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Abstract

We report the results of the WMT20 shared
task on Quality Estimation, where the chal-
lenge is to predict the quality of the output
of neural machine translation systems at
the word, sentence and document levels.
This edition included new data with open
domain texts, direct assessment annotations,
and multiple language pairs:  English—-
German, English—Chinese, Russian-English,
Romanian-English, Estonian—English,
Sinhala—English and Nepali—English data for
the sentence-level subtasks, English—-German
and English—Chinese for the word-level
subtask, and English-French data for the
document-level subtask. In addition, we made
neural machine translation models available
to participants. 19 participating teams from 27
institutions submitted altogether 1374 systems
to different task variants and language pairs.

1 Introduction

This shared task builds on its previous eight edi-
tions to further examine automatic methods for
estimating the quality of neural machine transla-
tion (MT) output at run-time, without the use of
reference translations. As in previous editions, it
includes the (sub)tasks of word-level, sentence-
level and document-level estimation. Important
elements introduced this year are: a variant of
the sentence-level task where sentences are anno-
tated with direct assessment (DA)! scores instead
of labels based on post-editing; a new multilingual
sentence-level dataset mainly from Wikipedia arti-
cles, where the source articles can be retrieved for
document-wide context; the availability of NMT

'We note that the procedure followed for our data diverges
from that proposed by Graham et al. (2016) in three ways: (a)
we employ fewer but professional translators to score each
sentence, (b) scoring is done against the source segment (bilin-
gual annotation) and not the reference, and (c) we provide
translators with guidelines on the meaning of ranges of scores.

models to explore system-internal information for
the task.

In addition to advancing the state of the art at all
prediction levels, our main goals are:

e To create a new set of public benchmarks for
tasks in quality estimation.

e To investigate models for predicting DA
scores and their relationship with models
trained for predicting post-editing effort,

e To study the feasibility of multilingual (or
even language independent) approaches to

QE.

e To study the influence of source-language
document-level context for the task of QE.

e To analyse the applicability of NMT model
information for QE.

We have three subtasks: Task 1 aims at predict-
ing DA scores at sentence level (Section 2.1); Task
2 aims at predicting post-editing effort scores at
both sentence and word levels, i.e. words that need
editing, as well as missing words and incorrect
source words (Section 2.2); Task 3 aims at predict-
ing a score for an entire document as a function
of the proportion of incorrect words in such a doc-
ument, weighted by the severity of the different
errors (Section 2.3).

Tasks make use of large datasets produced from
either post-editions or DA annotations, or error an-
notation, all done by professional translators. The
text domains vary for each subtask. Neural MT
systems were built on freely available data using
an open-source toolkit to produce translations, and
these models were made available to participants.
We provide new training and test datasets for Tasks
1 and 2, and a new test set for Task 3. The datasets
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and models released are publicly available. Partic-
ipants are also allowed to explore any additional
data and resources deemed relevant.

Baseline systems were entered in the platform
by the task organisers (Section 3). The shared task
uses Codalab as submission platform, where par-
ticipants (Section 4) could submit up to 30 systems
for each task and language pair. Results for all
tasks evaluated according to standard metrics are
given in Section 5, while a discussion on the main
goals and findings from this year’s task is presented
in Section 6.

2 Subtasks

In what follows we give a brief description for each
subtask, including the datasets provided for them.

2.1 Task 1: Predicting sentence-level DA

This task consists in scoring translation sen-
tences according to their perceived quality score
— which we refer to as direct assessment (DA).
For that, a new dataset, was created contain-
ing seven languages pairs using sentences mostly
from Wikipedia’>. These language pairs are
divided into 3 categories: the high-resource
English—German (En-De), English—Chinese
(En-Zh) and Russian—English (Ru-En) pairs;
the medium-resource Romanian—English (Ro-
En) and Estonian—English (Et-En) pairs; and
the low-resource Sinhala—English (Si-En) and
Nepali—English (Ne-En) pairs.

Translations were produced with state-of-the-
art transformer-based NMT models trained using
publicly available data and the fairseq toolkit (Ott
et al., 2019); and were manually annotated for per-
ceived quality. The quality label for this task ranges
from O to 100, following the FLORES guidelines
(Guzmadn et al., 2019). According to the guidelines
given to annotators, the 0-10 range represents an
incorrect translation; 11-29, a translation with few
correct keywords, but the overall meaning is dif-
ferent from the source; 30-50, a translation with
major mistakes; 51-69, a translation which is un-
derstandable and conveys the overall meaning of
the source but contains typos or grammatical er-
rors; 70-90, a translation that closely preserves the
semantics of the source sentence; and 91-100, a
perfect translation.

This dataset is a superset of MLQE (Fomicheva et al.,
2020c) which included 6 language pairs and is sourced en-
tirely from Wikipedia. The newly-added English-Russian DAs
follow the same guidelines, but come from diverse sources.

Statistics on the dataset are shown in Table 1.
More details are given in Fomicheva et al. (2020a).
The complete data can be downloaded from the
public repository?.

Participation was encouraged for each language
pair and also for the multilingual variant of the
task, where submissions had to include predictions
for all six Wikipedia-based language pairs (all ex-
cept Ru-En). The latter aimed at fostering work on
language-independent models, as well as models
that can leverage data from multiple languages.

2.2 Task 2: Predicting post-editing effort

This task follows from previous editions of the
WMT shared task and consists in scoring transla-
tions according to the proportion of their words that
need to be fixed using HTER as label, i.e. the mini-
mum edit distance between the machine translation
and its manually post-edited version, as well as de-
tecting where errors are in the translation of source
sentences. It uses a subset of the languages from
Task 1, namely the two high-resource language
pairs (En-De and En-Zh, Table 1).

Sentence-level post-editing effort The label for
this task is the percentage of edits that need to be
fixed (HTER). Starting with the En-De and En-
Zh source-machine translation segment pairs, the
machine translation sentences were post-edited by
two human translators, one per language, who are
paid editors from the Unbabel community. The
two translators had no access to the direct assess-
ments above. In other words, the DA and HTER
annotations were collected independently.

The average human translation error rate be-
tween the machine translated text and the post-
edited text was 0.32 for En-De, and 0.62 for En-Zh.
HTER labels were computed using TERCOM #
with default settings (tokenised, case insensitive,
exact matching only), with scores capped to 1.

Word-level errors This variant evaluates the ex-
tent to which we can detect word-level errors in
MT output. Based on the post-edited translations,
as described above, we annotate each token of the
target and the source sentence, as well as word
omission errors. The code to produce this set of
tags from any prior WMT corpora is available for

*https://github.com/sheffieldnlp/
mlge—pe
*nttps://github.com/jhclark/tercom
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Sentences Tokens
Languages Train Dev  Test Train Dev Test DA PE
En-De 7,000 1,000 1,000 | 114,980 16,519 16,371 v VvV
En-Zh 7,000 1,000 1,000 | 115,585 16,307 16,765 v v
Ru-En 7,000 1,000 1,000 | 82,229 11,992 11,760 Vv
Ro-En 7,000 1,000 1,000 | 120,198 17,268 17,001
Et-En 7,000 1,000 1,000 | 98,080 14,423 14,358 Vv
Ne-En 7,000 1,000 1,000 | 104,934 15,144 14,770
Si-En 7,000 1,000 1,000 | 109,515 15,708 15,821

Table 1: Statistics of the data used for Task 1 (DA) and Task 2 (PE). The number of tokens is computed based on

the source sentences.

download.”> More specifically, the following types
of labels were produced:

e Source side: Each word in the source side is
labelled as OK (correctly translated) or BAD
(caused a translation error).

e Target side: Each word in the target side is
labelled as OK (a correct translation) or BAD
(should be replaced or deleted). Additionally,
we consider gap ‘tokens’ at the beginning of
the sentence, at the end and between each
two words. They are labelled OK if no word
should be inserted in that position (according
to the post-edited version), and BAD other-
wise.

In order to obtain the labels, we first align source
and MT using the IBM Model 2 alignments from
FastAlign (Dyer et al., 2013), and compute edit
distances between the generated and post-edited
translations with TERCOM, using default settings
and disabled shifts.

2.3 Task 3: Predicting document-level MQM

This task consists in finding document-level trans-
lation errors and estimating a quality score accord-
ing to the amount of minor, major, and critical
errors present in the translation. The predictions
are compared to a ground-truth obtained from an-
notations produced by crowd-sourced human trans-
lators from Unbabel community.

Each document contains zero or more errors, an-
notated according to the MQM taxonomy®, and

Shttps://github.com/deep-spin/
ge-corpus-builder

SMultidimensional Quality Metrics; see
http://www.gt21l.eu/mgm-definition/
definition-2015-12-30.html for details.

Error Annotation

- sifflet Fox 40 CMG D doigt
officiel

Figure 1: Example of fine-grained document annota-
tion. Spans in the same color belong to the same an-
notation. Error severity and type are not shown for
brevity.

may span one or more tokens, not necessarily con-
tiguous. Errors have a label specifying their type,
such as wrong word order, missing words, agree-
ment, etc. They provide additional information,
but do not need to be predicted by the systems.
Additionally, there are three severity levels for er-
rors: minor (if it is not misleading nor changes
meaning), major (if it changes meaning), and criti-
cal (if it changes meaning and carries any kind of
implication, possibly offensive).

Figure 1 shows an example of fine-grained error
annotations for a sentence. Note that there is an
annotation composed by two discontinuous spans:
a whitespace and the token Grip — in this case, the
annotation indicates wrong word order, and Grip
should have been at the whitespace position.

Document-level scores were then generated from
the word-level errors and their severity using the
method described in Sanchez-Torron and Koehn
(2016, footnote 6). Namely, denoting by n the
number of words in the document, and by nyiy,
Nmaj, and ne the number of annotated minor, ma-
jor, and critical errors, the final quality scores were
computed as:

Nminor T 5nmajor + 107¢rit
n

MQM =1 — (1)
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Note that MQM values can be negative if the
total severity exceeds the number of words.

As this year’s dataset, we reused the training
data from previous years, adding the test sets from
2018 and 2019 to the training set, keeping the same
development set from 2019, and released a new test
set. The documents are short product title and de-
scriptions in English, extracted from the Amazon
Product Reviews dataset (McAuley et al., 2015;
He and McAuley, 2016) (Sports and Outdoors cat-
egory). The documents were machine translated
into French using a state of the art online neural
MT system. The dataset statistics are presented in
Table 2.

3 Baseline systems

Sentence-level baseline systems: For Tasks 1
and 2, both word and sentence-level, we used the
LSTM-based Predictor-Estimator approach (Kim
et al., 2017), implemented in OpenKiwi (Kepler
et al., 2019b). The Predictor model was trained on
the same parallel data as the NMT systems for each
language pair (made available at the task website),’
while the the Estimator was trained on the 7, 000
QE labelled data for each task.

Word-level baseline systems: For Task 2, we
also used the Predictor-Estimator as above, but it
was trained to predict jointly word-level tags and
sentence-level scores.

Document-level baseline system: For Task 3,
similarly as last year, we used a baseline which
treats sentences independently and casts the prob-
lem as word-level QE, such that all words and gaps
within an error span are given the tag BAD. We
then trained a Predictor-Estimator model, regroup-
ing any contiguous sequence of tokens tagged as
BAD in a single error annotation. In order to get
MQM scores, instead of computing the value ac-
cording to its definition, we compute it simply as 1
minus the the ratio of BAD tags.

4 Participants

Table 3 lists all participating teams submitting sys-
tems to any of the tasks, and Table 4 report the
number of successful submissions to each of the
sub-tasks and language pairs. Each team was al-
lowed up to two submissions for each task vari-
ant and language pair. In the descriptions below,

"http://statmt.org/wmt20/
quality-estimation-task.html
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participation in specific tasks is denoted by a task
identifier (T1 = Task 1, T2 = Task 2, T3 = Task 3).

Bergamot-LATTE (T1): Bergamot-LATTE sub-
mitted two systems to the two variants of
sentence-level predictions: (i) a black-box ap-
proach based on pre-trained representations;
(i1) an unsupervised glass-box approach that
leverages information extracted from the neu-
ral MT system. The black-box model consists
of stacking a 2-layer multilayer perceptron
on the vector representation of the CLS to-
ken from the contextualised representation
from XLM-R(Conneau et al., 2020), using
both the source and the target sentences as
input. The glass-box approach explores the
best-performing unsupervised quality indica-
tors presented in Fomicheva et al. (2020c) that
rely on uncertainty quantification based on
the Monte Carlo dropout method: D-TP and
D-Lex-Sim.

Bergamot (T1, T2): Bergamot explores recent
work on glass-box QE that exploits NMT out-
put distribution and attention to capture uncer-
tainty as a proxy to MT quality. Specifically,
they use three groups of unsupervised qual-
ity indicators described in Fomicheva et al.
(2020c) as features for a regression model.

Bering Lab (T2): Bering Lab proposes a fine-
tuned version of a pre-trained XLLM-R model.
The model is first trained on a huge artificial
QE data that is created by (i) translating a
parallel corpus with an OpenNMT system;
and (ii) using the TER tool to produce artici-
fial labels for both word- and sentence-levels.
The model is then fine-tuned using the shared
task’s data. For predictions at word-level, the
final hidden vector of each token, including
the <S>, is fed into a linear layer with sig-
moid activation in order to predict the proba-
bility of each of these token to be BAD. Qual-
ity labels for tokens and gaps are predicted
separately with two distinct binary classifica-
tion layers. For predictions at sentence-level,
the final hidden vector of the first <S> token,
considered as a pooled representation, is fed
into two linear layers with tanh activation.
Submitted predictions are results of an ensem-
ble of 5 models trained with different seeds:
averaged predictions for sentence-level, and
majority voting for word-level.


http://statmt.org/wmt20/quality-estimation-task.html
http://statmt.org/wmt20/quality-estimation-task.html

Documents Sentences Tokens
Train Dev Test | Train Dev Test Train Dev Test
En-Fr 1,448 200 180 | 8,592 1,301 895 | 189,735 28,092 18,545

Table 2: Statistics of the data used for Task 3. The number of tokens is computed based on the source sentences.

ID  Participating team
Bergamot-LATTE | University of Sheffield & Imperial College London, UK & Johns Hop- | (Fomicheva et al., 2020b)
kins University & Facebook Al, US & University of Tartu, Estonia
Bergamot | University of Tartu, Estonia (Fomicheva et al., 2020b)
Bering Lab | Bering Lab, Republic of Korea (Lee, 2020)
Elturco.Al | Elturco Al Turkey —
FVCRC | Nagoya University, Japan & University of Sydney, Australia (Zhou et al., 2020)
HW-TSC | Huawei Translation Services & East China Normal University, China (Wang et al., 2020a)
IST & Unbabel | Instituto Superior Técnico Lisbon & Unbabel, Portugal (Moura et al., 2020)
JXNU-CCLQ | Jiangxi Normal University, China -
Mak | University of Wolverhampton, UK -

NICT Kyoto | National Institute of ICT, Japan (Rubino, 2020)
NiuTrans | Northeastern University & NiuTrans Reasearch, China (Hu et al., 2020)
NJUNLP | Nanjing University, China (Cui et al., 2020)

Papago | KAIST & Naver, Republic of Korea (Baek et al., 2020)
RTM | Bogazici University, Turkey (Bigici, 2020)
TMUOU | Osaka University & Tokyo Metropolitan University, Japan (Nakamachi et al., 2020)

Tencent Inc. | Tencent Inc, China (Wang et al., 2020b)

TransQuest | University of Wolverhampton, UK (Ranasinghe et al., 2020)
WL Research | WL Research, US, Canada and Turkey (Kane et al., 2020)
XC | Imperial College London, UK -
Table 3: Participants in the WMT20 Quality Estimation shared task.
Task/LP # submission

Task 1 — Sent-level Direct Assessment 747
Multilingual 43
English-German 132
English-Chinese 146
Romanian-English 150
Nepali-English 56
Estonian-English 68
Sinhala-English 74
Russian-English 78

Task 2 — Post-Editing Effort 435
English-German (sent-level) 131
English-Chinese (sent-level) 235
English-German (word-level) 38

English-Chinese (word-level) 31

els are jointly trained on a parallel corpus, in
order to create increasingly difficult artificial
samples for quality estimation. The genera-
tive model consists of a transformer encoder
and two transformer decoders, for forward and
backward direction. In addition to predicting
tokens, it is also trained to predict gap loca-
tions on the target side given the source sen-
tence and left and right contexts on the target
side. Distorted translations are generated by
sampling on generator outputs on token and
gap locations, which can be shorter or longer

Task 3 — Document-Level QE 192
English-French (annot.) 97 than the original translation. The distorted
English-French (score) 95 . . .
translations are compared to original transla-
Total 1374 tions for generating token and gap tags. The
discriminator, a transformer encoder-decoder
Table 4: Number of submissions to each sub-task

and language-pair at the WMT20 Quality Estimation
shared task. In the results (Section 5) we only report
the top two submissions per team for each task and lan-
guage pair.

Elturco.AI (T2): Elturco.Al uses a generative
model and a discriminative model, inspired
by Electra (Clark et al., 2020). The two mod-

FVCRC (T1):

747

with full attention mask on the decoder side, is
trained to predict the generated tags given the
source and distorted translation. Once trained,
the discriminator is fine-tuned on the actual
quality estimation dataset.

FVCRC’s system builds on
BERTScore, a text generation evaluation sys-
tem based on pretrained BERT contextual em-
beddings, originally for Metrics tasks. By



using pre-trained multilingual BERT-based
model, they experiment with BERTScore on
QE tasks. Without reference translations,
it makes more errors in terms of word (or
sub-word) alignments when perform greedy
matching on pairwise cosine similarity, which
is believed to be main cause of its drop of
performance in QE tasks. They introduce
GIZA++ word (subword) alignments and n-
grams similarity matching to tackle misalign-
ments and sentence perplexity of candidate
translation as additional information to the
evaluation score. Otherwise, the default set-
ting of BERTScore (Zhang* et al., 2020)
is used: pre-trained bert-base-multilingual-
cased and xIm-mlm-100-1280 for embedding
extraction, with a single model. This system
is not trained on human labels (DA) and is not
optimised on additional data.

HW-TSC (T2): HW-TSC submissions follows the

Predictor-Estimator architecture (Kim et al.,
2017), with a pre-trained Transformer as Pre-
dictor, and task-specific classifiers and regres-
sors as Estimators. HW-TSC uses a unified
model to solve both word- and sentence-level
tasks, trained under multi-task learning. To
improve the transfer-learning efficiency across
tasks while preventing over-fitting, a Bottle-
neck Adapter Layer (Houlsby et al., 2019)
is added to the Transformer after the self-
attention and the feedfoward layers, while
keeping the original parameters of the Trans-
former model fixed.

IST & Unbabel (T1, T2, T3): IST & Unba-

bel submitted two systems per task vari-
ant: OPENKIWI-BASE and KIWI-GLASS-
BOX-ENSEMBLE for predicitons at both
word- and sentence-levels; KIWI-DOC and
Krwi-poc-10B for document-level predic-
tions. OPENKIWI-BASE is based on the re-
implementation of the Predictor-Estimator
architecture (Kim et al., 2017) available in
OpenKiwi (Kepler et al., 2019b): the Predic-
tor model is replaced with pre-trained con-
textualised representations (such as BERT or
XLM-R) and the bi-LSTM Estimator is re-
placed by linear layers. KIWI-GLASS-BOX-
ENSEMBLE is similar to OPENKIWI-BASE
with a bottleneck layer introduced in the Es-
timator in order to concatenate the features
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extracted from the Predictor, with sentence-
level uncertainty features extracted from the
NMT system provided by the shared task.
Those glass-box features are based on work
by Fomicheva et al. (2020c) and exploit en-
tropy measures at prediction time. Unlike
OPENKIWI-BASE, the KIWI-GLASS-BOX-
ENSEMBLE model is trained for source, target
and sentence level predictions simultaneously,
using a multi-task learning approach. KIiwI-
DOC is the same as in Kepler et al. (2019a)
while KIWI-DOC-10B frames the task of anno-
tating as Name Entity Recognition task: the
severity annotations are projected to tags in
IOB format (‘O¢, ‘B-major‘, ‘I-major‘, ‘B-
critical®, etc.) and the model is trained with a
CRF output layer to enforce correctness of the
tag-sequence at prediction time. The predicted
tags are converted into annotations without the
resort to a grouping and labelling heuristic.

JXNU-CCLQ (T1): JXNU-CCLQ proposes a

model composed of a Transformer bottleneck
layer and a bidirectional LSTM. The param-
eters of the Transformer bottleneck layer are
first optimised with a bilingual parallel cor-
pus, and the entire model is then fine-tuned
on the training quality labelled dataset of the
shared task. At test time, the translation out-
puts, which are estimated with teacher forcing
and special masking, are put together with the
source sentences and put through a unified
neural network model to predict the quality of
the translations.

Mak (T1): Mak represents the source and its trans-

lation sentence pairs as a set of 70 black-
box sentence-level features extracted with
Quest++(Specia et al., 2015), using the re-
sources used to train the English-Russian
NMT system (Ng et al., 2019). Those features
are then fitted into a support vector regressor
with default settings.

NICT Kyoto (T2): The English—-German and

English-Chinese sentence-level QE systems
for Task 2 are ensembles of pre-trained cross-
lingual language models (XLM) (Conneau
and Lample, 2019), fine-tuned in a multi-task
fashion with two linear output layers for sen-
tence and word-level quality estimation. A
total of 8 XLLM models with various mask-
ing hyper-parameters were domain-adapted



using a subset of the additional resources pro-
vided by the QE shared task organisers, as
well as a subset of the WikiMatrix corpus [2].
The translation language model training ap-
proach (TLM) was used before fine-tuning
the XLM models for the QE task, comple-
mented with a novel self-supervised learning
task which aims to model errors inherent to
machine translation outputs.

NiuTrans (T1, T2, T3): For Task 1, NiuTrans ex-

plored the combination of pre-trained models
and multi-task learning. They used three dif-
ferent model settings, including multilingual-
bert (~200M parameters), xIm-roberta-base
(~300M parameters) and xIlm-roberta-large
(~600M parameters). They continued pre-
training all models on the WMT dataset and
utilised task adaptive pre-training to further
boost the models’ performance. The out-
put of different models was combined using
a weighting scheme to get final predictions.
For Task 2, an ensemble of 10 transformer-
based predictor-estimator models was used,
with multi-task training for the word-level
tasks. Each single model contains 10M pa-
rameters. They also submitted an ensemble
result of multilingual-bert and xlm-roberta-
base for sentence-level scoring tasks. For
Task 3, they used an ensemble of 8 predictor-
estimator models and multi-task training for
the word-level subtask. The single model con-
tains 150M parameters. For the scoring sub-
task, they explored an ensemble of linear re-
gression models and pre-trained models. They
also used WMT 2014 English-French dataset
for fine-tuning.

NJUNLP (T2): This system is an ensemble using

NuQE and QUETCH models (Kepler et al.,
2019b), as well as the QE Brain model (Fan
et al., 2019). In addition to these pre-existing
models, the ensemble also uses a masked ver-
sion of the QE Brain, where some tokens in
the translation are masked during training, and
a masked language model (Devlin et al., 2018).
For sentence-level, the different models are
used as feature extractors, which are used as
inputs of a dense layer to produce the predic-
tions. For word-level, they use majority voting
to ensemble the different models.

Papago (T1, T3): Papago’s submission for Task 1
749

En-De is an ensemble of three models based
on pre-trained contextualised representations:
multilingual BERT (mBERT), XLM-Masked-
Language-Modelling (XLM-MLM), and
XLM-Causal-Language-Modelling (XLM-
CLM). Three scores were produced from
these models: an extension of BERTScore
using the multilingual BERT model, Sen-
tenceBERT score (Reimers and Gurevych,
2019), and target (German) language model
score using a pre-trained GPT-2 model.
Additionally, the scores were computed for
synthetic data created using WMT News
translation data by randomly performing
different methods, including swapping
word order, omiting words or repeating
phrases. The three models are pre-trained
from these data in a multi-task regression
setting. Lastly, these pre-trained models are
fine-tuned using the QE corpus. For Task 3,
the submitted system uses an ensemble of
four models leveraging either multilingual
BERT or XLM. The training scheme is very
task-oriented: erroneous sentence pairs and
their pseudo-MQM scores are generated from
Europarl and this QE task’s training corpus.

RTM (T1, T2): For Task 1 and Task 2’s sentence-

level prediction, the RTM model treats QE as
a parallel semantic similarity prediction task
within machine translation performance pre-
diction (MTPP) or a monolingual semantic
similarity when the source or the target lan-
guage are unknown or have scarce resources.
En-De and Ru-En were modelled as parallel
MTPP and the rest as monolingual MTPP us-
ing only the English side of the training and
development datasets. Machine learning algo-
rithms including ridge regression, SVR, and
regression trees were used and the submis-
sions were constrained to the resources pro-
vided. RTM selects a subset of parallel and
monolingual text for each translation direc-
tion.

TMUOU (T1): TMUOU proposes an ensemble

of four regression models based on XLM-R
large: model 1 uses the final hidden vector
of the CLS token; model 2 concatenates the
feature of model 1 with the mean of the final
hidden vector of each token; models 3 and 4
are based on models 1 and 2, respectively, but



adds a special token for language identifica-
tion at the beginning of each sentence. The
ensemble model is a gradient boosting regres-
sor that features the predictions of these four
models, the sentence probability of the target
translation system, and one-hot vectors that
indicate both the source and target languages.

Tencent (T2): Tencent-TTL’s submission for
the sentence-level Task 2 use a predictor-
estimator model. They use two predictors
as feature extractors: a transformer trained
with WMT provided parallel corpus and a fine-
tuned cross-lingual language model (XLM).
For the XILM-based predictor, it produces two
kinds of contextual token representations, i.e.,
masked representations and non-masked rep-
resentations. For transformer-based predictor,
only the non-masked representation is pro-
duced. The estimator was trained with LSTM
or Transformer. Finally, they ensembled the
systems with different models and the same
model with different parameters using logistic
regression to produce a single sentence-level
prediction.

TransQuest (T1, T2): TransQuest proposes
two architectures: MONOTRANSQUEST and
SIAMESETRANSQUEST, both using pre-
trained XLM-R large transformer model. The
MONOTRANSQUEST architecture uses the
computed CLS token pooled representation
from a single transformer model and uses it
as input of a softmax layer that predicts the
quality score of the translation. The STAME-
SETRANSQUEST architecture encodes both
the source sentence and its translation with
two separate XLLM-R transformer models. For
each transformer model, the it computes the
mean of all output vectors of the input words,
and applies the cosine similarity measure be-
tween the two outputs. The final submission
is an ensemble of the two architectures.

WL Research (T1): WL’s NUBIA method has
three modules: a neural feature extractor, an
aggregator and a calibrator. The feature ex-
tractor consists of different transformer-based
architectures fine-tuned on relevant tasks of
language evaluation such as semantic simi-
larity (RoBERTa model fine-tuned on STS-
B), logical inference (RoBERTza fine-tuned on

MNLI) and sentence likelihood (GPT2 per-
plexity score). The aggregator uses the fea-
tures extracted by the transformers as well as
non-neural features such as hypothesis sen-
tence length and is trained to predict the qual-
ity of the hypothesis sentence. These features
are then used to train a 10 hidden layer neural
network. Given that NUBIA takes as input
sentences in English, as pre-processing step,
Google Translate was used to translate either
the non-English candidate or source to have
both in English.

XC (T1): This was a multilingual system trained
using TransQuest (with BERT embeddings
bert-base-multilingual-cased) and data for all
language pairs concatenated. An attempt was
also made to use project the BERT source
and target sentence embeddings into a space
where they are highly correlated using CCA
(Canonical Correlation Analysis) followed by
an MLP regressor trained to predict the quality
score, but this did not perform as well as a
vanilla TransQuest.

5 Results
5.1 Task1

Submissions for Task 1 are evaluated against the
true z-normalised direct assessment label using
Pearson’s r correlation score as primary metric.
This is what was used for ranking system sub-
missions. Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE) were also computed
as secondary metrics. Statistical significance on
Pearson 7 was computed using William’s test.®

Table 5 summarises the results for all language
pairs, as well as the multilingual variant, in terms
of Pearson’s r correlation with direct assessments,
ranking systems by their average performance for
all language pairs (using O as Pearson score for
other languages). In the Appendix, Tables 11, 12,
13, 14, 15, 16, 17 and 18 provide the detailed results
for all language pairs and the multilingual variant,
ranking participants by their performance for each
of these cases. The detailed tables show a striking
difference in performance by Pearson scores versus
MAE/RMSE, especially for the top systems. This
requires further investigation.

Best performers The two top performing sys-
tems, TransQuest and Bergamot-LATTE (black-

$https://github.com/ygraham/mt-ge-eval
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Model Si-En Ne-En Et-En  Ro-En En-De En-Zh Ru-En Multd
TransQuest 0.68 0.82 0.82 0.91 0.55 0.54 0.81 0.72
Bergamot-LATTE (black-box) 0.68 0.81 0.83 0.91 0.54 0.53 0.80 0.72
IST and Unbabel (Kiwi-glass-box-ensemble) 0.64 0.79 0.77 0.89 0.52 0.49 0.77 0.67
TMUOU 0.67 0.78 0.79 0.90 0.48 0.44 0.78 0.69
XC 0.63 0.78 0.76 0.88 0.47 0.47 0.78 -
WL Research 0.58 0.69 0.64 0.82 0.25 0.30 0.60 0.55
Bergamot 0.56 0.66 0.68 0.80 0.48 0.43 - -
Bergamot-LATTE (glass-box) 0.51 0.60 0.64 0.69 0.26 0.32 - 0.49
IST and Unbabel (OpenKiwi-base) 0.56 0.60 0.69 0.71 0.27 0.35 - 0.58
BASELINE 0.37 0.39 0.48 0.68 0.15 0.19 0.55 0.38
FVCRC 0.39 0.49 - 0.65 0.11 0.08 0.40 -
RTM 0.54 0.61 0.70 - 0.26 - -
Shrangin - - 0.85 - - - -
Mak - - - - - 0.54 -
Papago - - - 0.50 - - -
aj54 1 - - - - 0.44 - -
JXNU-CCLQ - - - - 0.43 - -
jackielo 1 - - - - - 0.41 0.46
zhanghuimeng - - - 0.39 - - -
DexinWang - - - 0.25 - - -
Hancheng-Deng - - - 0.17 - - -
"NigTranst ~ 7777777070 " 083 083 092" 056 055 082 " 073

Table 5: Pearson correlation with direct assessments for the submissions to WMT20 Quality Estimation Task 1.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; t indicates teams that have been identified as having submitted more systems than the
allowed limit to the leaderboard; I indicates Codalab username of participants from whom we have not received

further information.

box) perform the same or very closely for all lan-
guage pairs. Both make use of the XML-R large
pre-trained representations, and ensembles. This
is clearly a booster, as these systems achieve al-
most double the correlation of the baseline. Note
that the baseline also uses pre-trained word embed-
dings, but these are obtained using much smaller
datasets: those used to train the NMT models for
each respective language pair.

Except for a few systems for some language
pairs, the vast majority of submissions outperform
the baseline system, often by a large margin, ex-
cept for Russian-English which had fewer submis-
sions and where 1/3 of the systems are below the
baseline. It is hard to make any conclusions about
this difference across languages as Russian-English
systems that are below the baseline did not sub-
mit systems for other languages. In relative terms,
the improvement over the baseline for top systems
in this language is similar to the other language
pairs. The range of performances is remarkably
wide, with the winning systems often doubling the
Pearson correlation of the bottom pack, notably for
English-Chinese and English-German.

To gain a better understanding in the perfor-
mance of different QE approaches for different
language pairs, Figure 2 shows the scatter plots for
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the baseline and the best performing system for
each language pair. Note the remarkable difference
in correlation between the baseline and the top per-
formers across languages. In the figures, we can
visualise the substantial gains are achieved, largely
due to the use of strong pre-trained representations.

High-resource performance MT quality for the
high-resource language pairs, in particular English—
German, was the most challenging to predict. As
discussed in Fomicheva et al. (2020a), the MT out-
puts for this language pair have little variability in
terms of perceived MT quality. The vast majority
of translations were assigned high scores during
DA evaluation, which makes it difficult to capture
any meaningful variation between the DA scores.
We observe that the results for HTER prediction for
this language pair are more positive, a difference
which we discuss in Section 6.

Low-resource performance Interestingly, the
results for the low-resource language pairs, Sinhala—
English and Nepali—English, are comparable with
the rest. The fact that the performance of the
winning approaches based on multilingual pre-
trained representations does not degrade for the
low-resource language pairs is worth noticing. It
could indicate that: (i) the source language does
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trained on HTER. Predictions are scaled to [0..1].
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not have as high an impact on QE as the target
language, which has been previously observed as
a problem for QE with partial-input experiments
(Sun et al., 2020); (ii) shared supervision on the
target side is beneficial, and thus having more train-
ing data into English inherently benefits multiple
languages; or (iii) the distribution of scores is more
balanced for low- and medium-resource languages,
which makes the task easier. To shed more light on
this, for future shared tasks, we recommend having
more low resource languages as the target language
for QE, or more data with shared languages on the
source.

High correlations Finally, for some language
pairs the performance of the top system is very
high, particularly for Romanian—-English (Pearson
r=0.91). As shown in Figure 2f, there is a number
of very low-quality sentences that the QE systems
are able to successfully detect. By inspecting those
cases, we find that they correspond to ‘hallucinated*
outputs from the Romanian—English MT system
that do not have anything to do with the original
sentences. Detecting such cases should be trivial
for QE systems, which explains the particularly
high correlation values for this language pair. This
highlights a possible issue with using Pearson cor-
relation to evaluate the performance of QE systems:
strong correlations can be achieved by having an
over-representation extreme values (i.e. really bad
or really good translations), and bad correlations
can be an artefact of the lack of representation of
extreme values (as in the case of English-German).

5.2 Task2

Sentence-level post-editing effort: For this task
variant, evaluation was performed against the true
HTER label using the same metrics as in Task 1,
with Pearson’s r correlation score as the primary
metric. Statistical significance on Pearson r was
computed using the William’s test.

Table 6 summarises the results for English—
German and English—Chinese tracks, ranking sys-
tems by their average performance for the two lan-
guage pairs (with O as Pearson score for languages
without systems). In the Appendix, Tables 19 and
20 show the detailed evaluation results for the two
language pairs, ranking participating systems best
to worst using Pearson’s r correlation as primary
key.

For English—-German, the two top performing
systems, HW-TSC and Bering Lab, are substan-
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tially ahead of the other participants’ systems, with
a considerable advantage for HW-TSC, which is
the top system with statistical significance. For
English—Chinese, Tencent and IST/Unbabel glass-
box system were the top performing systems and
neither outperforms the other; for this language
pair, the range of Pearson scores achieved by partic-
ipants’ systems is much narrower than for English-
German. Finally, for both language pairs, we see
that all submissions outperform the baseline system
by a large margin, most prominently for English—
German.

Word-level errors For this task, the primary
evaluation metric is Matthews correlation coef-
ficient (MCC, Matthews, 1975). We also report
the F-scores for the OK and BAD classes. Sim-
ilarly to the 2019 edition, we evaluate separately
the source and target side, with the latter including
predictions on actual target words as well as gaps.
The word-level results for Task 2 are summarised
in Tables 7 and 8, ordered by the MCC metric on
target errors.

The number of submissions per language pair
was different, which limits any conclusions that can
be made with respect to general rankings of sys-
tems. For English-German, the findings are similar
to the sentence-level task: the Bering Lab and HW-
TSC teams are the top performing systems by a
great margin, with the former better at predicting
source side errors and the latter slightly better at
predicting target side errors. For English—Chinese,
the range of scores is narrower, with HW-TSC,
NICT Kyoto, and IST/Unbabel all performing very
closely (with HW-TSC on top). For both language
pairs, all systems performed above the baseline,
and we also see that the scores for the source side
are substantially lower than the target side.

5.3 Task3

MQM score estimation For the document-level
estimation task, submissions are evaluated in terms
of Pearson’s correlation r, as in Tasks 1 and 2, be-
tween the true and predicted document-level scores.
Participants results are shown in Table 9. This
task attracted fewer participants than the other two,
probably because it is more complex. Papago has
the best results, with a considerable gap to the
IST/Unbabel, which in turn also were well ahead
of the baseline.

Fine-grained annotations Fine-grained annota-
tions are evaluated as follows. For each error anno-



Model En-De En-Zh
IST and Unbabel (Kiwi-glass-box) 0.633  0.651
NJUNLP 0.618 0.642
NICT Kyoto 0.615 0.643
Bergamot 0.613 0.613
IST and Unbabel (OpenKiwi-base) 0.531 0.593
TransQuest 0.499 0.612
BASELINE 0.392  0.506
HW-TSC 0.758 -

Bering Lab 0.723 -

Tencent Inc. - 0.664
niuniuniu I - 0.569
aj54 1 - 0.552
zhanghuimeng 0.494 -

DexinWang 1 0.402 -

“NiuTrans t 0.649  0.675

Table 6: Pearson correlation with direct assessments for the submissions to WMT20 Quality Estimation Task 2.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; { indicates teams that have been identified as having submitted more systems than the
allowed limit to the leaderboard; } indicates Codalab username of participants from whom we have not received
further information.

Target Side Source Side
Model MCC F;-BAD F;-OK A MCC F;-BAD F;-OK
Bering Lab 0.597  0.662 0.935 | 0454  0.609 0.818
HW-TSC 0.583  0.644 0.938 | 0.523  0.649 0.875
NICT Kyoto 0485  0.568 0916 | 0.353  0.537 0.806
IST and Unbabel (Kiwi-glass-box) 0.465  0.550 0.916 | 0.349  0.535 0.801
NJUNLP 0451  0.498 0.929 - - -
IST and Unbabel (OpenKiwi-base) 0432  0.522 0.909 | 0.324  0.516 0.799
Elturco.Al 0423  0.520 0.887 - - -
BASELINE 0.358  0.468 0.879 | 0.266 0477 0.779
“NuiTrans ¥ | 0.500 0581 0916 | 0347 0532  0.806

Table 7: Official results of the WMT20 Quality Estimation Task 2 word-level for the English—-German dataset.
Baseline systems are highlighted in grey; 1 indicates teams have been identified as having submitted more systems
than the allowed limit to the leaderboard.

Target Side Source Side
Model MCC F;-BAD F;-OK | MCC F;-BAD F;-OK
HW-TSC 0.587 0.714 0.866 - - -
NICT Kyoto 0.582  0.704 0.878 | 0.336  0.668 0.669
IST and Unbabel (OpenKiwi-base) 0.575 0.706 0.850 | 0.287 0.705 0.410
IST and Unbabel (Kiwi-glass-box) 0.567  0.701 0.842 | 0.287  0.705 0.403
NJUNLP 0.551  0.672 0.877 - - -
BASELINE 0.509  0.658 0.849 | 0270  0.682 0.547
“NuiTrans f | 0.610 0723  0.887 | 0.308 0.666  0.639

Table 8: Official results of the WMT20 Quality Estimation Task 2 word-level for the English—-Chinese dataset.
Baseline systems are highlighted in grey; 1 indicates teams have been identified as having submitted more systems
than the allowed limit to the leaderboard.
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tation a; in the system output, we look for the gold
annotation a? with the highest overlap in number
of characters. The precision of af is defined by the
ratio of the overlap size to the annotation length;
or O if there was no overlapping gold annotation.
Conversely, we compute the recall of each gold
annotation a? considering the best matching anno-
tation aj, in the system output,” or 0 if there was no
overlapping annotation. The document precision
and recall are computed as the average of all anno-
tation precision in the corresponding system output
and recalls in the gold output; and therewith we
compute the document F;. The final score is the
unweighted average of the F; for all documents.

The annotation scores are shown in Table 10.
Only one participant, IST/Unbabel submitted valid
results, but still better than the baseline.

6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

General progress. Overall, participating sys-
tems achieved very promising results, with the
best performing submissions showing moderate to
strong correlation for sentence-level DA and HTER
prediction tasks. One reason for high correlation
levels is likely to be that top performing systems
are based on pre-trained representations. Like in
other NLP tasks, for QE it had already been shown
to substantially improve the results over models
that do not use such representations, with heavier
pre-trained embeddings contributing substantially
more (Kepler et al., 2019a). Strong pre-trained
embeddings such as XLM-R were used by most
submissions this year.

When interpreting the results for all tasks, it
should be noted that most of the participants use
extremely resource-heavy systems, ensembles of
multiple models with more than S00M parameters,
which could make them difficult to use in practice.
Reporting the number of parameters could be a
good practice for the future.

Comparison to previous years submissions are
not possible as they use very different datasets, ex-
cept for Task 3, where a new test set was collected
from the same initial larger dataset, but the train-
ing data is virtually the same. For the fine-grained

Notice that if a gold annotation a? has the highest overlap

with a system annotation a;, it does not necessarily mean that
a3 has the highest overlap with af .
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version of the task, results are on par with last year
(0.48 F1), while for the scoring variant the results
this year are more encouraging: while the baseline
remains similar (Pearson = 0.39 this year and 0.35
last year), the top system is significantly better this
year: (.57 Pearson instead of 0.37 last year.

Unfortunately, the document-level task still at-
tracts very few participants, being naturally more
difficult to model. However, document-level trans-
lation quality is a growing concern in the MT com-
munity, and we believe it is interesting that this task
continues to exist, possibly with a different dataset
and format, in the next editions.

Comparison between HTER and DA. Com-
pared to the results from the previous editions of
this shared task, participating systems show overall
higher correlation with DA labels. Besides the QE
systems getting much stronger, DA labels might be
easier to predict, as HTER is a semi-automatic met-
ric and may suffer from the same issues as TER, as
it does not capture to what extent the overall qual-
ity of the sentence is affected by MT errors. We
should note, however, that for the language pairs se-
lected for post-editing this year (English—-German
and English—Chinese) the correlation is higher for
HTER. A possible reason is a very skewed output
distribution of the DA scores for these particular
language pairs.

HTER and DA annotation capture different as-
pects of translation quality. In fact, as shown in
Fomicheva et al. (2020a), the correlation between
the two types of scores is fairly low. An interesting
question is whether the approaches that perform
best for predicting DA also achieve the best results
for HTER. Figure 3 plots sentence-level Pearson
correlation with HTER and direct assessments for
the systems that participated in both tasks. While
the systems with the highest and the lowest ranks
are the same, results change considerably for the
systems in the middle. Specifically, TransQuest is
one of the winning submissions for the prediction
of DA, but is outperformed by the submissions that
use glass-box features, i.e. Bergamot and IST and
Unbabel (Kiwi-glass-box) for the HTER task.

Multilingual approaches. Most of the partici-
pating approaches rely on pre-trained multilingual
representations and use the provided data annotated
with quality labels for fine-tuning. This shows the
potential for multilingual prediction in these sys-
tems making them much more appealing in prac-



Model Pearsonr MAE RMSE
Papago 0.573 15.611 23.327
IST and Unbabel (Kiwi-doc-iob) 0.475 17.127 25.530
Y 0389 19939 26.608
NiuTrans 0.494 20.607 24.258

Table 9: Official results of the WMT20 Quality Estimation Task 3 scoring for the English—French dataset. Base-
line systems are highlighted in grey; 1 indicates teams have been identified as having submitted more systems than

the allowed limit to the leaderboard.
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Figure 3: Pearson correlation for the systems that participated in both Task 1 and Task 2 at sentence level for
English-German (left) and English-Chinese (right). OpenKiwi-base and Kiwi-glass-box submissions are marked

with * and *x respectively.

Model F1
IST and Unbabel (Kiwi-doc) 0.472
[BASELINE 0416
NiuTrans T 0.418

Table 10: Official results of the WMT20 Quality Es-
timation Task 3 annotation for the English—-French
dataset. Baseline systems are highlighted in grey; T in-
dicates teams have been identified as having submitted
more systems than the allowed limit to the leaderboard.

tice where having dedicated systems for each lan-
guage pair may be infeasible. However, in the task
most submissions built models specific to each lan-
guage pair, and then submitted their predictions to
the multilingual task. A notable exception is the
Bergamot-LATTE team, where a single prediction
model was trained for all languages.

Influence of source-language document-level
context. To investigate the utility of document-
level information, we offered to participants the
title of the Wikipedia article where the sentences
were extracted for Tasks 1 and 2. However, no par-
ticipating system requested these additional labels,
and therefore this remains an open question.

Applicability of NMT model information.
Multiple submissions use glass-box features based
on the information extracted from the NMT system
in an unsupervised manner (Bergamot-LATTE), in
a regression setting (Bergamot) or in combination
with pre-trained representations (IST and Unba-
bel). Results show the potential of this approach.
Although substantially outperformed by the top
submissions that use pre-trained representations
trained with very large amounts of data, glass-box
approaches beat the baseline, which use the same
amount of training data as the NMT system, by a
large margin. These approaches might offer a bet-
ter trade-off between accuracy and efficiency for
cases where the NMT model is accessible.

New publicly available benchmarks. Creating
the multi-language, multi-label dataset for this
year’s edition was a significant joint effort from
various institutions, and we hope it will be useful
for researchers in QE as well as in related areas.
For example, Task 2 data was also used for the
WMT20 Automatic Post-Editing task. We hope to
continue adding data to this collection following
the same principles, and that others will also con-
tribute by adding other languages to it in the future.
We made all submissions to the task available for
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those interested in further analysing the results, in-
vestigating approaches for prediction ensembling,
among others.

7 Conclusions

This year’s edition of the QE Shared Task intro-
duced a number of new elements: the largest num-
ber of languages ever, new types of annotation (di-
rect assessment, in addition to labels derived from
post-editing and manual error tagging), and number
of samples annotated overall. It also attracted the
largest number of teams and submissions. We be-
lieve the current set of tasks covers a broad enough
range of challenges that are far from solved, such as
improving performance for languages with skewed
distributions, addressing low resource languages,
predicting source words that lead to errors, multi-
lingual or language-independent models, etc. In fu-
ture editions, we hope to keep pushing for progress
in these areas.
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A Official Results of the WMT20 Quality Estimation Task 1

Tables 11, 12, 13, 14, 15, 16, 17 and 18 show the results for all language pairs and the multilingual variant,
ranking participating systems best to worst using Pearson’s r correlation as primary key for each of these
cases.

Model Pearson r MAE RMSE
TransQuest 0.722 0.480 0.596
Bergamot-LATTE (black-box) 0.718 0.408 0.527
TMUOU 0.686 0.418 0.543
IST and Unbabel (Kiwi-glass-box-ensemble) 0.673 0.433 0.569
IST and Unbabel (OpenKiwi-base) 0.583 0.547 0.719
WL Research 0.546 0.538 0.683
Bergamot-LATTE (glass-box) 0.489 0.895 1.062
jackielo 1 0.462 0918 1.141
BASELINE 0.376 0.788 0.999
“NiwTranst | 0732 0.529 0.653

Table 11: Official results of the WMT20 Quality Estimation Task 1 for the Multilingual variant. Baseline systems
are highlighted in grey; { indicates teams that have been identified as having submitted more systems than the
allowed limit to the leaderboard; { indicates Codalab usernames of participants from whom we have not received
further information.

Model Pearsonr MAE RMSE
e TransQuest 0.554 0.613 0.740
e Bergamot-LATTE (black-box) 0.544 0.451 0.616
IST and Unbabel (Kiwi-glass-box-ensemble) 0.523 0.470 0.635
Papago 0.498 0.454 0.637
TMUOU 0.482 0.455 0.625
Bergamot 0.476 0.483 0.636
XC 0.465 0.739  0.861
zhanghuimeng § 0.392 0.715 0.964
IST and Unbabel (OpenKiwi-base) 0.267 0.525 0.683
Bergamot-LATTE (glass-box) 0.259 0.819 0.940
WL Research 0.253 0.527 0.683
DexinWang I 0.246 0.503  0.680
Hancheng_Deng 0.171 0.490 0.726
BASELINE 0.146 0.679  0.967
FVCRC 0.111 0.805 1.063
“NiTransf 0.562 0558 0.676

Table 12: Official results of the WMT20 Quality Estimation Task 1 for the English-German dataset. Teams
marked with e are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; { indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; { indicates Codalab
usernames of participants from whom we have not received further information.
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Model Pearsonr MAE RMSE

o TransQuest 0.537 0.675  0.831
Bergamot-LATTE (black-box) 0.530 0.452  0.587
IST and Unbabel (Kiwi-glass-box-ensemble) 0.494 0.459  0.592
XC 0.465 0.782  0.944
aj54 1 0.444 1.020 1.170
TMUOU 0.438 0.585  0.739
Bergamot 0.429 0.467 0.612
JXNU-CCLQ 0.426 0.709  0.890
IST and Unbabel (OpenKiwi-base) 0.346 0.518 0.684
Bergamot-LATTE (glass-box) 0.321 1.094  1.228
WL Research 0.298 0.796  0.970
RTM 0.259 68.010 68.414
BASELINE 0.190 0.885  1.068
FVCRC 0.085 0.873  1.059
“NiwTranst 0.551 0499  0.654

Table 13: Official results of the WMT20 Quality Estimation Task 1 for the English-Chinese dataset. Teams
marked with e are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; | indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; { indicates Codalab

usernames of participants from whom we have not received further information.

Model Pearsonr MAE RMSE
o TransQuest 0.908 0.300 0.392
e Bergamot-LATTE (black-box) 0.906 0.281 0.388
TMUOU 0.896 0.294 0414
IST and Unbabel (Kiwi-glass-box-ensemble) 0.891 0.398 0.530
XC 0.882 0.556 0.661
Shrangin 0.846 0.727 1.009
WL Research 0.821 0.393  0.520
Bergamot 0.796 0.438 0.554
IST and Unbabel (OpenKiwi-base) 0.708 0.508 0.655
RTM 0.703 0.517 0.654
Bergamot-LATTE (glass-box) 0.693 0.994 1.132
BASELINE 0.685 0.760 1.052
FVCRC 0.650 0.840 1.174
“NwTranst 0917  0.583 0.691

Table 14: Official results of the WMT20 Quality Estimation Task 1 for the Romanian-English dataset. Teams
marked with e are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; | indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; { indicates Codalab
usernames of participants from whom we have not received further information.
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Model Pearsonr MAE RMSE

e Bergamot-LATTE (black-box) 0.826 0.427  0.540
e TransQuest 0.824 0.485 0.604
TMUOU 0.792 0.493  0.636
IST and Unbabel (Kiwi-glass-box-ensemble) 0.770 0.740 0919
XC 0.764 0.745  0.906
IST and Unbabel (OpenKiwi-base) 0.690 0.531 0.652
Bergamot 0.681 0.565  0.682
Bergamot-LATTE (glass-box) 0.642 0.918  1.096
WL Research 0.637 0.567 0.714
RTM 0.614 66.362 67.656
BASELINE 0.477 0918 1.138
“NiuTranst 0.833  0.561 0.716

Table 15: Official results of the WMT20 Quality Estimation Task 1 for the Estonian-English dataset. Teams
marked with e are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; { indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard.

Model Pearsonr MAE RMSE
o TransQuest 0.822 0372 0.474
Bergamot-LATTE (black-box) 0.814 0.368 0.475
IST and Unbabel (Kiwi-glass-box-ensemble) 0.792 0.433  0.549
TMUOU 0.785 0.397 0.511
XC 0.778 1414  1.512
WL Research 0.687 0452 0.594
Bergamot 0.662 0.486 0.612
IST and Unbabel (OpenKiwi-base) 0.604 0.497 0.648
Bergamot-LATTE (glass-box) 0.600 0.727  0.854
FVCRC 0.488 0918 1.046
BASELINE 0.386 0.735 0.871
“NiuTranst 0.830 0481 0.629

Table 16: Official results of the WMT20 Quality Estimation Task 1 for the Nepalese-English dataset. Teams
marked with ”e” are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; 1 indicates teams that have

been identified as having submitted more systems than the allowed limit to the leaderboard.
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Model Pearsonr MAE RMSE

o TransQuest 0.685 0.436  0.534
e Bergamot-LATTE (black-box) 0.682 0.429  0.539
TMUOU 0.668 0.459  0.572
IST and Unbabel (Kiwi-glass-box-ensemble) 0.639 0.506  0.642
XC 0.626 0.879  1.021

WL Research 0.577 0.492  0.614
IST and Unbabel (OpenKiwi-base) 0.565 0.515 0.634
Bergamot 0.560 0.490  0.602
RTM 0.541 49.675 50.774
Bergamot-LATTE (glass-box) 0.513 0.673  0.819
FVCRC 0.388 0.694  0.848

BASELINE 0.374 0.752  0.898

“NiuTranst 0.698  0.445 0543

Table 17: Official results of the WMT20 Quality Estimation Task 1 for the Sinhala-English dataset. Teams marked
with ”e” are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey, and { indicates teams have been
identified as having submitted more systems than the allowed limit to the leaderboard.

Model Pearson r MAE RMSE
e TransQuest 0.808 0.402 0.583
Bergamot-LATTE (black-box) 0.796 0412 0.584
XC 0.784 0.603 0.759
TMUOU 0.781 0.433 0.622
IST and Unbabel (Kiwi-glass-box-ensemble) 0.767 0.428 0.613
WL Research 0.596 0.575 0.763
BASELINE 0.548 0.825 1.193
Mak 0.543 0.590 0.811
jackielo 0.411 0.878 1.267
FVCRC 0.400 0.831 1.220
“NiuTranst 0.816  0.535 0.687

Table 18: Official results of the WMT20 Quality Estimation Task 1 for the Russian-English dataset. Teams
marked with e are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; | indicates teams that have
been identified as having submitted more systems than the allowed limit to the leaderboard; { indicates Codalab
usernames of participants from whom we have not received further information.
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B Official Results of the WMT20 Quality Estimation Task 2 (Sentence-level)

Tables 19 and 20 show the evaluation results for English-German and English-Chinese respectively,
ranking participating systems best to worst using Pearson’s 7 correlation as primary key for each language
pair.

Model Pearson r MAE RMSE
e HW-TSC 0.758 0.099 0.133
Bering Lab 0.723 0.107 0.140
IST and Unbabel (Kiwi-glass-box) 0.633 0.137 0.178
NJUNLP 0.618 0.129 0.160
NICT Kyoto 0.615 0.151 0.197
Bergamot 0.613 0.130 0.160
IST and Unbabel (OpenKiwi-base) 0.531 0.138 0.180
TransQuest 0.499 0.149 0.184
zhanghuimeng I 0.494 0.163 0.198
DexinWang 1 0.402 0.155 0.196
BASELINE 0.392 0.150 0.190
“NwTranst 0.649  0.123 0.154

Table 19: Official results of the WMT20 Quality Estimation Task 2 sentence-level for the English-German dataset.
Teams marked with ”e” are the winners, as they are not significantly outperformed by any other system according
to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; { indicates teams
that have been identified as having submitted more systems than the allowed limit to the leaderboard; I indicates
Codalab usernames of participants from whom we have not received further information.

Model Pearson r MAE RMSE
e Tencent Inc. 0.664 0.129 0.160
o IST and Unbabel (Kiwi-glass-box) 0.651 0.135 0.171
NICT Kyoto 0.643 0.129 0.161
NJUNLP 0.642 0.129 0.161
Bergamot 0.613 0.136  0.169
TransQuest 0.612 0.135 0.168
IST and Unbabel (OpenKiwi-base) 0.593 0.143 0.175
niuniuniu I 0.569 0.142  0.177
aj54 1 0.552 0.145 0.176
BASELINE 0.506 0.147 0.181
“NiwTranst 0.675  0.125 0.156

Table 20: Official results of the WMT20 Quality Estimation Task 2 sentence-level for the English-Chinese dataset.
Teams marked with ”e” are the winners, as they are not significantly outperformed by any other system according
to the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey; { indicates teams
that have been identified as having submitted more systems than the allowed limit to the leaderboard; I indicates
Codalab usernames of participants from whom we have not received further information.
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