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Abstract

Probing (or diagnostic classification) has be-
come a popular strategy for investigating
whether a given set of intermediate features is
present in the representations of neural models.
Probing studies may have misleading results,
but various recent works have suggested more
reliable methodologies that compensate for the
possible pitfalls of probing. However, these
best practices are numerous and fast-evolving.
To simplify the process of running a set of
probing experiments in line with suggested
methodologies, we introduce Probe-Ably: an
extendable probing framework which supports
and automates the application of probing meth-
ods to the user’s inputs.

1 Introduction

Recent interest in investigating the intermediate
features present in neural models’ representations
has led to the use of structural analysis methods
such as probing.

At its simplest, probing' is the training of an ex-
ternal classifier model (a “probe”) to determine the
extent to which a set of auxiliary target feature la-
bels can be predicted from the internal model repre-
sentations. For example, probing studies have been
carried out to determine whether word and sentence
representations generated by models such as BERT
(Devlin et al., 2019) capture intermediate syntactic
and semantic features such as parts of speech and
dependency labels (Hewitt and Manning, 2019b;
Tenney et al., 2019b) and lexical relations (Vulié
et al., 2020).

Various problems can arise when performing
probing experiments (Hewitt and Liang, 2019),

*Equal contribution, presented in alphabetical order.
'The term “probing” has also been used describe stress-test
style analyses, but we mean “probing” in the sense of diag-
nostic classification as in (Alain and Bengio, 2018; Pimentel
et al., 2020b).
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such as achieving a high probing accuracy without
being due to a high mutual information between the
representation and the auxiliary task labels. This
has prompted much recent work on establishing
more reliable methodologies for probing (Hewitt
and Liang, 2019; Voita and Titov, 2020; Pimentel
et al., 2020b,a).

These approaches introduce various steps such
as controlling and varying model complexity and
structure, including randomized control tasks and
incorporating more informative metrics such as
selectivity (Hewitt and Liang, 2019) and minimum
description length (Voita and Titov, 2020).

To make these methods more accessible and
quick to implement for any user wishing to probe
the representations of their neural models in line
with the evolving suggested methodologies, we in-
troduce Probe-Ably: an extendable probing frame-
work which supports and automates the application
of suggested best practices for probing studies.

2  Probe-Ably

Probe-Ably? is a framework designed for PyTorch?
to support researchers in the implementation of
probes for neural representations in a flexible and
extendable way.

The core facility provided by Probe-Ably is the
encapsulation of the end-to-end experimental prob-
ing pipeline. Specifically, Probe-Ably provides a
complete implementation of the core tasks neces-
sary for probing neural representations, starting
from the configuration and training of heteroge-
neous probe models, to the calculation and visual-
ization of metrics for the evaluation.

The probing pipeline and the core tasks oper-
ate on a set of abstract classes, making the whole

2Video demonstration:
https://youtu.be/1E30_BENBxk
*https://pytorch.org/
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Figure 1: An overview of Probe-Ably. The core facility provided by Probe-Ably is the encapsulation of an end-
to-end experimental probing pipeline. The framework offers a complete implementation and orchestration of the
main tasks required for probing, together with a suite of standard probe models and evaluation metrics.

framework agnostic to the specific representation,
auxiliary task, probe model, and metrics used in the
concrete experiments (see Fig 1). This architectural
design allows the user to:

1.

2.1

Configure and run probing experiments on
different representations and auxiliary tasks
in parallel;

. Automatically generate control tasks for the

probing, allowing the computation of inter-
model metrics such as selectivity;

. Extend the suite of probes with new models

without the need to change the core probing
pipeline;

. Customize, implement and adopt novel evalu-

ation metrics for the experiments.

Probing Pipeline

In this section we describe the core components
implemented in Probe-Ably.

A probing pipeline is typically composed of the
following sub-tasks:

1.

Data Processing: This task consists in data
preparation and configuration of the probe
models for the subsequent training task. For
each representation to be probed and each
auxiliary task, a requirement in this stage is
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the generation of a control task (Hewitt and
Liang, 2019), along with the selection of dis-
tinct hyperparameter configurations for the
probe models. Generally, the control task can
be either designed by researchers or automat-
ically constructed by randomly assigning la-
bels to the examples in the auxiliary task. On
the other hand, the hyperparameter selection
is crucial for the interpretation of the probing
results, and has to guarantee a large coverage
of the configuration space to allow for a signif-
icant comparison of the representations under
investigation. Common methods for hyperpa-
rameter selection adopt a combination of grid
search and random sampling techniques.

. Training Probes: This task consists in train-

ing a set ® of probe models. In particular, for
each representation and each auxiliary task,
researchers need to train probe models of dif-
ferent types (e.g., linear models, multi-layer
perceptrons) and distinct hyperparameter con-
figurations (e.g., hidden size, number of lay-
ers). Therefore, the number of probe mod-
els to be trained can rapidly increase with
the number of representations, auxiliary tasks,
and possible configurations. Let n be the num-
ber of representations to be probed, m the
number of auxiliary tasks, z the number of
probe models, and k the number of selected



hyperparameter configurations for each probe.
The total cardinality of ® is generally equal to
|®| = n xm x z X k. Thus, because of the po-
tentially large space of models and configura-
tions, the training task typically represents the
most demanding and time-consuming stage in
the overall probing pipeline.

3. Evaluation: The evaluation stage consists in
calculating a set of metrics for assessing the
performance and quality of the probes on the
auxiliary tasks. The most common metrics
adopted for probing evaluation are accuracy
and selectivity. Generally, these quantities are
plotted against the complexity of the probe
models and are used to compare the trend in
the performance of different neural represen-
tations on a given auxiliary task.

Probe-Ably provides a complete implementa-
tion and orchestration of the aforementioned tasks,
which are integrated by a component named Prob-
ing Flow (see Fig. 1).

The Probing Flow is ready to use for configur-
ing and running standard probing experiments in-
cluding hyperparameters selection via grid search.
Moreover, the flow can be flexibly adapted to new
models and metrics if necessary by extending the
appropriate abstract classes and configuration files
(additional details are described in section 3). We
provide a pre-implemented suite of probe models
and metrics whose details are described in sections
2.2 and 2.3.

In order to configure and run a new probing ex-
periment, the user has to provide the following
input:

* Probing Configuration: a JSON file describ-
ing the components and parameters for the
probing experiments. This file allows speci-
fying the concrete probe models to train on
each auxiliary task, along with pre-defined
training parameters such as batch-size, num-
ber of epochs and number of different hyper-
parameter configurations to test. Additionally,
the probing configuration file can be used to
indicate the metrics to use for the final evalua-
tion.

* Auxiliary Task: a TSV file containing the
data and labels composing the auxiliary task.
Probe-Ably allows the user to configure ex-
periments that run on more than one auxiliary
task in parallel.
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* Control Task (Optional): a TSV file contain-
ing the labels composing a control task. The
control tasks are automatically generated for
each auxiliary task during the data process-
ing stage. If not provided, we assign random
labels to the example in the auxiliary tasksfor.

* Representation: a TSV file containing the
pre-trained embeddings for each example in
the auxiliary task (e.g. BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019)). Similarly
to the auxiliary tasks, Probe-Ably can run ex-
periments on more than one representation in
parallel.

2.2 Available Models

A common theme in probing studies is the use
of structurally simple classifiers: two common
choices are linear models and multi layer percep-
trons*.

Following works such as (Hewitt and Manning,
2019a) and (Pimentel et al., 2020a), each instanti-
ated model comes with some approximate appro-
priate complexity. This is varied in a controlled
way in order to include results for a range of model
complexities: this mitigates the possible confound-
ing effect of overly expressive probes which might
be “memorizing” the task (Hewitt and Liang, 2019;
Pimentel et al., 2020a).

For linear models § = Wx + b, we mimic (Pi-
mentel et al., 2020a) in using the nuclear norm

min(|T],d)

Y a(W).

=1

Wl =

of the matrix W as the approximate measure of
complexity. The rationale here is that the nuclear
norm approximates the rank of the transformation
matrix. The rank may be used instead in situations
where there is a large number of class labels, but
as it is limited by this number the nuclear norm
presents a wider range of values. The nuclear norm
is included in the loss (weighted by a parameter \)

— > logp(t® [ h®) + X || W]|.
=1

and is thus regulated in the training loop.
Multi-layer perceptrons are the only non-linear

models currently included. Their flexibility and
“The hyperparameters of all implemented models are con-

figurable, but we use the same default hyperparameter ranges
as (Pimentel et al., 2020b).



ProBe-Ably

{ POS Tagging with Pretrained Models

probe_ably.core.models.linear.LinearModel

Accuracy

Accuracy

® Lyeri2
Layert
@ Layers

o
st
o
E

norm

Download

Selectivity

Selectivity

® Lyt
Layert
@ Layers

norm

Download

Figure 2: Probe-Ably is integrated with a front-end visualization service, which supports researchers in consulting

and plotting the results of their experiments.

simplicity has made them popular choices in prob-
ing studies. We use the number of parameters as an
estimation of model complexity. Since sufficiently
large MLP models could be prone to “fitting” noise
in the data, it is especially important to monitor the
selectivity when using this class of probes.

2.3 Available Metrics

Certain probing metrics are not tied to the output of
a specific probe, but to two or more probes or train-
ing runs. As such, we have chosen to distinguish
between intra-model and inter-model metrics.

Intra-Model Metrics. Individual model results
and losses fall into this category. This includes the
usual suspects such as cross-entropy loss and accu-
racy. Intra-model metrics can be used for training,
model-selection and reporting purposes.

Inter-Model Metrics. An important component
of assessing the reliability of a probe’s result is the
selectivity metric (Hewitt and Liang, 2019): for a
fixed probe architecture and hyperparameter con-
figuration, the auxiliary task accuracy is compared
to the accuracy on a control task, hence incorporat-
ing the results of two trained models. This is our
primary example of an inter-model metric, but this
format could be useful for other probing metrics
such as minimum description length (online code
version) (Voita and Titov, 2020) or pareto hypervol-
ume (Pimentel et al., 2020a), which incorporate the
results of multiple models or training runs. These
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are only used for reporting purposes, as they are
external to each model’s training loop.

2.4 Front-end Visualization

Probe-Ably is integrated with a front-end visualiza-
tion service. The front-end is used to plot the re-
sults of each probing experiment in a user-friendly
way. The service is designed to be accessible via
standard web browsers, and support researchers in
analysing and comparing the probing performance
of each representation on different auxiliary tasks.

An example of plots included in the front-end
visualization is shown in Figure 2. Each plot can
be downloaded in a pdf format to be stored locally
or integrated in a LaTeX project.

3 Customized Probing Experiments

Probe-Ably can be flexibly adapted and extended
to run experiments on different representations,
novel probe models and evaluation metrics. The
following sections provide an overview of how
researchers and users can customize their exper-
iments via configuration files or implementation of
new concrete classes.

For a complete guide on how to extend and cus-
tomize Probe-Ably, please consult the documenta-
tion>®

SDocumentation:
https://ai-systems.github.io/Probe-Ably/

Repository: https://github.com/
ai-systems/Probe-Ably/
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3.1 Configuration

Although default configurations are ready to use
to run a basic set of experiments, the details of
the latter can be customized according to specific
needs, using the apposite probing configuration file.
This pertains to aspects such as probe model choice,
number of experiments, auxiliary tasks labels, input
representations and custom control labels.

Therefore, the settings can be modified by pro-
viding or editing the values of the attributes in the
configuration file which specifies details about aux-
iliary tasks, probing model/s and training regime,
including paths to any custom metrics or models.

The structure of the probing configuration file is
as follows:

e tasks (list)

— task_name (attr)

— representations (list)
% representation_name (attr)
% file_location (attr)
% control_location (attr)

* probing_setup (dict)

train_size (attr)

dev_size (attr)

test_size (attr)

intra_metric (attr)
inter_metric (attr)

probing_models (list)
* probing_model_name (attr)
x batch_size (attr)
% epochs (attr)
x number_of_models (attr)

3.2 Adding a Probe Model

Custom probe models can be introduced by ex-
tending the abstract ProbeModel class (Fig. 1).
This class inherits the methods and attributes of
a nn.Module in PyTorch. To extend Probe-
Ably with a new probe model, the user needs to
implement two methods, namely forward and
get_complexity.

The forward method is inherited from Py-
Torch and is adopted to compute the predictions
of the probe models along with their loss func-
tion. On the other hand, the get _complexity
method has to return a complexity measure for the
model (e.g., nuclear norm, number of parameters).
This method is internally used by the Probing Flow
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for setting up and executing the probing pipeline,
and creating the right visualization for the results.
In order to make a customized probe model avail-
able for new experiments, the user needs to specify
a model configuration file (JSON format) contain-
ing the path to the concrete class, together with
the parameters required for its instantiation. The
model configuration file is organized as follows:

¢ model_class (attr)
» params (list)

— name (attr)
— type (attr)
— options (attr)

3.3 Adding an Evaluation Metric

Similarly to probe models, it is possible to
extend Probe-Ably with new evaluation met-
rics. In order to add a new metric, the
user can extend one of the available ab-
stract classes (i.e., IntraModelMetric or
InterModelMetric).

In this case, it is not necessary to specify a
configuration file for the metrics, and the user
only needs to implement the apposite function,
calculate_metrics, that performs the appro-
priate computation. Subsequently, the user can
adopt the new metric in a probing experiment by
editing the apposite attribute in the probing config-
uration file.

4 Interpreting Results

We provide the following list of guidelines for in-
terpreting results:

* Regions of low selectivity indicates a less
trustworthy auxiliary task accuracy result. As
accuracy increases with model complexity,
keep an eye on the selectivity value: if it starts
to drop again, this indicates that the probe is
expressive enough to fit the randomized con-
trol task (and thus high expressivity and over-
fitting may be responsible for a high auxiliary
task accuracy).

We recommend a focus on comparison of
trends between models/representations rather
than probe performance on any fixed set of
representations.

These comparisons are more convincing if
they are consistent across a range of probe
complexities.
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Figure 3: Probing results for different layers of BERT on the Part-Of-Speech task using the control task presented
in (Hewitt and Liang, 2019), implemented and executed through Probe-Ably (see Section 5). The results are
consistent with observations in (Tenney et al., 2019a), which note that syntactic features (such as part of speech
tags) are more prevalent in earlier layers of BERT.

* Note that any given probe architecture im- portant that you investigate a sufficiently large
poses a structural assumption. For example, range of model complexities.
linear probes may only attain a high accu-
racy if the representation-target relationship § Case Study
is linear. We recommend that these assump-
tions/probe model choices be guided by prior
visualizations and hypothesized relationships.

To demonstrate the Probe-Ably system, we include
an implementation of a Part-Of-Speech tagging
auxiliary task based on the Penn Treebank corpus
* As far as possible, stick to comparing rep- (Marcus et al., 1993). It has been used multiple
resentations of the same sizes. Lower- times in works on probing methodology (Hewitt
dimensional representations may reach their ~ and Liang, 2019; Voita and Titov, 2020; Pimentel
maximum accuracy at lower probe complexity et al., 2020b). We use the custom control task from
values; as such they may give the “appearance” (Hewitt and Liang, 2019). Using linear models
of superior probe accuracy scores to larger  as probes, we compare the probing results for dif-
representations. For this reason, it is also im-  ferent layers of BERT (bert-base-uncased)
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pre-trained on the masked language modelling task
(Devlin et al., 2019), across 50 probing runs. The
results are consistent with observations in (Tenney
et al., 2019a), which note that syntactic features
(such as part of speech tags) are more prevalent in
earlier layers of BERT. This case study is available
as a ready-to-run example.

6 Related Work

Previous interpretability tools for neural models
have focused on gradient-based methods (Wallace
et al., 2019), the visualization of attention weights
(Vig, 2019) and other tools focusing on NLP model
explainability and interpretability (Wexler et al.,
2020; Tenney et al., 2020).

The ongoing discussion on probing, auxiliary
tasks and the surrounding best practices can be
traced back to the early definitions in (Alain and
Bengio, 2018), where it was first described as diag-
nostic classification. Early probing studies in NLP
include (Zhang and Bowman, 2018) and (Tenney
et al., 2019c), the former being an early example
of the importance of comparing with randomized
representations or labels. Further discussion has
introduced control tasks and the selectivity met-
ric (Hewitt and Liang, 2019), formalized notions
of ease of extraction (Voita and Titov, 2020) and
described other strategies for taking model com-
plexity into account (Pimentel et al., 2020a).

7 Conclusion

While probing can be used to explore hypotheses
about linguistic (or general) features present in
model representations, there are various pitfalls that
can lead to premature or incorrect claims. Much
progress has been made in establishing better prac-
tices for probing studies, but these involve running
large systematic sets of experiments employing
recently-developed metrics and correctly interpret-
ing results. Probe-Ably is designed to simplify
and encourage the use of emerging methodological
developments in probing studies, serving as a task-
agnostic and model-agnostic platform for auxiliary
diagnostic classification for high-dimensional vec-
tor representations.
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