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Abstract

In this paper, we conduct a comprehensive
comparison of well-known embeddings’ ca-
pability in capturing the hierarchical Physics
knowledge. Several key findings are:
(i) Poincaré embeddings do outperform if
trained on PhySH, but it fails if trained on
co-occurrence pairs which are extracted from
raw text. (ii) No algorithm can properly
learn hierarchies from the more realistic case
of co-occurrence pairs, which contains more
noisy relations other than hierarchical rela-
tions. (iii) Our statistic analysis of Poincaré
embedding’s representation of PhySH shows
successful hierarchical representation share
two characteristics: firstly, upper-level terms
have a smaller semantic distance to root; sec-
ondly, upper-level hypernym-hyponym pairs
should be further apart than lower-level hyper-
nym-hyponym pairs.

1 Introduction

Concept hierarchy or taxonomy1 is highly orga-
nized and expertly curated hierarchical hypernym-
hyponym sets. How to effectively represent these
terms with the hierarchical relation is the main hur-
dle for automatically taxonomy construction and
other downstream applications.

Though embeddings have been taken for granted
in most NLP pipelines, none of the previous work
has fully explored which embeddings can capture
hierarchical scientific knowledge. Even though
Poincaré embedding is proved to have a better abil-
ity to capture hierarchical relations, it is learned
based on existing WordNet hypernym-hyponym
pairs. It is never been tested in the scientific domain.
In this paper, we conduct a comprehensive compar-
ison of well-known embeddings’ performance in
reconstructing Physical Subject Headings (PhySH)
from raw APS datasets.

1In this paper, we use taxonomy and concept hierarchy as
equal term.

Our main contributions are mainly three-fold:
Firstly, for the first time, we compare mainstream
embeddings’ capability to represent and reconstruct
Physical Subject Headings (PhySH) both from raw
text and PhySH. Secondly, our experiment shows
Poincaré embedding is not sufficient for taxon-
omy induction from raw text. Thirdly, we explore
the characteristics of successful representation of
PhySH, which might be the inspiration for better
taxonomy construction algorithms.

2 Related Work

Representations for Concept Hierarchy. Rep-
resentations for concept hierarchy has been re-
ceiving quite growing interests in recent years
(Kozareva et al., 2008; Carlson et al., 2010; Shen
et al., 2018). It is the basis of automaticly taxon-
omy construction. In the survey study of (Wang
et al., 2017), there are Pattern-based (Hearst, 1992;
Wu et al., 2012; Kozareva and Hovy, 2010) meth-
ods and distributional (Navigli and Velardi, 2004;
Luu et al., 2014; Padó and Lapata, 2003; Baroni
and Lenci, 2010; Nguyen et al., 2017) methods
use hand-crafted rule-based, co-occurrence fea-
tures,syntactic features or graph features to learn
representations of hierarchical pairs. They also
apply pretrained neural laguage models such as
Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014).

Recently, Poincaré embedding (Nickel and Kiela,
2017) is proposed to better represent hierarchical re-
lations. Following works like (Law et al., 2019) use
Lorentzian distance to replace the Poincaré metric,
(Dhingra et al., 2018) extends Poincaré embedding
to apply in raw text with re-parameterization tech-
nique, (Leimeister and Wilson, 2019) and (Tifrea
et al., 2019) introduce hyperbolic embeddings in
word embeddings like Skipgram and GloVe. Ef-
fectively in reconstructing WordNet though, the
Poincaré embedding is not quite perfect yet (De Sa
et al., 2018). It has only been tested on WordNet re-



Figure 1: Evaluation Pipeline

construction and Hyperlex entailment (Nickel and
Kiela, 2017). Whether it is an effective tool in rep-
resenting hierarchical relations from raw domain
text need to be further explored.

Embeddings Analysis. With the fast pacing of
text representation technology, it is also important
to revisit existing embedding methods for differ-
ent downstream tasks. Several previous works
have explicitly done this work based on their
unique perspectives.Gladkova et al. (2016) ex-
plores GloVe’s ability to encode different mor-
phological and semantic relations. (Zuccon et al.,
2015) analyze word embeddings for information
retrieval. Nooralahzadeh et al. (2019) compared
COW and Skipgram by using Gensim implementa-
tion (Řehůřek and Sojka, 2010) with several differ-
ent hyper-parameters settings and different domain
corpus. Sanchez and Riedel (2017) explored differ-
ent datasets in evaluation hypernyms identification
by using GloVe. (Lastra-DÃ az et al., 2019) sur-
veys main word embeddings for word similarity.

Despite the above-mentioned work, there is still
a missing part describing which embedding is the
optimal choice for taxonomy induction. In this pa-
per, we design our evaluation pipeline to choose
the optimal embedding scheme for taxonomy learn-
ing and construction. In our paper, we consider
two perspectives to represent and construct concept
hierarchy: (i) Learn and construct from raw texts
by word embeddings; (ii) Learn and construct from
extracted co-occurrence pairs from raw texts by
graph embeddings and Poincaré embeddings.

3 Method

In our pipeline (Figure 1), we follow three steps:
raw text and PhySH preprocessing; learn various
embeddings with different hyperparameters; evalu-
ate embeddings by reconstructing PhySH.

We evaluate the following embeddings:

Model Name Metric Dimensions
5 10 20 50 100 200

W
or

d
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m
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in

gs GloVe
mean rank 2168·30 2568·93 2237·33 2142·94 2188·83 2271·32
MAP 0·18 0·05 0·06 0·07 0·06 0·06

COW
mean rank 2883·64 3196·44 2937·09 3162·85 1894·02 3096·82
MAP 0·69 0·63 0·70 0·63 0·72 0·64

Skipgram
mean rank 2595·87 3939·61 3091·23 2732·08 3683·61 2893·45
MAP 0·68 0·60 0·67 0·68 0·63 0·70

fastText
mean rank 2461·97 3004·28 2903·78 3391·16 3456·85 2493·87
MAP 0·67 0·67 0·69 0·66 0·59 0·65

G
ra

ph
E

m
be

dd
in

gs

deepWalk
mean rank 244·03 469·47 624·21 726·95 780·47 811·30
MAP 0·18 0·05 0·06 0·05 0·05 0·05

GF
mean rank 1189·78 1003·12 916·56 825·82 682·73 629·40
MAP 0·01 0·01 0·01 0·01 0·02 0·03

GraRep
mean rank 676·07 944·67 849·28 813·40 828·20 840·75
MAP 0·05 0·01 0·02 0·03 0·03 0·03

HOPE
mean rank - 749·61 776·90 803·42 838·26 874·51
MAP - 0·12 0·11 0·10 0·08 0·06

LINE
mean rank 387·65 360·36 459·23 432·79 423·59 425·38
MAP 0·07 0·06 0·06 0·05 0·06 0·08

node2vec
mean rank 490·53 458·11 462·65 459·00 453·37 450·80
MAP 0·02 0·03 0·04 0·04 0·04 0·04

SDNE
mean rank 917·78 836·11 823·17 960·99 931·31 991·00
MAP 0·04 0·10 0·10 0·02 0·04 0·02

Po
in
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ré
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gs

Pioncare
Gensim

mean rank 765·08 734·58 747·20 750·99 739·38 745·25
MAP 0·03 0·03 0·03 0·03 0·03 0·03

Pioncare
Cpp

mean rank 438·84 428·82 441·85 449·64 452·56 457·11
MAP 0·06 0·09 0·09 0·09 0·09 0·09

Pioncare
Numpy

mean rank 935·95 880·16 861·51 874·15 892·52 879·84
MAP 0·01 0·02 0·02 0·02 0·02 0·02

Pioncare
Pytorch

mean rank 1169·85 1151·57 1167·01 1164·53 1169·49 1165·13
MAP 0·08 0·08 0·08 0·08 0·08 0·08

Pioncare
GloVe

mean rank 1268·48 1263·33 1250·31 1169·00 1165·30 1003·67
MAP 0·01 0·01 0·01 0·03 0·04 0·06

Table 1: PhySH reconstruction from APS datasets,
with word embeddings trained on raw text, graph
embeddings and Poincaré embeddings trained on co-
occurrence of PhySH terms in raw text. We only in-
clude each embedding’s optimal result in the table.

• Word embeddings: CBOW and Skipgram
(Mikolov et al., 2013), fastText (Joulin et al.,
2017), GloVe(Pennington et al., 2014)2.

• Graph embeddings: deepWalk (Perozzi et al.,
2014), node2vec (Grover and Leskovec,
2016), LINE (Tang et al., 2015), LLE (Roweis
and Saul, 2000), HOPE (Ou et al., 2016),
GF(Ahmed et al., 2013), SDNE(Wang et al.,
2016)3.

• Poincaré embeddings: Poincaré-gensim4,
Poincaré-cpp 5, Poincaré-pytorch6, Poincaré-
numpy7, Poincaré-glove8 (Tifrea et al., 2019).

.
Word embeddings are trained on title and ab-

stract of APS publications. The PhySH terms’ em-
bedding vectors will be extracted for taxonomy

2CBOW, Skipgram and fastText are trained by
https://github.com/NIHOPA/word2vec_pipeline. GloVe is
trained by https://github.com/stanfordnlp/GloVe

3Graph embeddings are implemented by OpenNE
repositery https://github.com/thunlp/OpenNE

4https://radimrehurek.com/gensim/models/poincare.html
5https://github.com/TatsuyaShirakawa/poincare-

embedding.git
6https://github.com/facebookresearch/poincare-

embeddings
7https://github.com/nishnik/poincare_embeddings.git
8https://github.com/alex-tifrea/poincare_glove



Model Name Metric Dimensions
5 10 20 50 100 200

G
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gs
deepWalk

mean rank 357·26 496·36 546·02 537·64 525·74 519·82
MAP 0·22 0·19 0·21 0·22 0·22 0·23

GF
mean rank 277·24 125·89 50·67 8·90 2·93 9·79
MAP 0·10 0·35 0·58 0·65 0·66 0·66

GraRep
mean rank - 78·87 34·45 22·19 13·45 82·18
MAP - 0·49 0·53 0·56 0·58 0·57

HOPE
mean rank - 561·03 758·32 691·95 615·45 515·47
MAP - 0·64 0·47 0·43 0·43 0·45

LINE
mean rank 489·49 344·14 141·35 34·32 15·84 10·00
MAP 0·04 0·07 0·23 0·52 0·60 0·62

node2vec
mean rank 265·65 264·94 265·69 264·81 269·52 265·20
MAP 0·33 0·34 0·35 0·35 0·34 0·35

SDNE
mean rank 72·58 33·18 478·27 517·55 512·10 492·46
MAP 0·37 0·54 0·12 0·04 0·02 0·02

Po
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Pioncare
Gensim

mean rank 8·08 6·58 7·04 7·43 6·63 6·20
MAP 0·61 0·61 0·62 0·61 0·62 0·61

Pioncare
Cpp

mean rank 12·04 11·74 8·12 6·75 8·17 6·95
MAP 0·61 0·61 0·62 0·62 0·62 0·62

Pioncare
Numpy

mean rank 382·52 291·56 272·80 232·12 249·01 247·75
MAP 0·46 0·53 0·56 0·58 0·58 0·59

Pioncare
Pytorch

mean rank 3·83 3·22 2·88 2·61 2·80 2·82
MAP 0·93 0·94 0·94 0·94 0·94 0·94

Table 2: PhySH reconstruction from PhySH hypernym-
hyponym pairs. Since there is no context infomation,
word embeddings are not applicable here.

reconstruction. Graph embeddings and Poincaré
embeddings are trained on the co-occurrence of
PhySH terms in each of APS publications. As
with (Nickel and Kiela, 2017), we also train graph
embeddings and Poincaré embeddings on PhySH
hypernym-hyponym pairs.

Taxonomy Reconstruction: We follow (Nickel
and Kiela, 2017) to reconstruct taxonomy based
on embedding vectors. For each embedding vec-
tor in Poincaré disk space, which is denoted as
Bd = {x ∈ Rd, ‖x‖2 ≤ 1}. The norm of each
vector can measure the radius of each vector, while
the hyperbolic distance can measure the closeness
of two vectors. The closest two are assigned as
hypernym-hyponym pairs. The hyperbolic distance
of two vector points u, v ∈ Bd is calculated follow
as (Nickel and Kiela, 2017).

dH(u, v) = arcosh

(
1 + 2 ∗ ‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
(1)

The distance could only tell how semantically
close are the node pairs (u, v). But which one is
the parent node is not answered. One property
that makes hyperbolic space outstanding for the
hierarchical structure is that the hyperbolic disc
area and circle length grow exponentially with its
radius. Node with the smaller norm is the higher-
level term.

4 Evaluation and Results

4.1 Evaluation Datasets
APS (American Physical Society) has made avail-
able their publications data for researchers with the
total number of 661, 209 articles and citations and
dates back to 18939. We utilize the article metadata
datasets. PhySH (Physics Subject Headings) is the
Physics concept hierarchy. It is used to organize
publications of APS. It is open-source on Github10.
APS metadata datasets only contain title field, we
retrieve abstract from Web of Sciences database11.

4.2 Evaluation Metrics
mean rank and MAP metrics are used to measure
taxonomy reconstruction performance. mean rank
is calculated for each node’s distance of ground
truth children against all other nodes. MAP is the
mean average precision at the threshold of each
correctly retrieved child.

mean_rank(u) =
sp(u)

sp(u) + lp(u)
∈ [0, 1] (2)

lp(u) is the furthest length from node u to its
descendants. sp(u) is the shortest length from node
u to root node. The optimal embedding should
score a low mean rank and a high MAP.

4.3 PhySH Reconstruction Evaluation
PhySH Reconstruction From Raw Text. In
this experiment, we extract co-occurrence of
PhySH terms in each APS publication. The graph
embeddings are trained on the co-occurrence graph.
Poincaré embeddings are trained on the noisy co-
occurrence pairs. Word embeddings are trained on
APS publication raw texts. PhySH terms’ represen-
tation vectors are extracted from word vectors in
the postprocessing step.

Table 1 is the performance of PhySH recon-
struction by learning representation from raw APS
datasets12. None of the embeddings get the best re-
sult in both metrics. Word embeddings like CBOW
achieve better MAP, while graph embeddings like
deepWalk outperform in mean rank. Poincaré em-
beddings did not show any superior. Learn PhySH

9https://journals.aps.org/datasets
10https://github.com/physh-org/PhySH
11Web of Science is a commercial database of Clarivate An-

alytics, it can be accessed by most universities and institutions
12We experiment each embedding with different hyperpa-

rameters by grid search, we present the optimal performance
of each embedding in the tables.



Figure 2: Norm of Poincaré embedding vector at dif-
ferent taxonomy levels

Figure 3: Distance of Poincaré embedding vector ac-
cross different taxonomy levels

from noisy co-occurrence pairs are much more
complicated than the mammal tree of the Word-
Net described in the origin paper(Nickel and Kiela,
2017). We can conclude Poincaré embeddings are
not sufficient for learning and representing from
the co-occurrence pairs.

PhySH Reconstruction From PhySH. Table 2
is the performance of PhySH reconstruction by
learning representation from PhySH hypernym-
hyponym pairs. The graph embeddings are trained
on the PhySH hypernym-hyponym graph. Poincaré
embeddings are trained on the PhySH hypernym-
hyponym pairs.

In this experiment, Poincaré’s official implemen-
tation Poincaré-Pytorch wins with far better results
than other algorithms. This is because Poincaré
is trained with the loss function designed to learn
hierarchies, while graph embeddings are trained to
learn from neighbors and global graph structure.
However, GF at dimension 100 and LINE at dimen-
sion 200 also get very good performance.

4.4 The Hierarchical Characteristics of
PhySH Poincaré embedding

If we understand the successful representation char-
acteristics of taxonomy hierarchical relations, it

will be the help of taxonomy construction. We will
analyze what are the hierarchical characteristics of
PhySH preserved by Poincaré embeddings in this
section.

In Figure 2, we visualize how the norm value
varies in different PhySH level. There is a clear
pattern from taxonomy level 2 to level 6: lower-
level terms have bigger norm values. It means
lower terms are further from the root term. The
pace of the decrease of the norm in lower levels
seems to decelerate, which needs to be further vali-
dated. However, the norm of level 1 terms is rather
distributed, which we think is the points where
Poincaré embedding fails.

In Figure 3, we compare the distance of terms
over different PhySH levels. The ancestor nodes
are further than parent nodes. For each node, its
distance to the child is smaller than the distance to
parent, and the distance to the child is nearly half as
the distance to parent. These patterns are important
for a successful representation of taxonomy.

5 Conclusion and Future Work

we compare word embeddings, graph embeddings,
and Poincaré embeddings by reconstructing PhySH.
We consider two scenario case: reconstructing from
raw texts and reconstructing from existing PhySH.
The experiment shows even though Poincaré em-
beddings far outweigh other embeddings in recon-
structing PhySH from PhySH, it is also not compe-
tent as other embeddings in reconstructing PhySH
from raw APS texts.

We further demystify what is the success of
Poincaré embeddings in reconstructing PhySH
from PhySH. The future work would be how to
design a powerful taxonomy induction algorithm
which could benifit from the characteristics of our
paper.
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