X The Classical Language Toolkit: An NLP Framework for Pre-Modern

Languages
Kyle P. Johnson Patrick J. Burns John Stewart
Accenture Department of Classics Amplify

kyle@kyle-p-johnson.com

University of Texas at Austin

johnstewart@aya.yale.edu

patrick.burns@austin.utexas.edu

Todd G. Cook
Appen

todd.g.cook@gmail.com

Abstract

This paper announces version 1. 0 of the Clas-
sical Language Toolkit (CLTK), an NLP frame-
work for pre-modern languages. The vast ma-
jority of NLP, its algorithms and software, is
created with assumptions particular to living
languages, thus neglecting certain important
characteristics of largely non-spoken historical
languages. Further, scholars of pre-modern
languages often have different goals than those
of living-language researchers. To fill this void,
the CLTK adapts ideas from several leading
NLP frameworks to create a novel software ar-
chitecture that satisfies the unique needs of pre-
modern languages and their researchers. Its
centerpiece is a modular processing pipeline
that balances the competing demands of algo-
rithmic diversity with pre-configured defaults.
The CLTK currently provides pipelines, includ-
ing models, for almost 20 languages.

1 Introduction

Pre-modern (or historical) languages are linguisti-
cally no different than those with speakers living
today. Differences, however, manifest in how pre-
modern languages are preserved, to what extent
they are preserved, how they may be analyzed, and
the ends to which they are studied. NLP is com-
prised of “computational techniques for the pur-
pose of learning, understanding, and producing hu-
man language content” (Hirschberg and Manning,
2015, 261). In principle, such techniques may
be applied to pre-modern languages. But because
NLP, its algorithms and software, presumes living
languages, there remains a significant void for NLP
for pre-modern languages.

The Classical Language Toolkit (CLTK) is a
Python library that borrows ideas from state-of-the-
art NLP software, in order to cater to the partic-
ular needs of pre-modern languages and their re-

Clément Besnier

clem@clementbesnier.fr

20

William J. B. Mattingly
Data Science Lab
Smithsonian Institution
wmaz229@g.uky.edu

searchers.! Its centerpiece is a modular processing
pipeline that balances the competing demands of
algorithmic diversity with pre-configured defaults.
The CLTK currently provides pipelines, including
models, for almost 20 languages. This architec-
ture allows for relatively easy customization of cur-
rently available pipelines to new languages.

1.1 NLP for Pre-modern Languages

The authors adopt the term pre-modern to encom-
pass the ISO 639-3 definitions of ancient (whose
speakers died over 1,000 years ago), extinct (speak-
ers who died within the last 200-300 years), and
historic (distinct antecedents to living languages)
(SIL International). The CLTK aims to treat all
such languages, as they survive in written texts,
from the 33rd century B.C. (Sumerian) up until the
start of the A.D. 19th century.’

Pre-modern languages have traits distinguishing
them from living languages, including:

* A finite corpus: Since native speakers no
longer generate new texts, corpora may be
too small for some machine learning algo-
rithms, thus requiring rules-based or hybrid

'nttp://cltk.org. Begunin 2014, v. 0.1 was a
collection of user-submitted NLP algorithms, plus models, for
about a dozen pre-modern languages. In this 1. 0 release, the
CLTK offers a standard API and pre-configured processing
pipelines. Burns et al. (2019) contains some earlier history
and concepts behind v. 0. 1. The MIT-licensed code is avail-
able in version control (https://github.com/cltk/
cltk)and packaged on PyPl (withpip install cltk).

“This cutoff date need not be absolute, as the date of intro-
duction of the printing press may be taken into consideration.
The press, which spread asynchronously, normalizes orthog-
raphy and reduces copyist errors (Eisenstein, 1979, 181-225),
thus obviating need for some of the CLTK’s tools. As orthog-
raphy stabilizes, coming closer to contemporary usage, living-
language NLP becomes increasingly tractable. The Chinese
movable type press (A.D. 11th century) could be considered
an exception, though modern metal typefaces, with attendant
productivity gains, were not applied to Chinese texts until the
mid-19th century (Wilkinson, 2000, 451-453). The Sume-
rian date comes from (Michalowski, 2004, 19).

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations, pages 20-29, August 1st - August 6th, 2021.

©2021 Association for Computational Linguistics

kyle@kyle-p-johnson.com
patrick.burns@austin.utexas.edu
johnstewart@aya.yale.edu
todd.g.cook@gmail.com
clem@clementbesnier.fr
wma229@g.uky.edu
http://cltk.org
https://github.com/cltk/cltk
https://github.com/cltk/cltk

approaches. In some cases, a language’s cor-
pus may be small enough that it can be fully
annotated.’

* Variation: Corpora of pre-modern languages
are likely to demonstrate greater variation
than living languages. This may include non-
standardized orthography, regional dialects,
and temporal language change (over spans of
hundreds and even thousands of years).*

* Limited resources: Interest in pre-modern
languages is largely scholarly or religious,
meaning less funding from government and
industry for the creation of resources such as
text corpora, treebanks, and lexica.

These three differences spur the need for NLP spe-
cific to pre-modern languages.

1.2 Researchers of Pre-modern Languages

Researchers of pre-modern languages have con-
cerns that are likely philological, linguistic, or ped-
agogical. Philology is an approach to pre-modern
writing that focuses on the historical origins of
texts; it is comparative as well as genealogical in
nature (Turner, 2014, x). Historical linguists study
diachronic change in a language itself, as opposed
to philologists’ focus upon written language.> Ed-
ucators have unique concerns, too, including fore-
most that students generally do not learn by speak-
ing and that they begin studying difficult, orig-
inal texts within a year of study. In the class-
room, a high premium is put upon sight translation,
which is accomplished by the sub-tasks of identify-
ing words’ parts-of-speech, grammatical construc-
tions, and lexical headwords.® These three objec-
tives may find some representation among users
of living-language NLP,” however they are not sig-

3 As with Gothic, for which the only sizable evidence sur-
viving is a 6th century manuscript containing a 4th century
translation of the Bible (Miller, 2019, 1, 8-15), most of which
the PROIEL project has annotated (Haug and Jghndal, 2008).

“Sumerian, for example, survived 3,000 years (Michalow-
ski, 2004, 19). Piotrowski (2012, 14-22) introduces the cat-
egories of difference (diachronic spelling variation), variance
(synchronic spelling variation), and uncertainty (information
loss during digital transcription).

50On linguists’ focus on spoken language change: Hock
(1991, 1-10) and Campbell (2013, 1-5); on contrast to philol-
ogy: Hock (1991, 3-5) and Campbell (2013, 373, 391-
392). Philology is fundamentally “intepretation of textual
data” (Hock 1991, 5).

8See Adams (2016) on the origins of this pedagogy in the
English-speaking world.

’E.g., for secondary language acquisition (Inniss et al.,
2006)

21

nificant stimuli to industrial and governmental re-
search.

1.3 Previous Work

Two software architectural patterns, the framework
and the pipeline, are most relevant to the CLTK’s
design.

As NLP matured in the early 2000’s, frame-
works (or foolkits) emerged with the purpose of
making the technology easier for non-specialists to
use. To this end, these frameworks generally have
documentation friendly for beginners, value diver-
sity in algorithms, treat multiple languages, pro-
vide data sets, help with text preprocessing, and
provide pre-trained models.® Of these characteris-
tics, the CLTK especially values multilingual and
multi-algorithmic NLP, the latter of which being
necessary to accommodate the varying state of data
sets of pre-modern languages. The CLTK shows
some especial similarity to the quanteda library for
the R language (Benoit et al., 2018), as it contains
novel algorithms yet also “wraps” other NLP li-
braries.

Several NLP frameworks have popularized the
pipeline processing architecture, in which default
algorithms (tokenization, POS tagging, depen-
dency parsing, etc.) are run in series upon input
text. Algorithms may be added or removed from
a default pipeline. Increasingly, frameworks use
identical algorithms for every language, without
special consideration for a language’s nuances.

Aside from the CLTK, NLP tools for pre-
modern languages have been uncommon,’ despite
a steady growth of language resources.'® Pre-
modern languages are often low-resource. Low-
resource software applications, however, have
tended toward transcription'! and, in the case of en-

8Prominent frameworks include the NLTK (Bird and Lo-
per, 2004), OpenNLP (Apache Software Foundation, 2011),
CoreNLP (Manning et al., 2014), spaCy (Honnibal and John-
son, 2015), and Stanza (Qi et al., 2020).

°For a previous discussion of NLP pipelines for the CLTK,
see Burns (2019). There has been some noteworthy work on
how generally pre-modern NLP should be done (Piotrowski,
2012; Kontges et al., 2019; McGillivray et al., 2019); also
Zeldes and Schroeder (2016), a Python library for Coptic.

0Treebanks exist for twelve Indo-European languages ac-
cording to the PROIEL annotation standards (Haug and Jgh-
ndal, 2008; Eckhoff and Berdicevskis, 2015; Bech and Eide,
2014); texts also for Greek and Latin (Celano et al., 2014),
Sanskrit (Hellwig et al., 2020), Cuneiform (Sumerian, Akka-
dian, etc.) (Englund, 2016), historical Arabic (Belinkov et al.,
2016), and Classical Chinese (Lee and Kong, 2012; Yasuoka,
2019).

“E.g., Brugman et al. (2004); Ulinski et al. (2014).

dangered languages, language preservation.'> An
interesting exception may be UralicNLP (Himail4-
inen, 2019), which provides algorithms intended
for relatively small data sets in Finnish and related
languages.

2 System Design

An NLP pipeline within a framework architecture
standardizes 1I/O while preserving algorithmic di-
versity. The CLTK should provide:

* Modular processing pipelines: Each lan-
guage should come with a pre-configured
pipeline set to defaults expected by most users.
A user should be able to modify, replace, and
add processes to a pipeline. Pipelines may be
adjusted for new languages.

Diversity of algorithms: When there are sev-
eral popular ways researchers perform a par-
ticular process (e.g., tagging entities with a
word list or a neural network), the CLTK
should support them both. Due to limited lan-
guage resources, such as digitized texts and
treebanks, machine learning at times may not
be tractable (and if so, then only certain algo-
rithms).!> While rules-based approaches of-
ten do not adapt to the dynamism of living
languages, they can perform well in restricted
tasks within narrow domains.'*

Standard I/0: To optimize user productiv-
ity and facilitate scholarly communication, an
API should accept standard input for all hu-
man languages. Likewise, when linguistically
justified, outputs should be expressed using
data structures and representations that are
shared across languages.

Model management: The project must pro-
vide models for every pipeline.

]ZE.g., Katinskaia et al. (2017); Buszard-Welcher (2018).

BFor example, surviving literary Ancient Greek texts, from
c. 800 B.C. to A.D. 1453, amount to only 65M words (Berko-
witz and Squitier, 1990). By contrast, the original English-
language BERT was trained on 3,300M tokens (Devlin et al.,
2019, 5). (Nevertheless, a BERT model has been made for
the Latin language with 643M tokens (Bamman and Burns,
2020, 2).) On small historical corpora, Hamilton et al. (2016)
demonstrates benefits of SVD word embeddings over word2-
vec.

“For example, the CLTK’s meter scanners for Latin poetry
(cltk/prosody/lat/verse.py).

22

>>> from cltk import NLP
>>> cltk_nlp NLP (language="1lat")
& CLTK version '1.0.14'.

Pipeline for 1
"lat!') :
"LatinStan

" LatinNERP
"LatinLexiconProcess’
>>> text "Marcus Cato,

R

ortus

— municipio Tusculo adulescentulus,
— priusquam honoribus operam daret,
— versatus est in Sabinis, quod

— 1ibi heredium a patre relict um
— habebat."

>>> cltk_doc
cltk_nlp.analyze (text=text)
>>> print (cltk_doc.tokens[:12])

—

["Marcus', 'Cato', s ortus',

— 'municipio', 'Tusculo',

— 'adu entulus', ',"',

— 'priusquam', 'honoribus',

— 'operam', 'daret']

>>> print (cltk_doc.pos[:12])
['"PROPN', 'PROPN', 'PUNCT', 'NOUN',
< 'NOUN', 'NOUN', 'ADJ', 'PUNCT',
— 'ADV', 'NOUN', 'NOUN', 'VERB']

>>> print (cltk_doc.words[11].string)
daret

>>> print (cltk_doc.words[11].pos)
POS.verb

>>> print (cltk_

— doc.words[11].features)

[third],
VerbForm:

.
.
.
.

Code Block 1: Example of NLP () (3.1) processing the
first sentence of Cornelius Nepos’ M. Porcius Cato.

3 Architecture and Usage

The CLTK has one primary interface, NLP (), and
five custom data types: When a user calls NLP . |
analyze (), itoutputs a Doc, which contains all
processed information. At Doc.words is a list
of Word objects, each of which contains token-
level information added by each Process. A
Pipeline contains alistof Process objects for
a given language.

3.1 NLP()

The CLTK’s NLP () class offers a common in-
terface for all languages, for which a pipeline of
NLP algorithms is called. Calling analyze (),
the class’s only public method, triggers each
Process in succession. The CLTK executes the
algorithms and returns a Doc object. Code Block 1

Process

EmbeddingsProcess

ArabicEmbeddingsProcess

Figure 1: Illustration of the inheritance of Process
(3.2) objects.

illustrates its use.!?

3.2 Process

An algorithm in the CLTK may be called directly
or wrapped in a Process that is incorporated into
in a Pipeline. Each of the following classes,
which inherit from Process, keep the project’s
algorithms organized according the kind of NLP
they contain (Figure 1).'6

e NormalizeProcess: Reads Doc.raw,
then does Unicode normalization and other
text transformation as required per language;
outputs to Doc.normalized_text.

TokenizationProcess: Normally the
first Process run, splits input string into
word tokens; sets string value at Word. st |
ring.

SentenceProcess: Determines sentence
boundaries and sets integer at Word . inde |
X_sentence.

StopsProcess: Checks whether a token is
contained within a stopword list; adds Bool-
ean value at Word . stop.

LemmatizationProcess:Reads Word
.string, and perhaps other contextual in-

formation, then sets value at Word. lemm
17
a.

* MorphologyProcess: Determines mor-
phology and writes word class (noun, verb,
etc.) and features (case, tense, etc.).'® Values

3Text and translation from Rolfe (1984, 282-283): “Mar-
cus Cato, born in the town of Tusculum, in his early youth,
before entering on an official career, lived in the land of the
Sabines, since he had there an hereditary property, left him by
his father.”

16See Appendix for how the actual code is organized.

7Previous work on CLTK lemmatization documented at
Burns (2020).

'8 The CLTK relies on Stanza for morphological parsing
for Chinese, Coptic, Gothic, Greek, Latin, Old Church Sla-

23

output by morphological taggers, before being
set at Word.pos and Word. features,
are normalized to custom CLTK data types
that model the annotations of the Universal
Dependencies project (see 3.4.3).

DependencyProcess: Outputs results of
a dependency grammar parser at Word. de |
pendency_relationand Word.gove

rnor.19

NERProcess: Determines whether a token
is a named entity and, if so, what kind; sets
string value at Word.named_entity.

EmbeddingsProcess: Fetches word em-
bedding from a language model; sets array at
Word. embedding.20

PhonologyProcess: Ascertains phono-
logical properties of a word (specifically with
the inheriting PhonologicalTranscr

iptionProcess) and then reconstructs a
phonetic representation in IPA; sets output at
Word.phonetic_transcript ion.?!

ProsodyProcess: Scans input strings and
outputs scans of their poetic meter.?>

StemmingProcess: Writes a token’s stem
to Word. stem.?

WordNetProcess: Queries WordNet and
writes a word’s synset to Word . synsets.?

LexiconProcess: Matches Word. lem,
ma to a dictionary’s headword and writes to
Word.definition.

StanzaProcess: A Process has been
created for Stanza because of its usefulness

vonic, and Old French. See also StanzaProcess. Other
software, however, may be used, as in the case of Akkadian
(cltk/morphology/akk.py).

19 At time of publication, the CLTK uses the Stanza proj-
ect’s pretrained models with StanzaProcess. In the fu-
ture, custom-trained models (e.g., with spaCy or Stanza)
will be wrapped by DependencyProcess. See also sec-
tion 3.4.4 for post-processing the flat Doc . words into a tree.

20Using fastText embeddings for Arabic, Aramaic, Gothic,
Latin, Old English, Pali, and Sanskrit (Bojanowski et al.,
2016); using NLPL for Ancient Greek and Old Church Sla-
vonic (http://vectors.nlpl.eu).

2Subclassed SyllabifierProcess is also available
for dividing words into a list of syllable strings; sets output
atWord.syllables.

ZCurrently available for Greek, Latin, Middle High Ger-
man, and Old Norse. Prose analysis of Latin clausulae also
available (Keeline and Kirby, 2019).

23 Akkadian, Latin, Middle English, Middle High German,
and Old French.

24See Short for Latin WordNet API; Ancient Greek and San-
skrit WordNets are under development.

http://vectors.nlpl.eu

from dataclasses import dataclass,
— field

from typing import List, Type
from cltk.core.data_types import
Language, Pipeline, Process
from cltk.languages.utils import

—

— get_lang

@dataclass

class LatinPipeline (Pipeline):
"""Default "~ 'Pipeline’ ' for
— Latin."""
description: str = "Pipeline for
— the Latin language"
language: Language =
— get_lang("lat")
processes: List[Type[Process]] =
— field(

default_factory=lambda: [
LatinNormalizeProcess,
LatinStanzaProcess,
LatinEmbeddingsProcess,
StopsProcess,
LatinNERProcess,
LatinLexiconProcess,

Code Block 2: Example of LatinPipeline (3.3)
and the processes declared within it; defined at c 1 t k /
languages/pipelines.py.

for seven languages (see ft. 18).

3.3 Pipeline

A language has one Pipeline defining alist of
Process objects, as illustrated in Code Block 2.
The objects within Pipeline.processes are
looped over when called by NLP.analyze ().
Each time, a Doc is sent into the Process and
anew Doc, now with an updated Doc . words, is
produced. These algorithms are invoked by default,
though a user may override them by declaring his
own Pipeline and passing itto NLP (). At time
of publication, 19 languages have pre-configured
pipelines.”

3.4 Doc

The NLP . analyze () method returns a Doc ob-
ject that contains all information generated by the
Pipeline (example at Code Block 1). Most of
this information is stored within a list of Word

Akkadian ("akk"), Arabic ("arb"), Aramaic
("arc"), Classical Chinese ("1zh"), Coptic ("cop"),
Gothic ("grc"), Hindi ("hin"), Latin ("1at"), Middle
High German ("gmh"), Old English ("ang"), Middle
English ("enm"), Old French ("frm"), Old Church Sla-
vonic ("chu"), Old Norse ("non™), Pali ("p1i"), Panjabi
("pan"), and Sanskrit ("san").

24

>>> print (cltk_doc.words[11])
Word (index_char_start=None,

index_char_stop=None,
index_token=11, index

IS

sentence=0,

lemma='do"',
scansion=None

xpos="J3 |modB|tem2|genb6"',
='VERB',
dependency_relation="root',

governor=-1, features={Aspect:
tive], Mood:
tive], Number:

Person: [t

[imperfec

[subjunc

[singular], hird],

Ten [imperfect], VerbForm:
[finite], Voice: [active]},

cat ={F: [neg], N: [neg], V:
[pos]}, stop=False,

named_entity=False,
syllables=None,
phonetic_transcription=None,
embedding=array ([-1.245%9e-01,
.1, dtype=float32),

definition="do\n\n (old subj.
duis, duit, duint, etc.),
datus, DA \nto
over, give up,

surrender")

dedi,

re \nl hand

a
deliver,
pa ‘/' 14

render,

e

furni

a
sn,

Code Block 3: Example of processed information con-
tained within a Word (3.4.1) object. Continues from
Code Block 1.

objects at Doc.words, which may be accessed
directly or by helper methods, such as Doc. |
tokens (returning a list of token strings) and
Doc.embeddings (alist of arrays). When these
access methods are not enough, a user may post-
process the Doc and add attributes to it or the
Word objects within.

34.1 Word

Word stores all token information. Code Block 3
shows some of what a Word object may contain.

3.4.2 Language

The module c1tk/languages/glottoloqg,
.py contains 219 Language objects, each of
which contains information about a pre-modern
language that is, or should be, covered by the
CLTK.?® Code Block 4 shows how to retrieve a
Language with a three-letter ISO code. Each

**Language definitions and data provided by Glottolog, a
database of the world’s languages (Hammarstrom et al., 2021).
These 219 languages are those falling within the definition of
pre-modern (discussed at 1.1), plus some with significant con-
tinuity between pre-modern and contemporary written forms:
Standard Arabic, nine South Asian languages (Bengali, Hindi,
etc.), Western Farsi, and Coptic.

>>> from cltk.languages.utils import
find_iso_name

>>> print (find_iso_name ("Latin"))
['lat']

>>> from cltk.languages.utils import
get_lang

>>> print (get_lang("lat"))
Language (name="'Latin',
g_id='latil261"',
itude=41.¢ 6

—

—

gitude=12.

R

Code Block 4: Example of a Language (3.4.2) object
for Latin (ISO code "1at™").

Pipeline references these classes (see Code
Block 2).

3.4.3 MorphosyntacticFeature and
MorphosyntacticFeatureBundle

Beyond the categorical information at Word . pos,
a language’s Pipeline adds complete morphol-
ogy at the Word. features accessor (see Code
Block 5). The sometimes arbitrary output strings
of morphological taggers (“indicative,” “Indic.,”
etc.) are mapped to these specific CLTK classes
(inheriting from MorphosyntacticFeature)
that represent all features defined by version 2
of the Universal Dependencies project.?’” Hence,
different taggers resolve to a common annotation
schema.

3.44 DependencyTree

The CLTK uses the “built-in” xm1 library to make
trees for modeling dependency parses. A Word is
mapped into aForm, then Element Tree is used

to organize these into a DependencyTree (see
Code Block 6).

3.5 FetchCorpus

Git repositories host models developed by CLTK
contributors.?® When the software cannot find a re-
quired model, FetchCorpus is invoked to down-
load the required dependency and put it within the
appropriate directory at ~/c 1tk _data/.?

% Annotation guidelines at Universal Dependencies (2016)
and CLTK objects at c1tk/morphology/universal
_dependencies_annotations.py. 7

2 All CLTK models are stored on GitHub at: https://
github.com/cltk/?g=model.

A language-specific Git repository is available for most
languages, e.g., "lat_models_cltk" at the URI ht

25

>>> print (cltk_doc.words[11].featur
—
{A

.
.
.
.

te Voice: [active]}
>>> print (type (cltk_doc.wor
<« ds[1l1l].features))

<class 'cltk.morphology.r

/ntax.Morpho
dle'>

>>> print (cltk_doc.words[11].featur
es["Aspect"][0])
Aspect.imperfective

>>> print (cltk_doc.words[11]. featur
es["Mood"][01)

.subjunctive

—

<
Mood

Code Block 5: Example of MorphosyntacticFe
ature and MorphosyntacticFeatureBundle
(3.4.3). Continues from Code Block 3.

from cltk.dependency.tree import

DependencyTree

a_tree DependencyTree. to_treeJ

(cltk_doc.sentences[0])

print (a_tree.get_dependencie

s()[:5])

subj (daret_11, Marcus
nsubj(daret_11, Cato_1)

(daret_11, ortu

(daret_11, M

(daret_11,

_0),

nsubj

nsubj

nsubj

Code Block 6: Example of DependencyTree (3.4.4).
Continues from Code Block 1.

4 Conclusion and Future Work

The architecture of the CLTK v. 1.0 has an engi-
neering rigor necessary to model the world’s sev-
eral hundred pre-modern languages. Currently, it
serves the basic, and several more advanced, needs
of researchers for 19 languages.

Software alone, however, is not sufficient. The
CLTK lacks formal evaluations of its models’ accu-
racies. At time of publication, most Process def-
initions wrap models trained by upstream projects
(e.g., Stanza). While these projects report accura-
cies respective to their training sets (i.e., with cross-
validation), they do not provide evaluations against
outside benchmarks. Unfortunately, such bench-
marks do not yet exist for pre-modern languages,
with the exception of the recent Sprugnoli et al.
tps://github.com/cltk/lat_models_clt
k.git. Users may share private or non-official reposito-

ries by defining themat ~ /c1tk_data/distributed
corpora.yaml.

https://github.com/cltk/?q=model
https://github.com/cltk/?q=model
https://github.com/cltk/lat_models_cltk.git
https://github.com/cltk/lat_models_cltk.git

(2020) for Latin. To remedy this problem, the au-
thors will focus upon the following areas:

to create evaluation benchmarks for each NLP
task, for each language;

to make a TrainingPipeline, similar to
the inference Pipeline, that would stan-
dardize the training of new models;

to normalize duplicative treebanks;°

and to develop Internet infrastructure for train-
ing and hosting models;

These efforts will improve scientific procedure for
pre-modern NLP.

Another initiative involves experimentation with
transfer learning, along the lines of Multilingual
BERT (Pires et al., 2019), training on all surviving
pre-modern texts. Because languages are related
and because texts, even in different languages, of-
ten share entities, information sharing may prove
felicitous.’!

The pre-modern world, its languages and peo-
ples, was deeply networked.?> The CLTK is a com-
prehensive collection of NLP technologies to sup-
port the study of this history.

Acknowledgments

The authors owe a special dept of gratitude to all
of the CLTK’s contributors.>> They also thank
early readers of this manuscript: Neil Coffee, Greg
Crane, Jonathan Everett, Luke Hollis, Thomas
Keeline, Leonard Muellner, Nigel Nicholson, Mo-
nica Park, Michael Piotrowski, Marco Romani, and
William M. Short. The project’s name is a play on
the Natural Language Toolkit (NLTK), on which
v. 0.1 heavily relied. The CLTK logo of a Phoeni-
cian aleph (or ‘alep, &), being the first letter of
the first alphabet, was created by Pierre-Marie Pé-
drot.3*

3For example, Universal Dependencies hosts five different,
and to various degrees incompatible, Latin treebanks. The
largest is 450,000 tokens, though adding the other four would
bring the count close to 1,000,000. Ancient Greek also has
duplicative treebanks (each at about 200,000 tokens).

3! Considerations include use of original orthography versus
normalizing to orthographic or phonetic transliteration.

32Several studies on trans-cultural diffusion across Eurasia:
Beckwith (2009); Frankopan (2015).

Bnttps://github.com/cltk/cltk/graphs/
contributors.

¥nttps://commons.wikimedia.org/wiki/F
ile:PhoenicianA-01.svg.

26

References

M. Adams. 2016. Teaching Classics in English Schools,
1500-1840. Cambridge Scholars Publishing, New-
castle upon Tyne.

Apache Software Foundation. Apache OpenNLP [on-
line]. 2011.

David Bamman and Patrick J. Burns. 2020. Latin
BERT: A contextual language model for classical
philology.

Kristin Bech and Kristine Eide. The ISWOC corpus
[online]. 2014.

Christopher 1. Beckwith. 2009. Empires of the Silk
Road: A History of Central Eurasia from the Bronze
Age to the Present. Princeton University Press,
Princeton.

Yonatan Belinkov, Alexander Magidow, Maxim Ro-
manov, Avi Shmidman, and Moshe Koppel. 2016.
Shamela: A large-scale historical Arabic corpus. In
Proceedings of the Workshop on Language Tech-
nology Resources and Tools for Digital Humanities
(LT4DH), pages 4553, Osaka, Japan. The COLING
2016 Organizing Committee.

Kenneth Benoit, Kohei Watanabe, Haiyan Wang, Paul
Nulty, Adam Obeng, Stefan Miiller, and Akitaka
Matsuo. 2018. quanteda: An R package for the quan-
titative analysis of textual data. Journal of Open
Source Software, 3(30):774.

Luci Berkowitz and Karl A. Squitier. 1990. Thesau-
rus Linguae Graecae: Canon of Greek Authors and
Works, 3rd edition. Thesaurus Linguae Graecae. Ox-
ford University Press, New York.

Steven Bird and Edward Loper. 2004. NLTK: The Nat-
ural Language Toolkit. In Proceedings of the ACL
2004 on Interactive Poster and Demonstration Ses-
sions, page 31. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Toméas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Hennie Brugman, Albert Russel, and Xd Nijmegen.
2004. Annotating multi-media/multi-modal re-
sources with ELAN. In The Fourth International
Conference on Language Resources and Evaluation.
European Language Resources Association (ELRA),
Lisbon.

Patrick J. Burns. 2019. Building a text analysis pipeline
for classical languages. In Monica Berti, editor, Dig-
ital Classical Philology: Ancient Greek and Latin
in the Digital Revolution, number 10 in Age of
Access? Grundfragen der Informationsgesellschaft,
pages 159-176. de Gruyter, Berlin.

Patrick J. Burns. 2020. Ensemble lemmatization with
the Classical Language Toolkit. Studi e Saggi Lin-
guistici, 58(1):157-176.

https://github.com/cltk/cltk/graphs/contributors
https://github.com/cltk/cltk/graphs/contributors
https://commons.wikimedia.org/wiki/File:PhoenicianA-01.svg
https://commons.wikimedia.org/wiki/File:PhoenicianA-01.svg
https://books.google.com/books?id=5Qz5DAAAQBAJ
https://books.google.com/books?id=5Qz5DAAAQBAJ
http://opennlp.apache.org
http://arxiv.org/abs/2009.10053
http://arxiv.org/abs/2009.10053
http://arxiv.org/abs/2009.10053
http://iswoc.github.io
https://www.aclweb.org/anthology/W16-4007
https://doi.org/10.21105/joss.00774
https://doi.org/10.21105/joss.00774
https://books.google.com/books?id=XfwUAQAAIAAJ
https://books.google.com/books?id=XfwUAQAAIAAJ
https://books.google.com/books?id=XfwUAQAAIAAJ
http://www.aclweb.org/anthology/P04-3031
http://www.aclweb.org/anthology/P04-3031
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://www.lrec-conf.org/proceedings/lrec2004/
http://www.lrec-conf.org/proceedings/lrec2004/
https://doi.org/10.1515/9783110599572-010
https://doi.org/10.1515/9783110599572-010
https://doi.org/https://doi.org/10.4454/ssl.v58i1.273
https://doi.org/https://doi.org/10.4454/ssl.v58i1.273

Patrick J. Burns, Luke Hollis, and Kyle P. Johnson.
2019. The future of ancient literacy: Classical Lan-
guage Toolkit and Google Summer of Code. Clas-
sics@, 17.

Laura Buszard-Welcher. 2018. New media for endan-
gered languages. In Kenneth L. Rehg and Lyle Camp-
bell, editors, The Oxford Handbook of Endangered
Languages, Oxford Handbooks, chapter 22. Oxford
University Press, Oxford.

Lyle Campbell. 2013. Historical Linguistics. Edin-

burgh University Press, Edinburgh.

Giuseppe G. A. Celano, Gregory Crane, and Bridget Al-
mas. Ancient Greek and Latin dependency treebank
v.2.1 [online]. 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kris-
tina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume I (Long and Short Papers), pages 4171-
4186, Minneapolis, Minnesota. Association for Com-
putational Linguistics.

Hanne Martine Eckhoff and Aleksandrs Berdicevskis.
2015. Linguistics vs. digital editions: The Tromsg
Old Russian and OCS treebank. Scripta & e-Scripta,
14(15):9-25.

Elizabeth L. Eisenstein. 1979. The Printing Press as
an Agent of Change. Cambridge University Press,
Cambridge.

Robert K. Englund. 2016. The Cuneiform Digital Li-
brary Initiative: DL in DH. Microsoft PowerPoint.

Peter Frankopan. 2015. The Silk Roads: A New History
of the World. Vintage Books, New York.

Mika Héamaldinen. 2019. UralicNLP: An NLP library
for Uralic languages. Journal of Open Source Soft-
ware, 4(37):1345.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489-1501, Berlin, Germany. Association for Com-
putational Linguistics.

Harald Hammarstrom, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. Glottolog 4.4 [online].
2021.

Dag T. T. Haug and Marius L. Jghndal. 2008. Creating
a parallel treebank of the old Indo-European Bible
translations. In Caroline Sporleder and Kiril Rib-
arov, editors, Proceedings of the Second Workshop
on Language Technology for Cultural Heritage Data
(LaTeCH 2008), pages 27-34. European Language
Resources Association (ELRA), Marrakech.

27

Oliver Hellwig, Salvatore Scarlata, Elia Ackermann,
and Paul Widmer. 2020. The treebank of Vedic
Sanskrit. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5137-
5146, Marseille, France. European Language Re-
sources Association.

Julia Hirschberg and Christopher D. Manning. 2015.
Advances in natural language processing. Science,
349(6245):261-266.

Hans Henrich Hock. 1991. Principles of Historical Lin-
guistics, 2nd edition. Mouton de Gruyter, Berlin.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373-1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Tasha R. Inniss, John R. Lee, Marc Light, Michael A
Grassi, George Thomas, and Andrew B. Williams.
2006. Towards applying text mining and natural lan-
guage processing for biomedical ontology acquisi-
tion. In Proceedings of the Ist International Work-
shop on Text Mining in Bioinformatics, pages 7-14.

Anisia Katinskaia, Javad Nouri, and Roman Yangarber.
2017. Revita: A system for language learning and
supporting endangered languages. In Proceedings
of the joint workshop on NLP for Computer Assisted
Language Learning and NLP for Language Acquisi-
tion, pages 27-35, Gothenburg, Sweden. LiU Elec-
tronic Press.

Tom Keeline and Tyler Kirby. 2019. Auceps syllaba-
rum: A digital analysis of Latin prose rhythm. Jour-
nal of Roman Studies, 109:161-204.

Thomas Kontges, Rhea Lesage, Bruce Robertson, Jean-
nie Sellick, and Lucie Wall Stylianopoulos. 2019.
Open Greek and Latin: Digital humanities in an open
collaboration with pedagogy. In Libraries: Dia-
logue for Change, Athens. IFLA WLIC.

John Lee and Yin Hei Kong. 2012. A dependency
treebank of Classical Chinese poems. In Proceed-
ings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
191-199, Montréal, Canada. Association for Compu-
tational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55—60.

Barbara McGillivray, Jon Wilson, and Tobias Blanke.
2019. Towards a quantitative research framework for
historical disciplines. In CEUR Workshop Proceed-
ings, volume 2314.

http://nrs.harvard.edu/urn-3:hlnc.essay:BurnsP_HollisL_and_JohnsonK.The_Future_of_Ancient_Literacy.2019
http://nrs.harvard.edu/urn-3:hlnc.essay:BurnsP_HollisL_and_JohnsonK.The_Future_of_Ancient_Literacy.2019
https://books.google.com/books?id=Hy5lDwAAQBAJ
https://books.google.com/books?id=Hy5lDwAAQBAJ
https://perseusdl.github.io/treebank_data/
https://perseusdl.github.io/treebank_data/
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://e-scripta.ilit.bas.bg/node/54
http://e-scripta.ilit.bas.bg/node/54
https://doi.org/https://doi.org/10.7916/D8KD1XWN
https://doi.org/https://doi.org/10.7916/D8KD1XWN
https://doi.org/10.21105/joss.01345
https://doi.org/10.21105/joss.01345
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://doi.org/https://doi.org/10.5281/zenodo.4761960
http://www.lrec-conf.org/proceedings/lrec2008/workshops/W22_Proceedings.pdf#page=31
http://www.lrec-conf.org/proceedings/lrec2008/workshops/W22_Proceedings.pdf#page=31
http://www.lrec-conf.org/proceedings/lrec2008/workshops/W22_Proceedings.pdf#page=31
https://www.aclweb.org/anthology/2020.lrec-1.632
https://www.aclweb.org/anthology/2020.lrec-1.632
https://doi.org/10.1126/science.aaa8685
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162
https://aclweb.org/anthology/D/D15/D15-1162
https://doi.org/https://doi.org/10.1145/1183535.1183539
https://doi.org/https://doi.org/10.1145/1183535.1183539
https://doi.org/https://doi.org/10.1145/1183535.1183539
https://www.aclweb.org/anthology/W17-0304
https://www.aclweb.org/anthology/W17-0304
https://doi.org/10.1017/S0075435819000881
https://doi.org/10.1017/S0075435819000881
http://library.ifla.org/2551/
http://library.ifla.org/2551/
https://www.aclweb.org/anthology/N12-1020
https://www.aclweb.org/anthology/N12-1020
http://www.aclweb.org/anthology/P14-5010
http://www.aclweb.org/anthology/P14-5010
http://ceur-ws.org/Vol-2314/paper5.pdf
http://ceur-ws.org/Vol-2314/paper5.pdf

Piotr Michalowski. 2004. Sumerian. In Roger D.
Woodard, editor, The Cambridge Encyclopedia of
the World’s Ancient Languages, pages 19-59. Cam-
bridge University Press, Cambridge.

D. Gary Miller. 2019. The Oxford Gothic Grammar.
Oxford Linguistics. Oxford University Press, Oxford.

Michael Piotrowski. 2012. Natural Language Process-
ing for Historical Texts. Number 17 in Synthesis Lec-
tures on Human Language Technologies. Morgan &
Claypool Publishers, San Rafael.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is Multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996—
5001, Florence, Italy. Association for Computational
Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101-108, Online. As-
sociation for Computational Linguistics.

John C. Rolfe. 1984. Cornelius Nepos, volume 467
of The Loeb Classical Library. Harvard University
Press, Cambridge, Mass.

William Michael Short. Latin WordNet [online].
SIL International. ISO 639-3 [online].

Rachele Sprugnoli, Marco Passarotti, Flavio Mas-
similiano Cecchini, and Matteo Pellegrini. 2020.
Overview of the Evalatin 2020 evaluation campaign.
In Proceedings of LT4HALA 2020 - 1st Workshop on
Language Technologies for Historical and Ancient
Languages, pages 105-110, Marseille, France. Euro-
pean Language Resources Association (ELRA).

James Turner. 2014. Philology: The Forgotten Ori-
gins of the Modern Humanities. Princeton Univer-
sity Press, Princeton.

Morgan Ulinski, Anusha Balakrishnan, Daniel Bauer,
Bob Coyne, Julia Hirschberg, and Owen Rambow.
2014. Documenting endangered languages with the
WordsEye linguistics tool. In Proceedings of the
2014 Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages, pages
6-14, Baltimore, Maryland, USA. Association for
Computational Linguistics.

Universal Dependencies. UD Guidelines V2 [online].
2016.

Endymion Wilkinson. 2000. Chinese History: A Man-
ual. Number 52 in Harvard-Yenching Institute Mon-
ograph Series. Harvard University Press, Cambridge,
Mass.

28

Koichi Yasuoka. 2019. Universal dependencies tree-
bank of the Four Books in Classical Chinese. In
DADH?2019: 10th International Conference of Dig-
ital Archives and Digital Humanities, pages 20-28.
Digital Archives and Digital Humanities.

Amir Zeldes and Caroline T. Schroeder. 2016. An
NLP pipeline for Coptic. In Proceedings of the
10th SIGHUM Workshop on Language Technology
for Cultural Heritage, Social Sciences, and Human-
ities, pages 146-155, Berlin, Germany. Association
for Computational Linguistics.

A Appendix

The following top-level directories are found at
src/cltk, within the project’s repository.

nlp: The main module, contains class NLP |

0

alphabet: Manipulate characters of a lan-
guage’s orthographic system

core: Custom data types, error handling

corpora: Metadata for and preprocessing
of specific data sets

data: Download CLTK-hosted data sets
dependency: Dependency parsing

embeddings: Making and loading word
embeddings

languages: Definition of all pre-modern
languages, text snippets for demonstration

lemmatize: Find lemma for an inflected
form

lexicon: Find alemma’s definition in a dic-
tionary

morphology: Model morphology and syn-
tax with data types from Universal Dependen-
cies

ner: Tag named entities (i.e., proper nouns)

phonology: Syllabifying and tagging pho-
nemes

prosody: Scanning poetic meter
sentence: Splitting sentences

stem: Create unique stem from inflected
form

stops: Identify if a token is a stopword
tag: Part-of-speech tagging

text: Language-specific, extensible text pre-
processing

https://doi.org/https://doi.org/10.2200/S00436ED1V01Y201207HLT017
https://doi.org/https://doi.org/10.2200/S00436ED1V01Y201207HLT017
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://latinwordnet.exeter.ac.uk/
https://iso639-3.sil.org/
https://www.aclweb.org/anthology/2020.lt4hala-1.16
https://doi.org/10.3115/v1/W14-2202
https://doi.org/10.3115/v1/W14-2202
https://universaldependencies.org/guidelines.html
http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/publications/DADH2019.pdf
http://kanji.zinbun.kyoto-u.ac.jp/~yasuoka/publications/DADH2019.pdf
https://doi.org/10.18653/v1/W16-2119
https://doi.org/10.18653/v1/W16-2119

* tokenizers: Create tokens from an input
string

* utils: Helpers for feature extraction and
disk I/0

* wordnet: Lookup of lemma on available on-
line WordNets

29

