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Abstract
CogNet is a knowledge base that integrates
three types of knowledge: linguistic knowl-
edge, world knowledge and commonsense
knowledge. In this paper, we propose an
information extraction toolkit, called CogIE,
which is a bridge connecting raw texts and
CogNet. CogIE has three features: versatile,
knowledge-grounded and extensible. First,
CogIE is a versatile toolkit with a rich set
of functional modules, including named entity
recognition, entity typing, entity linking, re-
lation extraction, event extraction and frame-
semantic parsing. Second, as a knowledge-
grounded toolkit, CogIE can ground the ex-
tracted facts to CogNet and leverage different
types of knowledge to enrich extracted results.
Third, for extensibility, owing to the design
of three-tier architecture, CogIE is not only a
plug-and-play toolkit for developers but also
an extensible programming framework for re-
searchers. We release an open-access online
system 1 to visually extract information from
texts. Source code, datasets and pre-trained
models are publicly available at GitHub 2, with
a short instruction video 3.

1 Introduction

Knowledge bases (KBs) such as FrameNet (Baker
et al., 1998), DBpedia (Lehmann et al., 2015),
Wikidata (Vrandečić and Krötzsch, 2014), and Con-
ceptNet (Liu and Singh, 2004) are becoming pop-
ular for a variety of downstream tasks including
information retrieval, recommender system and di-
alog system. Wang et al. (2021) divide KBs into
three categories according to the type of knowl-
edge, respectively linguistic KBs (e.g., FrameNet),
world KBs (e.g., DBpedia, Wikidata) and common-
sense KBs (e.g., ConceptNet). Unlike most of the

1http://cognet.top/cogie
2https://github.com/jinzhuoran/CogIE
3https://youtu.be/csgnjU_F3Qs

above KBs which focus on a single type of knowl-
edge, CogNet (Wang et al., 2021) models linguistic,
world and commonsense knowledge using a unified
representation architecture for better knowledge in-
tegration.

To apply CogNet to downstream tasks, it is chal-
lenging to expand CogNet and ground raw texts to
CogNet automatically. For this target, information
extraction (IE) is an effective method, which aims
to extract entity, relation, event, and other factual
information from raw texts and link them to KBs.

With the rapid development of IE area, a few re-
markable open-source toolkits have been developed
in recent years. The mainstream toolkits can be
classified into two categories: task-specific toolkits
and task-agnostic toolkits. Task-specific toolkits
focus on one or a few specific tasks, such as FLAIR
(Akbik et al., 2019) for named entity recognition
(NER), BLINK (Ledell Wu, 2020) for entity link-
ing (EL), OpenNRE (Han et al., 2019) for relation
extraction (RE) and Open-SESAME (Swayamdipta
et al., 2017) for frame-semantic parsing. On the
other end of the spectrum, AllenNLP (Gardner
et al., 2017), OpenNMT (Klein et al., 2017) and
other task-agnostic toolkits are designed to provide
programming framework without the implementa-
tion of specific tasks.

As mentioned above, various toolkits have been
widely used, but they also suffer from several lim-
itations. First, most of the existing NLP toolk-
its only support one or a few IE functions, and
there is a lack of an integrated and efficient IE
toolkit. Second, very few IE toolkits can align
the extracted facts to KBs, which may cause the
extracted facts not to be applied directly to down-
stream tasks. Third, for an efficient and effective
toolkit, providing application program interfaces
(APIs) is as important as supporting the secondary
development. Still, only a few toolkits can do both
at the same time.

http://cognet.top/cogie
https://github.com/jinzhuoran/CogIE
https://youtu.be/csgnjU_F3Qs
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Figure 1: Left: The three-tier architecture of CogIE. Right: The internal structure of each layer.

Therefore, it is highly desirable to have an open-
source toolkit that can implement and integrate
various IE tasks and can take advantage of the
knowledge resources in KBs to enrich the extracted
facts. Such a toolkit should achieve the equilibrium
among usability, extensibility and efficiency.

To this end, we propose CogIE, an IE toolkit
that bridges raw texts and CogNet, making it easy
to extract facts from texts as well as ground the ex-
tracted facts to CogNet. The toolkit supports both
English and Chinese, building upon PyTorch with
the same uniform design. Moreover, CogIE can
meet the requirements of function customizability
and model extensibility for researchers. CogIE also
provides APIs for developers to build applications
rapidly. We release an online CogIE system to
extract information from input texts with friendly
interactive interfaces and fast response speed.

In summary, the main features and contributions
are as follows:

• Versatile. We develop a professional and inte-
grated IE toolkit. CogIE can support high-
performance named entity recognition, en-
tity typing, entity linking, relation extraction,
event extraction and frame-semantic parsing.

• Knowledge-grounded. We build a bridge
between raw texts and CogNet. CogIE can
ground the extracted facts to CogNet and
leverage different types of knowledge to en-
rich results.

• Extensible. We contribute not just user-
friendly APIs, but an extensible programming
framework. Our goal in designing CogIE is
to provide a universal toolkit for all sorts of
users.

2 System Design and Architecture

In this section, we introduce the design choice and
system architecture of CogIE. Designing a power-
ful toolkit is challenging due to different types of IE
tasks and fast-growing new models. As illustrated
in Figure 1, we tackle the challenges by dividing
the main modules and components of CogIE into
three layers. Each layer in CogIE plays a unique
role separately.

2.1 Application Layer

The application layer acts as a mediator between
CogIE and users, including researchers and devel-
opers. Researchers pay more attention to internal
details and prefer a programming framework to sup-
port function customization and model construc-
tion. On the contrary, developers are more likely to
use the high-level functions provided by the toolkit
directly without knowing too many low-level de-
tails. Considering the different requirements of
both sides, we divide CogIE into two parts at the
application layer: (1) a programming framework
supporting NLP research; (2) APIs providing IE
functions.

NLP Programming Framework. The primary
design goal of CogIE is to make it easy to meet
some individual requirements with our experiment
paradigm. Specifically, we decouple NLP experi-
ments, forming three consecutive parts of Training
- Evaluation - Prediction. Thus, users can use the
programming framework to train new models, vali-
date performances and make predictions based on
the trained models.

IE APIs. We also implement a series of typical
models by the unified framework of CogIE. Co-
gIE provides APIs with multilingual support (En-
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Figure 2: The examples of main functions in CogIE.

glish and Chinese), including word segmentation,
named entity recognition, entity typing, entity link-
ing, relation extraction, event extraction and frame-
semantic parsing, etc. APIs take raw texts as input
and produce structured extraction results accurately
and quickly.

2.2 Module Layer

The module layer is based on the principle that
each module has a single function and contacts
with as few modules as possible. In this layer, Co-
gIE consists of three independent modules, namely
engineering module, research module and auxil-
iary module. In this way, users only need to focus
on core neural network models without writing
repetitive and complex engineering code, allowing
experiments easier and faster. The following is the
detailed design philosophy of each module.

Engineering Module. This module mainly inte-
grates the code with high repeatability in different
task scenarios. In this way, CogIE is less error-
prone and more time-saving by automating most of
the training loop and tricky engineering.

Research Module. To make code more concise
and extensible, we decouple the research module
from the engineering module. The research module
mainly includes the user-defined neural network
models, loss functions, etc., which are the core of

research.

Auxiliary Module. The auxiliary module is de-
signed to assist experiments by accelerating train-
ing, saving checkpoints, recording logs, and visu-
alizing results. For example, CogIE can support
16-bit precision to cut memory footprint by half
and use TensorBoard 4 to visualize experimental
parameters.

2.3 Code Layer

The code layer relates to the underlying design of
CogIE. This layer consists of three interdependent
parts: core code, model code and data code.

Core Code. In the core code, we develop a vari-
ety of ready-to-use components for users. Because
of the special Training - Evaluation - Prediction
experiment paradigm, Trainer, Tester and
Predictor class are the key components of core
code. In the case of Trainer class, users just
need to feed the expected components (e.g., model,
dataset, loss function, evaluation metric, configu-
ration file, etc.) into it, everything else is automati-
cally done.

Model Code. BaseModel class is the base
class of all models in CogIE. BaseModel class
organizes code into four sections: (1) forward

4https://github.com/lanpa/tensorboardX

https://github.com/lanpa/tensorboardX
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function for computation, (2) loss function for
train, (3) evaluate function for validation, and
(4) predict function for prediction. Model code
consists of two parts: encoder module (e.g., Pre-
trained Language Model, RNN, CNN, etc.) and
decoder module (e.g., CRF, FFN, etc.). By design-
ing model code this way, it is convenient to change
from one model to another by simply plugging in
and swapping out a single or few modules.

Data Code. The data code is built around the
notion of Datable which stores data in ta-
ble form. CogIE includes built-in Loader and
Processor class for lots of popular datasets and
provides easy-to-use data containers to encapsulate
all the steps needed to process data.

3 Core Functions

CogIE is designed for a series of IE functions, in-
cluding named entity recognition, entity typing,
entity linking, relation extraction, event extraction,
and frame-semantic parsing, etc. CogIE can also
align the extracted facts to CogNet via entity link-
ing, relation matching and frame matching. As
shown in Figure 2, we give some examples to illus-
trate these functions.

3.1 Named Entity Recognition
Named entity recognition (NER) is a task for locat-
ing and classifying certain occurrences of words
or expressions in unstructured texts into predefined
semantic categories. To achieve the function of
entity recognition, we adopt BERT as the textual
encoder and use CRF as the decoder. Up to now,
CogIE can not only recognize the common four
entity types: locations, persons, organizations, and
miscellaneous entities, but also support the recog-
nition of 54 entity types.

3.2 Entity Typing
Fine-grained entity typing aims to assign one or
more types to each entity mention given a certain
context and can provide valuable prior knowledge
for a wide range of NLP tasks, such as relation
extraction and question answering. To achieve
the function of entity typing, we adopt a two-step
mention-aware attention mechanism to enable the
model to focus on important words like Lin and
Ji (2019). Compared with NER, ET has finer and
richer entity labels with internal correlations (e.g.,
/person, /person/artist, /person/artist/actor), there
are 87 fine-grained entity lables in CogIE.

3.3 Entity Linking

Entity linking is the task to link entity mentions in
texts with their corresponding entities in a knowl-
edge base. To achieve the function of entity linking,
we use BLINK which adopts a two-stage approach
for entity linking based on fine-tuned BERT archi-
tectures. CogIE supports link entities to CogNet
and Wikidata, users can leverage multiple types
of knowledge obtained through EL to implement
knowledge base population (KBP) and knowledge
based question answering (KBQA).

3.4 Relation Extraction

Relation extraction aims at predicting semantic re-
lations between pairs of entities. More specifically,
after identifying entity mentions in texts, the main
goal of RE is to classify relations. To achieve the
function of relation extraction, we adopt BERT as
the textual encoder and use FFN as the decoder.
As CogIE implements relation extraction simul-
taneously, it also matches extracted relations to
Wikidata in the form as shown in Figure 2. We
train relation matching on T-REx (Elsahar et al.,
2018), which is a large-scale alignment dataset be-
tween free text documents and KB triples, there are
currently 500 relation classes in CogIE.

3.5 Event Extraction

Events are classified as things that happen or oc-
cur, and usually involve entities as their properties.
Event extraction need to identify events that are
composed of an event trigger, an event type, and a
set of arguments with different roles. To achieve
the function of event extraction, we realize DM-
CNN (Chen et al., 2015) and a joint model based
on BERT.

3.6 Frame-Semantic Parsing

Frame semantic parsing is the task of automati-
cally extracting semantic structures in plain texts
according the framework of FrameNet. Each frame
represents a kind of event, situation, or relationship,
and consists of a frame name, a list of lexical units
(LUs), and a set of frame elements (FEs). LU is a
word that plays the role of evoking the correspond-
ing frame. FE indicates different semantic roles
associated with the frame.

Frame-semantic parsing is usually performed as
a pipeline of tasks: target identification, frame iden-
tification and argument identification. To achieve
the function of argument identification, we add tar-
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# load dataset

loader = Loader()
train_data, dev_data, test_data 

= loader.load_all(’path of dataset’)
# process dataset
processor = Processor()
train_datable = processor.process(train_data)
train_dataset = DataTableSet(train_datable)
dev_datable = processor.process(dev_data)
dev_dataset = DataTableSet(dev_datable)
test_datable = processor.process(test_data)
test_dataset = DataTableSet(test_datable)

# create model, loss, metric, optimizer for training
model = Model()

metric = Metric()
loss = Loss()
optimizer = Optimizer(model.parameters(), lr=’learning rate’)

# train and test the model
trainer = Trainer(model, train_dataset, dev_dataset, loss,

optimizer, metric,  model_path=’path of checkpoint’)
trainer.train()
tester = Tester(model, test_dataset, metric)
tester.test()

Figure 3: The sample code of model training in CogIE.

get representation and position representation to
BERT encoder. CogIE currently supports to iden-
tify 749 frames and 816 FEs in FrameNet.

4 System Usage

Our goal of designing CogIE is to provide a user-
friendly toolkit for users by achieving the equilib-
rium among usability, extensibility and efficiency.

4.1 Interface Calls

CogIE’s APIs can be directly called by Toolkit
class, where the previous output is pipelined to
the following input. Considering APIs’ flexibility,
users need to specify different tasks, languages and
datasets, while pre-trained models can be down-
loaded and loaded to Toolkit class automati-
cally.

As shown in Figure 4, the code snippet shows a
pipelined usage of CogIE for tokenizing a sentence
into words, recognizing entities, and extracting re-
lations between entities:
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loader = Loader()
train_data, dev_data, test_data 

= loader.load_all(’path of dataset’)
# process dataset
processor = Processor()
train_datable = processor.process(train_data)
train_dataset = DataTableSet(train_datable)
dev_datable = processor.process(dev_data)
dev_dataset = DataTableSet(dev_datable)
test_datable = processor.process(test_data)
test_dataset = DataTableSet(test_datable)

# create model, loss, metric, optimizer for training
model = Model()

metric = Metric()
loss = Loss()
optimizer = Optimizer(model.parameters(), lr=’learning rate’)

# train and test the model
trainer = Trainer(model, train_dataset, dev_dataset, loss,

optimizer, metric,  model_path=’path of checkpoint’)
trainer.train()
tester = Tester(model, test_dataset, metric)
tester.test()

Figure 3: The sample code of model training in CogIE.

get representation and position representation to
BERT encoder. CogIE currently supports to iden-
tify 749 frames and 816 FEs in FrameNet.

4 System Usage

Our goal of designing CogIE is to provide a user-
friendly toolkit for users by achieving the equilib-
rium among usability, extensibility, and efficiency.

4.1 Interface Calls

CogIE’s APIs can be directly called by Toolkit
class, where the previous output is pipelined to
the following input. Considering APIs’ flexibility,
users need to specify different tasks, languages and
datasets, while pre-trained models can be down-
loaded and loaded to Toolkit class automati-
cally.

The following code snippet shows a pipelined us-
age of CogIE for tokenizing a sentence into words,
recognizing entities, and extracting relations be-
tween entities:

import cogie
# tokenize the text into words
token_toolkit =

cogie.TokenizeToolkit(language=’english’)
words = token_toolkit.run(’Ontario is the most

populous province in Canada.’)
# recognize the entities in the texts
ner_toolkit = cogie.NerToolkit(language=’english’)
ner_result = ner_toolkit.run(words)
# extract the relations between entities
re_toolkit = cogie.ReToolkit(language=’english’)
re_result = re_toolkit.run(words, ner_result)
print(re_result)

4.2 Model Training

The hallmark of any good toolkit is its extensibil-
ity. As a programming framework, CogIE supports

users to train their customized models without mod-
ifying the CogIE codebase. Figure 3 shows the
sample code of training a model, and one can use
only a tiny amount of code for data processing,
component initializing, model training, and model
evaluating.

To do this, users need to use Loader class to
load the dataset and process it into DatableSet
class by Processor class. Then, Model, Loss,
Metric, Optimizer class should be initialized
before added to Trainer class. And finally,
Trainer and Tester class can train and vali-
date the model while generating checkpoints, logs
and visualization results.

4.3 Online System

Figure 4: An example of the online system.

In addition to the toolkit, we also release an on-
line system with multilingual support (English and
Chinese) as shown in Figure 4. We train models for
different tasks and deploy pre-trained models for

Figure 4: The sample code of interface calls in CogIE.

4.2 Model Training
The hallmark of any good toolkit is its extensibil-
ity. As a programming framework, CogIE supports
users to train their customized models without mod-
ifying the CogIE codebase. Figure 3 shows the
sample code of model training, and one can use
only a tiny amount of code for data processing,
component initializing, model training, and model
evaluating.

To do this, users need to use Loader class to
load the dataset and process it into DatableSet
class by Processor class. Then, Model, Loss,
Metric, Optimizer class should be initialized
before added to Trainer class. And finally,
Trainer and Tester class can train and vali-
date the model while generating checkpoints, logs
and visualization results.

4.3 Online System

Figure 5: An example of the online system.

In addition to this toolkit, we also release an
open-access online system as shown in Figure 5.



97

Task Corpus Language Types Metric Score

Word Segmentation MSRA Chinese - F1 91.2

Named Entity Recognition
CoNLL2003 English 4 F1 91.4
OntoNotes5.0 English 18 F1 85.6
OntoNotes4.0 Chinese 4 F1 80.0

Entity Typing BBN English 47 F1 75.5

Relation Extraction
KBP37 English 37 F1 69.9
DuIE Chinese 48 F1 93.0

Event Extraction

Trigger
ACE2005 English

33 F1 68.9
Argument 35 F1 46.4

Trigger
ACE2005 Chinese

33 F1 58.8
Argument 35 F1 52.8

Frame-Semantic Parsing
Frame

Frame 1.5 English
749 Acc 91.0

Element 816 F1 56.4

Table 1: Performance of each task. The datasets references are: MSRA (Emerson, 2005), CoNLL2003 (Sang
and De Meulder, 2003), OntoNotes5.0 (Pradhan et al., 2013), OntoNotes4.0 (Weischedel et al., 2011), BBN
(Weischedel and Brunstein, 2005), KBP37 (Zhang and Wang, 2015), DuIE (Li et al., 2019), ACE2005 (Walker
et al., 2006), and Frame 1.5 (Kabbach et al., 2018).

We train models for different tasks and deploy pre-
trained models for online access. The online sys-
tem can be directly used for extracting entities,
relations, events and frames from plain texts. Be-
sides, the extracted results can be linked to CogNet,
so users can further acquire external knowledge
through CogNet. We also visualize the extracted
results in the form of knowledge graphs to improve
the availability of the online system. Meanwhile,
open online APIs 5 can be called directly .

5 Experiment and Evaluation

In this section, we train and evaluate CogIE on sev-
eral datasets in different tasks. Each task’s perfor-
mance is shown in Table 1, all pre-trained models
are publicly downloadable.

For the NER component, we compare CogIE
against Stanza (v1.0), FLAIR (v0.4.5) and spaCy
(v2.2), we find that CogIE can achieve either higher
or close F1 scores when compared against other
toolkits. For the RE component, we compare
CogIE with two baselines: RNN+PI (Zhang and
Wang, 2015) and BERTEM (Soares et al., 2019),
we observe that CogIE can achieve comparable or
even better performance than them. For the frame-
semantic parsing component, we compare CogIE
against SimpleFrameId (Hartmann et al., 2017),
we find that CogIE can have better performance
than SimpleFrameId. For the other components,

5http://cognet.top/cogie/api.html

we also compare CogIE with a series of baselines
and toolkits, and the evaluation results show that
CogIE can provide powerful IE functions.

6 Conclusion and Future Work

In this paper, we propose CogIE, an information ex-
traction toolkit for bridging texts and CogNet. We
have shown that CogIE is a plug-and-play toolkit
and an extensible programming framework due to
its Application - Module - Code three-tier archi-
tecture design. Moreover, as an integrated and
professional IE toolkit, CogIE can extract informa-
tion from texts while aligning the extracted facts to
CogNet and other KBs. We conduct experiments
on several datasets in different tasks, and the evalu-
ation results demonstrate the models implemented
by CogIE are efficient.

In the future, we consider the following points
during improvement: (1) To use CogIE on any
device, we will further optimize model sizes and
speed up computation in CogIE while striking a
balance between accuracy and efficiency; (2) For
making models robust to the texts of different do-
mains and styles, we plan to utilize various sources
of consistent data to train a universal model; (3) We
will build an open-source community for CogIE so
that all researchers can contribute their models and
participate in long-term maintenance.

http://cognet.top/cogie/api.html
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