for
text generation algorithms. We implement an open-
source text generation library, called TextBox,
aiming to enhance the reproducibility of existing
text generation models, standardize the implemen-
tation and evaluation protocol of text generation
algorithms, and ease the development process of
new algorithms. Our work is also useful to support
several real-world applications in the field of text
generation. We have extensively surveyed related
text generation libraries and broadly fused their
merits into TextBox. The key features and capabili-
ties of our library are summarized in the following
three aspects:

• Unified and modularized framework. TextBox
is built upon PyTorch (Paszke et al., 2019), which is
one of the most popular deep learning frameworks
(especially in the research community). Moreover,
it is designed to be highly modularized, by decou-
pling text generation models into a set of highly
reusable modules, including data module, model
module, evaluation module, and many common
components and functionalities. In our library, it
is convenient to compare different text generation

https://github.com/RUCAIBox/TextBox
https://github.com/RUCAIBox/TextBox
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Figure 1: The illustration of the main functionalities and modules in our library TextBox.

algorithms with built-in evaluation protocols via
simple yet flexible configurations, or develop new
text generation models at a highly conceptual level
by plugging in or swapping out modules.

• Comprehensive models, benchmark datasets
and standardized evaluations. TextBox contains
a wide range of text generation models, covering
the categories of variational auto-encoder (VAE),
generative adversarial networks (GAN), recurrent
neural network (RNN) and pretrained language
models (PLMs). We provide flexible supporting
mechanisms via the configuration file or command
line to run, compare and test these traditional and
state-of-the-art algorithms. Based on these mod-
els, we implement two major text generation tasks,
namely unconditional text generation tasks and con-
ditional text generation tasks (e.g., text summa-
rization and machine translation). To construct a
reusable benchmark, we incorporate 9 widely-used
datasets with regards to different text generation
tasks for evaluation. Our library supports a series
of frequently adopted evaluation protocols for test-
ing and comparing text generation algorithms, such
as perplexity, BLEU, ROUGE, and Distinct.

• Extensible and flexible framework. TextBox
provides convenient interfaces of various common
functions or modules in text generation models,
e.g., RNN-based and Transformer-based encoders
and decoders, pretrained language models, and at-
tention mechanisms. Within our library, users are
convenient to choose different API interfaces for
building and evaluating their own models. Besides,
the interfaces of our library are fully compatible
with the PyTorch interface which allows seamless
integration of user-customized modules and func-

tions as needed.

2 Architecture and Design

Figure 1 presents the illustration of the main func-
tionalities and modules in our library TextBox. The
configuration module at the bottom helps users
set up the experimental environment (e.g., hyper-
parameters and running details). Built upon the
configuration module, the data, model, and evalua-
tion modules form the core elements of our library.
In the following, we describe the detailed structure
of these three modules.

2.1 Data Module
A major design principle of our library is to support
different text generation tasks. For this purpose,
data module is the fundamental part to provide
various data structures and functions adapting to
different generation tasks.

For extensibility and reusability, our data mod-
ule designs a unified data flow feeding input text
into the models. The data flow can be described
as: input text → Dataset → DataLoader →
models. The class Dataset involves two special
data structures, i.e., single sequence and paired se-
quence, which are oriented to unconditional and
conditional text generation tasks, respectively. The
single sequence structure requires users to prepro-
cess input text into one sequence per line in input
files, while the paired sequence structure requires
users to separate the source and target into two files
with one sequence per line in each file. Specifically,
for conditional text generation, TextBox supports
several source formats corresponding to different
tasks, e.g., discrete attributes or tokens for attribute-
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to-text and keyword-to-text generation, a text se-
quence for machine translation or text summariza-
tion, and multiple text sequences for multi-turn dia-
logue systems. Furthermore, users can also provide
additional information as inputs, e.g., background
text for agents in dialogues. The implementation
of Dataset contains many common data prepro-
cessing functionalities, such as converting text into
lowercase, word tokenization, and building vocab-
ulary. And the class Dataloader is based on the
above two data structures, which is responsible for
organizing the data stream.

In order to compare different generation models,
we have collected 9 commonly-used benchmarks
for text generation tasks, which makes it quite con-
venient for users to start with our library.

2.2 Model Module

To support a variety of models, we set up the model
module by decoupling the algorithm implemen-
tation from other components and abstracting a
set of widely-used modules, e.g., encoder and
decoder. These modules can be flexibly com-
bined following the required interface and then con-
nected with data and evaluation modules. Based
on this abstract design, it is convenient to switch
between different text generation tasks, and change
from one modeling paradigm to another by simply
plugging in or swapping out modules.

In addition to modularized design, our library
also includes a large number of text genera-
tion baseline models for reproducibility. At the
current released version, we have implemented
21 baseline models within four main categories
of text generation models, namely VAE-based,
GAN-based, pretrained language models, and
sequence-to-sequence, corresponding to different
generation architectures and tasks. For example,
GAN-based models consist of generator and
discriminator, and VAE-based models con-
tain encoder and decoder. We summarize all
the implemented models in Table 1. For all the
implemented models, we test their performance for
unconditional and conditional generation tasks on
corresponding benchmarks, and invite a code re-
viewer to examine the correctness of the implemen-
tation. Overall, the extensible and comprehensive
model modules can be beneficial for fast explo-
ration of new algorithms for a specific task, and
convenient comparison between different models.

In specific, for each model, we utilize two inter-

Category Models Reference

VAE

LSTM-VAE (Bowman et al., 2016)
CNN-VAE (Yang et al., 2017)

Hybrid-VAE (Semeniuta et al., 2017)
CVAE (Li et al., 2018)

GAN

SeqGAN (Yu et al., 2017)
TextGAN (Zhang et al., 2017)
RankGAN (Lin et al., 2017)
MaliGAN (Che et al., 2017)
LeakGAN (Guo et al., 2018)
MaskGAN (Fedus et al., 2018)

Pretrained
Language

Model

GPT-2 (Radford et al., 2019)
XLNet (Yang et al., 2019)

BERT2BERT (Rothe et al., 2020)
BART (Lewis et al., 2020)

ProphetNet (Qi et al., 2020)
T5 (Raffel et al., 2020)

Seq2Seq

RNN (Sutskever et al., 2014)
Transformer (Vaswani et al., 2017)
Context2Seq (Tang et al., 2016)

Attr2Seq (Dong et al., 2017)
HRED (Serban et al., 2016)

Table 1: Implemented models in our library TextBox.

face functions, i.e., forward and generate, for
training and testing, respectively. These functions
are general to various text generation algorithms,
so that we can implement various algorithms in
a highly unified way. Such a design also enables
quick development of new models.

In order to improve the quality of generation
results, we also implement a series of generation
strategies when generating text, such as greedy
search, top-k search and beam search. Users are al-
lowed to switch between different generation strate-
gies leading to better performance through setting
a hyper-parameter, i.e., decoding_strategy.
Besides, we add the functions of model saving and
loading to store and reuse the learned models, re-
spectively. In the training process, one can print
and monitor the change of the loss value and apply
training tricks such as warm-up and early-stopping.
These tiny tricks largely improve the usage experi-
ences with our library.

2.3 Evaluation Module

It is important that different models should be com-
pared under the unified evaluate protocols, which
is useful to standardize the evaluation of text gener-
ation. To achieve this goal, we set up the evaluation
module to implement commonly-used evaluation
protocols for text generation models.

Our library supports both logit-based and word-
based evaluation metrics. The logit-based met-
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rics include perplexity (PPL) (Brown et al., 1992)
and negative log-likelihood (NLL) (Huszar, 2015),
measuring how well the probability distribution
or a probability model predicts a sample com-
pared with the ground-truth. The word-based
metrics include the most widely-used generation
metrics for evaluating lexical similarity, semantic
equivalence and diversity. For example, BLEU-
n (Papineni et al., 2002) and ROUGE-n (Lin,
2004) measure the ratios of the overlapping n-
grams between the generated and real samples,
METEOR (Banerjee and Lavie, 2005) measures
the word-to-word matches based on WordNet,
CIDEr (Vedantam et al., 2015) computes the TF-
IDF weights for each n-gram in generated/real sam-
ples and CHRF++ (Popovic, 2015) computes F-
score averaged on both character- and word-level
n-grams. To evaluate the semantic equivalence
between generated and real samples, we include
BERTScore (Zhang et al., 2020), a metric based
on the similarity of sentence embeddings relied on
pretrained language model BERT (Devlin et al.,
2019). Moreover, Distinct-n and Unique-n (Li
et al., 2016a) measures the degree of diversity of
generated text by calculating the number of dis-
tinct unigrams and bigrams in generated text. Be-
sides, to evaluate the diversity of unconditionally
generated samples, we also take into account the
Self-BLEU (Zhu et al., 2018) metric. In summary,
users can choose different evaluation protocols
towards a specific generation task by setting the
hyper-parameter, i.e., metrics.

In practice, as the model may generate many
text pieces, evaluation efficiency is an important
concern. Hence, we integrate efficient computing
package, fastBLEU (Alihosseini et al., 2019), to
compute evaluation scores. Compared with other
package, fastBLEU adopts the multi-threaded
C++ implementation.

3 System Usage

In this section, we show a detailed guideline to
use our system library. Users can run the existing
models or add their own models as needed.

3.1 Running Existing Models

To run an existing model within TextBox, users
only need to specify the dataset and model by
setting hyper-parameters, i.e., dataset and
model. And then experiments can be run with a
simple command-line interface:

python run_textbox.py \

--model=GPT2 --dataset=COCO

The above case shows an example that runs
GPT-2 (Radford et al., 2019) model on COCO
dataset (Lin et al., 2015). In our system library,
the generation task, such as translation, and
summarization, is determined once users spec-
ify the dataset, thus the task is not necessary to
be explicitly specified in hyper-parameters. To fa-
cilitate the modification of hyper-parameters, we
provides two kinds of YAML configuration files,
i.e., dataset configuration and model configuration,
which allow running many experiments without
modifying source code. It also supports users to
include hyper-parameters in the command line,
which is useful for some specifically defined param-
eters. TextBox is designed to be run on different
hardware devices. By default, CUDA devices will
be used if users set the hyper-parameter use_gpu
as True, or otherwise CPU will be used. Users
can determine the ID of used CUDA devices by
setting hyper-parameter gpu_id. We also sup-
port distributed model training in multiple GPUs
by setting the hyper-parameter DDP as True.

Based on the configuration, we provide the aux-
iliary function to split the dataset into train, valida-
tion and test sets according to the provided hyper-
parameter split_ratio, or load the pre-split
dataset. Moreover, TextBox also allows users to
load and re-train the saved model for speeding up
reproduction, rather than training from scratch.

Figure 2 presents a general usage flow when
running a model in our library. The running pro-
cedure relies on some experimental configuration,
obtained from the files, command line or parameter
dictionaries. The dataset and model are prepared
and initialized according to the configured settings,
and the execution module is responsible for training
and evaluating models.

3.2 Implementing a New Model

With the unified Data and Evaluation mod-
ules, one needs to implement a specific Model
class and three mandatory functions as follows:

• __init__() function. In this function, the
user performs parameters initialization, global vari-
able definition and so on. It is worth noting that, the
imported new model should be a sub-class of the
abstract model class defined in our library. One can
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Figure 2: An illustractive usage flow of our library.

reuse the modules (e.g., Transformer) and layers
(e.g., Highway net) already existing in our library
for convenience. A configuration file is preferable
to conduct further flexible adjustment.

• forward() function. This function calcu-
lates the training loss to be optimized and valida-
tion loss to avoid overfitting. Based on the returned
training loss, our library will automatically invoke
different optimization methods to learn the param-
eters according to pre-defined configuration.

• generate() function. This function is em-
ployed to generate output text based on input text
or free text. Our library also provides several gen-
eration strategies, such as beam search and top-k
search, for users to improve generation results.

In order to implement user-customized modules,
one can reuse functions and classes inherited from
our basic modules, or override original functions
and add new functions.

4 Performance Evaluation

To evaluate the models in TextBox, we conduct ex-
tensive experiments to compare their performance
on unconditional and conditional generation tasks.

4.1 Unconditional Text Generation
Following previous work, we adopt COCO (Lin
et al., 2015), EMNLP2017 WMT News (Chatterjee
et al., 2017) and IMDB Movie Reviews (Maas et al.,
2011) datasets for comparing the performance of
five traditional and state-of-the-art models, i.e.,
LSTM-VAE, SeqGAN, RankGAN, MaliGAN, and
GPT-2, in the unconditional text generation task.

In our experiments, we run models with the pa-
rameter configurations described in their original

papers. Note that the BLEU-n metric employs
the one-hot weights (e.g., (0, 0, 0, 1) for BLEU-
4) instead of average weights, since we consider
that one-hot weights can reflect the overlapping
n-grams more realistically.

These results on COCO datasets are shown in Ta-
ble 2, and other results on EMNLP2017 and IMDB
datasets can be found in our GitHub page. We
can see from Table 2, these models implemented
in our library have the comparable performance
compared with the results reported in the original
papers. Moreover, the pretrained language model,
i.e., GPT-2, achieves consistent and remarkable per-
formance, which is in line with our expectations.

4.2 Conditional Text Generation

In this section, we apply various models on four
conditional text generation tasks, i.e., attribute-to-
text generation, dialogue systems, machine transla-
tion, and text summarization. The task of attribute-
to-text generation is to generate text given sev-
eral discrete attributes, such as user, item, and rat-
ing. We use the popular context-to-sequence (Con-
text2Seq) and attribute-to-sequence (Attr2Seq) as
base models, which utilize the multi-layer percep-
tron (MLP) and RNN as the encoder and decoder,
respectively. Besides, dialogue systems aim to gen-
erate response given a conversation history. We
consider two typical models, i.e., attention-based
RNN and Transformer, and one popular hierarchi-
cal recurrent encoder-decoder model (HRED) as
base models. In RNN and Transformer, the multi-
sequence conversation history is concatenated as
one sequence feeding into the encoder, while in
HERD the hierarchical structure of the conversa-
tion history is kept and modeled with a hierarchical
encoder. Their results are shown in Table 2.

To showcase how our TextBox can support di-
verse techniques on several tasks with different
decoding strategies, we compare the attention-
based RNN model, Transformer, and four state-
of-the-art pretrained language models, i.e., BART,
BERT2BERT, ProphetNet, and T5, for both ma-
chine translation and text summarization tasks. In
Table 3, we adopt the IWSLT2014 German-to-
English (Cettolo et al., 2014) translation dataset
and utilize three generation strategies, i.e., top-
k, greedy, and beam search. The greedy strategy
considers the most probable token at each gener-
ation step, the top-k search strategy means sort-
ing by probability and zero-ing out the probabili-
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Tasks Datasets Models Distinct-1 Distinct-2 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Unconditional
Generation

COCO

LSTM-VAE - - 63.97 46.56 18.53 5.97
SeqGAN - - 99.76 82.32 51.26 25.18
RankGAN - - 99.76 82.92 52.46 26.40
MailGAN - - 99.71 81.95 50.86 24.87
GPT-2 - - 88.15 78.13 55.81 31.88

Attribute-to-Text
Generation

AMAZON Context2Seq 0.07 0.39 17.21 2.80 0.83 0.43
Attr2Seq 0.14 2.81 17.14 2.81 0.87 0.48

Dialogue
Systems

Personal
Chat

RNN+Attn 0.24 0.72 17.51 4.65 2.11 1.47
Transformer 0.38 2.28 17.29 4.85 2.32 1.65
HRED 0.22 0.63 17.29 4.72 2.20 1.60

Table 2: Performance comparisons of different methods for three tasks, i.e., unconditional generation, attribute-
to-text generation, and dialogue systems. Distinct-n is not applicable to the unconditional generation task. “-”
denotes the metric Distinct-n is generally not applicable to unconditional text generation.

Model Strategy BLEU2 BLEU3 BLEU4

RNN+Attn
Top-k 26.68 16.95 10.85
Greedy 33.74 23.03 15.79
Beam 35.68 24.94 17.42

Transformer
Top-k 30.96 20.83 14.16
Greedy 35.48 24.76 17.41
Beam 36.88 26.10 18.54

Table 3: Performance comparison of different genera-
tion models with three strategies for machine transla-
tion from German to English.

ties for anything below the k-th token, and beam
search (Vijayakumar et al., 2018) strategy selects
the top scoring B candidates from the set of all pos-
sible one token extensions of its beams, where B
is the beam size (B = 5 in our experiments). From
Table 3 we observe that the beam search strategy
brings more improvement than the others. For text
summarization, we compare RNN and Transformer
with four pretrained models as shown in Table 4.
These models are trained or fine-tuned in Giga-
Word (Graff et al., 2003) dataset. As observed in
Table 4, pretrained models outperform the RNN
model and Transformer by a clear margin.

The results of all implemented models in other
tasks can be acquired from our GitHub page.

5 Related Work

Several toolkits have been released focusing on one
or a few specific text generation tasks or techniques.
For example, Tensor2Tensor (Vaswani et al., 2018),
MarianNMT (Junczys-Dowmunt et al., 2018) and
OpenNMT (Klein et al., 2017a) are designed for
machine translation task, while ParlAI (Miller et al.,
2017a) and Plato (Papangelis et al., 2020) special-

Model ROUGE-1 ROUGE-2 ROUGE-L

RNN+Attn 36.32 17.63 38.36
Transformer 36.21 17.64 38.10

BART 39.34 20.07 41.25
BERT2BERT 38.16 18.89 40.06
ProphetNet 38.49 18.41 39.84
T5 38.83 19.68 40.76

Table 4: Performance comparison of different genera-
tion models for text summarization. Specifically, we
adopt the base version of BART, BERT2BERT, T5 and
the large version of ProphetNet.

ized for dialog research in this field. There are
two text generation libraries closely related to our
library, including Texygen (Zhu et al., 2018) and
Texar (Hu et al., 2019) focusing on GAN technique
and high modularization, respectively. TextBox
has drawn inspirations from these toolkits when
designing relevant functions.

Compared with them, TextBox covers more text
generation tasks and models, which is useful for re-
producibility. Besides, we implement standardized
evaluation to compare different models. Also, our
library provides various common modules for con-
venience. It has a proper focus on text generation
field, and provide a comprehensive set of modules
and functionalities.

6 Conclusion

This paper presented a unified, modularized, and
extensible text generation library, called TextBox.
So far, we have implemented 21 text generation
models, including VAE-based, GAN-based, pre-
trained language models, sequence-to-sequence
and 9 benchmark datasets for unconditional and
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conditional text generation tasks. Moreover, Our
library is modularized to easily plug in or swap out
components, and extensible to support seamless
incorporation of other external modules. In the fu-
ture, features and functionalities will continue be
added to our library, including more models and
datasets, diverse inputs such as graph and table,
and distributed training in multiple machines. We
invite researchers and practitioners to join and en-
rich TextBox, and help push forward the research
on text generation.

7 Broader Impacts

Text generation has a wide range of beneficial appli-
cations for society, including code auto-completion,
game narrative generation, and answering ques-
tions. But it also has potentially harmful applica-
tions. For example, GPT-3 improves the quality of
generated text over smaller models and increases
the difficulty of distinguishing synthetic text from
human-written text, such as fake news and reviews.

Here we focus on two potential issues: the po-
tential for deliberate misuse of generation models
and the issue of bias. Malicious uses of generation
models can be somewhat difficult to anticipate be-
cause they often involve repurposing models in a
very different environment or for a different pur-
pose than researchers intended. To mitigate this,
we can think in terms of traditional security risk
assessment frameworks such as identifying threats.
Biases present in training text may lead models to
generate stereotyped or prejudiced content. This is
concerning, since model bias could harm people in
the relevant groups in different ways. In order to
prevent bias, there is a need for building a common
vocabulary tying together the normative, technical
and empirical challenges of bias mitigation for gen-
eration models. We expect this to be an area of
continuous research for us.
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