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Abstract

This paper presents the results of the WMT20
Metrics Shared Task. Participants were asked
to score the outputs of the translation systems
competing in the WMT20 News Translation
Task with automatic metrics. Ten research
groups submitted 27 metrics, four of which
are reference-less “metrics”. In addition,
we computed five baseline metrics, includ-
ing SENTBLEU, BLEU, TER and CHRF us-
ing the SacreBLEU scorer. All metrics were
evaluated on how well they correlate at the
system-, document- and segment-level with
the WMT?20 official human scores.

We present an extensive analysis on influence
of reference translations on metric reliability,
how well automatic metrics score human trans-
lations, and we also flag major discrepancies
between metric and human scores when eval-
uating MT systems. Finally, we investigate
whether we can use automatic metrics to flag
incorrect human ratings.

1 Introduction

The metrics shared task! has been a key component
of WMT since 2008, serving as a way to validate
the use of automatic MT evaluation metrics and
drive the development of new metrics.

We evaluate automatic metrics that score MT out-
put by comparing them with a reference translation
generated by human translators, who are instructed
to translate “from scratch”, without post-editing
from MT. In addition, following last year’s collab-
oration with the WMT Quality Estimation (QE)
task, we also invited submissions of reference-free
metrics that compare MT outputs directly with the
source segment.

Similar to the last year’s editions, the source, ref-
erence texts, and MT system outputs for the metric

'nttp://www.statmt.org/wmt20/
metrics—-task.html
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task come from the News Translation Task (Bar-
rault et al., 2020, which we denote as Findings
2020). This year, the language pairs were English
<> Chinese, Czech, German, Inuktitut, Japanese,
Polish, Russian and Tamil. We further included sys-
tems participating in the WMT parallel corpus fil-
tering task (Koehn et al., 2020): Khmer and Pashto
to English.?

All metrics are evaluated based on their agree-
ment with human evaluation. We evaluate met-
rics at three levels: comparing MT systems on
the entire testset, segments (either sentences or
short paragraphs), and new this year, documents.
We introduce document-level evaluation to incen-
tivize the development of metrics that are take into
account broader context of evaluated sentences
or paragraphs, following the recent emergence of
document-level MT techniques.

Multiple References This year, we have two in-
dependently generated references for English <+
German, English <+ Russian, and Chinese — En-
glish. This lets us investigate the influence of ref-
erences and the utility of multiple references. We
instructed participants to score MT systems against
the references individually as well as with all avail-
able references. In addition, we also supplied a set
of references for English to German, that were gen-
erated by asking linguists to paraphrase the WMT
reference as much as possible (Freitag et al., 2020).
These references are designed to minimise transla-
tionese in the reference which could lead to metrics
to be biased against systems that generate more
natural text.

Note that the metrics task inputs also included MT sys-
tems translating between German <+ French in the News
Translation Task, and English — Khmer and Pashto from
the WMT parallel corpus filtering task. We are unable to eval-
uate metrics on these language pairs as human evaluation is
not available
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Evaluating Human Translations Given that we
have multiple human translations, we asked partici-
pants to evaluate each human translation using the
other as a reference. For these language-pairs, at
least one of these human translations was included
in the human evaluation, so we can directly evalu-
ate metrics on how they rank the human translation
compared to the MT systems.

Additional Human Evaluation Finally, we
pose the question if some of the discrepancies be-
tween metrics and human scores can be explained
by bad human ratings. We rerun some of the human
evaluations by using the same template, but switch-
ing the rater pool from non-experts to professional
linguists. In particular, we rerun human evalua-
tion for a subset of translations where all metrics
disagree with the WMT human evaluation. This ex-
periment could reveal a new use case of automatic
metrics and indicate that automatic metrics can be
used to identify bad ratings in human evaluations.

We first give an overview of the task (Sec-
tion 2) and summarize the baseline (Section 3.1)
and submitted (Section 3.2) metrics. The results
for system-, segment-, and document-level evalua-
tion are provided in Sections 4, followed by a joint
discussion Section 5. Section 6 describes our re-
running of human evaluation with linguists before
we summarise our findings in Section 7.

We will release data, code and additional
visualisations in the metrics package to be
made available at http://www.statmt.org/
wnt20/results.html

2 Task Setup

This year, we provided task participants with one
test set for each examined language pair, i.e. a
set of source texts (which are commonly ignored
by MT metrics), corresponding MT outputs (these
are the key inputs to be scored) and one or more
reference translations.

In the system-level, metrics aim to correlate with
a system’s score which is an average over many
human judgments of segment translation quality
produced by the given system. In the segment-
level, metrics aim to produce scores that correlate
best with a human ranking judgment of two out-
put translations for a given source segment. And
finally, we also trial document-level evaluation this
year. (more on the manual quality assessment in
Section 2.3).

Segments are sentences for all language pairs
except English <+ German and Czech, and for En-
glish — Chinese, which do not contain sentence
boundaries and are translated and evaluated at the
paragraph-level.

Participants were free to choose which language
pairs and tracks (system/segment/document and
reference-based/reference-free) they wanted to take
part in.

2.1 Source and Reference Texts

The source and reference texts we use are mainly
sourced from this year’s WMT News Translation
Task (see Findings 2020).

The test set typically contains somewhere be-
tween 1000 and 2000 segments for each translation
direction, with fewer segments for some paragraph-
segmented test sets, and the English < Inuktitut
directions contain 2971 sentences.

All test sets are from the news domain, ex-
cept the English <+ Inuktitut datasets which have
a mix of in-domain text from Canadian Parlia-
ment Hansards (1566 sentences) and out-of-domain
news documents (1405 sentences).

We also have systems from the parallel corpus
filtering task which are from the Wikipedia domain
(also labelled newstest2020 in the metrics test set).
The Khmer — English and Pashto — English con-
tain 2320 and 2719 sentences respectively.

The reference translations provided in new-
stest2020 were created in the same direction as
the MT systems were translating. The exceptions
are English < Inuktitut, Khmer — English and
Pashto — English, where the testset is a mixture of
“source-original” and “target-original” texts.

2.2 System Outputs

The results of the Metrics Task are affected by the
actual set of MT systems participating in a given
translation direction. On one hand, if all systems
are very close in their translation quality, then even
humans will struggle to rank them. This in turn
will make the task for MT metrics very hard. On
the other hand, if the task includes a wide range of
systems of varying quality, correlating with humans
should be generally easier. One can also expect
that if the evaluated systems are of different types,
they will exhibit different error patterns and various
MT metrics can be differently sensitive to these
patterns.
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e Parallel Corpus Filtering Task. This task
required participants to submit scores for each
sentence in the provided noisy parallel texts.
These scores were used to subsample sentence
pairs, which was then used to train a neural
machine translation system (fairseq). This
was tested on a held-out subset of Wikipedia
translations.

e Regular News Tasks Systems. These are
all the other MT systems in the evaluation;
differing in whether they are trained only on
WMT provided data (“Constrained”, or “Un-
constrained”) as in the previous years.

With all language pairs, in addition to the sub-
missions to the task, the test sets also include trans-
lations from freely available web services (online
MT systems), which are deemed unconstrained.

Overall, the results are based on 208 systems
across 18 language pairs.

2.3 Manual Quality Assessment

Human scores were obtained using Direct Assess-
ment, where annotators are asked to rate the ad-
equacy of a translation compared to either the
source segment or a reference translation of the
same source. This year, human data was collected
from reference-based evaluations (or “monolin-
gual”) and reference-free evaluations (or “bilin-
gual”). The reference-based (monolingual) evalua-
tions were crowdsourced, while the reference-less
(bilingual) evaluations were mainly from MT re-
searchers who committed their time to contribute
to the manual evaluation for each submitted system
to the translation task.

Finally, following reports that MT system trans-
lations might seem adequate when scored in isola-
tion but not in context of the whole document, when
possible, the ratings are collected for each segment
with document context. Table 1 summarises the
details of how human annotations were collected
for various language-pairs at WMT 2020.

The English — Inuktitut dataset, which contains
a mix of in-domain (Hansard) and out-of-domain
(news) data, was only evaluated on out-of-domain
segments, so for system level evaluation, we eval-
uate metric scores computed on the news domain
only as well as the full test set.

See Findings 2020 for details on human evalua-
tion.

2.3.1 System-level Golden Truth: DA

For the system-level evaluation, the collected con-
tinuous DA scores, standardized for each annotator,
are averaged across all assessed segments for each
MT system to produce a scalar rating for the sys-
tem’s performance.

The underlying set of assessed segments is dif-
ferent for each system. Thanks to the fact that the
system-level DA score is an average over many
judgments, mean scores are consistent and have
been found to be reproducible (Graham et al.,
2013). For more details see Findings 2020.

The score of an MT system is calculated as the
average rating of the segments translated by the
system.

2.3.2 Segment-level Golden Truth: DARR

Starting from Bojar et al. (2017), when WMT
fully switched to DA, we had to come up with
a solid golden standard for segment-level judge-
ments. Standard DA scores are reliable only when
averaged over sufficient number of judgments.’

Fortunately, when we have at least two DA
scores for translations of the same source input,
it is possible to convert those DA scores into a rel-
ative ranking judgement, if the difference in DA
scores allows conclusion that one translation is bet-
ter than the other. In the following, we denote these
re-interpreted DA judgements as “DARR?”, to dis-
tinguish it clearly from the relative ranking (“RR”)
golden truth used in the past years.*

From the complete set of human assessments col-
lected for the News Translation Task, all possible
pairs of DA judgements attributed to distinct trans-
lations of the same source segment were converted
into DARR better/worse judgements. Distinct trans-
lations of the same source input whose DA scores
fell within 25 percentage points (which could have

3For segment-level evaluation, one would need to collect
many manual evaluations of the exact same segment as pro-
duced by each MT system. Such a sampling would be however
wasteful for the evaluation needed by WMT, so only some MT
systems happen to be evaluated for a given input segment. In
principle, we would like to return to DA’s standard segment-
level evaluation in future, where a minimum of 15 human
judgements of translation quality are collected per translation
and combined to get highly accurate scores for translations,
but this would increase annotation costs.

“Since the analogue rating scale employed by DA is
marked at the 0-25-50-75-100 points, we use 25 points as the
minimum required difference between two system scores to
produce DARR judgements. Note that we rely on judgements
collected from known-reliable volunteers and crowd-sourced
workers who passed DA’s quality control mechanism. Any in-
consistency that could arise from reliance on DA judgements
collected from low quality crowd-sourcing is thus prevented.
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Language pairs source/reference  crowd/researcher document context
iu-en reference crowd No
*-en except iu-en reference crowd Yes
en-*, de-fr, fr-de  source mix of crowd and researcher* Yes

Table 1: Direct Assessment at WMT20. Note that researcher annotations can contain some amount of professional

annotations

been deemed equal quality) were omitted from the
evaluation of segment-level metrics. Conversion of
scores in this way produced a large set of DARR
judgements for all language pairs, shown in Ta-
ble 2 due to combinatorial advantage of extracting
DARR judgements from all possible pairs of trans-
lations of the same source input. We see that only
km-en and ps-en can suffer from insufficient num-
ber of these simulated pairwise comparisons.

The DARR judgements serve as the golden stan-
dard for segment-level evaluation in WMT19.

2.3.3 Document-level Golden Truth: DARR

As segments were scored in document context, we
can compute document scores as the average hu-
man rating of the segments in the document. We
acknowledge that this may be an oversimplification.
First of all, we are hoping that human assessors
have indicated errors in document-level coherence
at at least one of the affected segments, but we
have no evidence that they actually do so. Second,
document-level phenomena are rather scarce and
averaging segment-level scores is likely to aver-
age out these sparse observations even if they were
marked at individual sentences. And lastly, in some
situations, lack of cross-sentence coherence can be
so critical that any strategy of composing sentence-
level scores is bound to downplay the severity of
the error, see e.g. Vojtéchova et al. (2019). At
the current point, we have nothing better to start
with but we believe that better techniques will be
proposed in the future.

Graham et al. (2017) recommend around av-
eraging 100 annotations per document to obtain
reliable document scores. Since the average num-
ber of assessments we have is much less than that,
we compute the ground truth in the same way as
the segment level evaluation.

We first compute document scores as the average
of all segment scores in the document, which we
denote as DOC-DA. We then generate DOC-DARR
pairs of better and worse translations of the same
source document when there is at least a 25 point
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difference in the raw DOC-DA scores. See Table 3
for details.

In case of DARR (which we denote as DOC-
DARR), all language pairs suffer from insufficient
number of these simulated pairwise comparisons.

Similar to segment-level evaluation, we use the
Kendall Tau-like formula (Section 2) to evaluate
metric agreement with humans on the generated
pairwise DARR judgements.

Note that we do not include any human-
translated segments in this evaluation. In addition,
iu-en is excluded from document-level evaluation
because its DA judgements were collected for iso-
lated sentences.

3 Metrics

3.1 Baselines

We agree with the call to use SacreBLEU (Post,
2018) as the standard MT evaluation scorer. We no
longer report scores of the metrics from the Moses
scorer, which requires tokenized text. We use the
following metrics from the SacreBLEU scorer as
baselines, with the default parameters:

3.1.1 SacreBLEU baselines

e BLEU (Papineni et al., 2002a) is the preci-
sion of n-grams of the MT output compared
to the reference, weighted by a brevity
penalty to punish overly short translations.
BLEU+case.mixed+lang.LANGPAIR-
+numrefs.l+smooth.expt+tok.1l3a-
+version.1l.4.14

We run SacreBLEU with the
-—sentence-score option to obtain
sentence scores for SENTBLEU; this uses the
same parameters as BLEU. Although not it’s
intended use, we also compute system- and
document-level scores for SENTBLEU as the
mean segment score.

e TER (Snover et al.,
the number of edits
tions,

2006) measures
(insertions, dele-
shifts and substitutions) required



DA>1 Ave DA pairs DARR DOC-DA>1 Ave DOC-DA pairs DOC-DARR
cs-en 664 11.3 39187 14018 cs-en 102 114 6041 1424
de-en 785 11.0 43669 16584 de-en 118 11.0 6579 1866
iu-en 2620 4.5 26120 8162 ja-en 80 8.9 2850 790
ja-en 993 9.0 36169 15193 pl-en 62 11.8 4012 635
pl-en 1001 11.8 64670 21121 ru-en 91 99 4077 753
ru-en 991 10.0 44664 14024 ta-en 82 75 2126 684
ta-en 997 7.6 26662 12789 zh-en 155 13.8 13897 3085
zh-en 2000 13.8 177492 62586 en-cs 130 102 6162 1442
km-en 1963 3.2 8295 3706 en-de 130 69 2844 669
ps-en 2204 3.1 7994 3507 en-iu 35 7.8 969 203
en-cs 1418 10.3 68587 21121 en-ja 63 9.7 2686 469
en-de 1418 6.9 30567 9339 en-pl 63 10.7 3359 677
en-iu 1268 7.9 35384 13159 en-ru 122 5.7 1768 387
en-ja 1000 9.6 41576 12830 enta 63 79 1834 389
en-pl 1000 10.6 52003 17689 en-zh 130 10.6 6667 651
en-ru 1971 5.7 28274 8330
en-ta 1000 7.9 28974 9087 Table 3: Document-level: Number of judgements for
en-zh 1418 10.6 72581 12652 DOC-DA converted to DOC-DARR data; “DoC-DA>1"

Table 2: Segment-level: Number of judgements for DA
converted to DARR data; “DA>1" is the number of
source input segments in the manual evaluation where
at least two translations of that same source input seg-
ment received a DA judgement; “Ave” is the average
number of translations with at least one DA judgement
available for the same source input segment; “DA pairs”
is the number of all possible pairs of translations of
the same source input resulting from “DA>1"; and
“DARR” is the number of DA pairs with an absolute
difference in DA scores greater than the 25 percentage
point margin.

to transform the MT output to the
reference. TER+lang.LANGPAIR-
+tok.tercom-nonorm-punct-

noasian-uncasedtversion.1.4.14

e CHRF  (Popovié, 2015) uses character
n-grams instead of word n-grams to com-
pare the MT output with the reference .
Version string: chrF2+lang.LANGPAIR-
+numchars. 6+space.false—
+version.1l.4.14.

3.1.2 CHRF++

CHRF++ (Popovié, 2017) includes word unigrams
and bigrams in addition to character ngrams. We
ran the original Python implementation of the met-

5Note that the SacreBLEU scorer does not yet implement
CHRF with multiple references

is the number of source input documents in the manual
evaluation where we have DOC-DA scores for at least
two translations of that same source input documents;
“Ave” is the average number of translations with at least
one DOC-DA judgement available for the same source
input document; “DOC-DA pairs” is the number of all
possible pairs of translations of the same source input
resulting from “DOC-DA>1"; and “DOC-DARR” is the
number of DOC-DA pairs with an absolute difference
in DOC-DA scores greater than the 25 percentage point
margin.

Note that iu-en is not included as document-context
was not available for this evaluation.

ric © with the default parameters —--ncorder 6
——nwworder 2 —--beta 2

3.2 Submissions

The rest of this section summarizes participating
metrics.

3.2.1 BERT-BASE-L2, BERT-LARGE-L2,
MBERT-L2

The three baselines were obtained by fine-tuning
BERT (Devlin et al., 2019) on the ratings of WMT
Metrics years 2015 to 2018, using a regression
loss. What distinguishes the metrics is the ini-
tial BERT checkpoint: BERT-BASE-L2 uses a
12-layer Transformer architecture pre-trained on
English data, MBERT-L2 is similar but trained

SchrF++.py available at https://github.com/
m-popovic/chrF
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on Wikipedia data in 102 languages, and BERT-
LARGE-L?2 is English-only with 24 layers.

3.2.2 BLEURT, BLEURT-EXTENDED,
YISI-COMBI, BLEURT-YISI-COMBI

BLEURT (Sellam et al., 2020a) is a BERT-based
regression model trained twice: first on million syn-
thetic pairs obtained by random perturbations, then
on ratings from years 2015 to 2019 of the WMT
Workshop. BLEURT-EXTENDED (Sellam et al.,
2020b) is a BERT-based regression model trained
on human ratings of years 2015 to 2019 of the
WMT Workshop, combined with BERT-Chinese
for to-Chinese sentence pairs. The main checkpoint
is a 24-layer Transformer, trained on a mixture of
Wikipedia articles and training data from WMT
Newstest in 20 languages.

YISI-COMBI: We are using YISI-1 on an
mBERT model that is fine tuned on WMT data
for single reference submissions. We are using
aggregating internal scores in YISI over different
references for the final output for multi reference
submission.

BLEURT-COMBI: We are using the same output
as YISI-COMBI for single reference submissions.
We are mixing YI1SI1-1, YISI-2 and BLEURT
scores for different references for the multi ref-
erence submission.

3.2.3 CHARACTER

CHARACTER (Wang et al., 2016), identical to the
2016 setup, is a character-level metric inspired by
the commonly applied translation edit rate (TER).
It is defined as the minimum number of character
edits required to adjust a hypothesis, until it com-
pletely matches the reference, normalized by the
length of the hypothesis sentence. CHARACTER
calculates the character-level edit distance while
performing the shift edit on word level. Unlike
the strict matching criterion in TER, a hypothe-
sis word is considered to match a reference word
and could be shifted, if the edit distance between
them is below a threshold value. The Levenshtein
distance between the reference and the shifted hy-
pothesis sequence is computed on the character
level. In addition, the lengths of hypothesis se-
quences instead of reference sequences are used
for normalizing the edit distance, which effectively
counters the issue that shorter translations normally
achieve lower TER. Similarly to other character-
level metrics, CHARACTER is generally applied
to nontokenized outputs and references, which also

holds for this year’s submission with one exception.
This year tokenization was carried out for en-ru
hypotheses and references before calculating the
scores, since this results in large improvements in
terms of correlations. For other language pairs, no
tokenizer was used for pre-processing.

3.24 COMET

COMET#* metrics (Rei et al., 2020b) were build us-
ing the Estimator model or the Translation Ranking
model proposed in Rei et al. (2020a). Those neural
models use XLM-RoBERTa to encode source, MT
hypothesis and reference in the same cross-lingual
space and then are optimised towards different ob-
jectives. COMET (main metric) is an Estimator
model that regresses on Direct Assessments (DA)
from 2017 to 2019 and COMET-2R is a variant of
COMET (main metric) that was trained to handle
multiple references at inference time. COMET-
HTER and COMET-MQM follow the same archi-
tecture but regress on Human-mediated Translation
Edit Rate (HTER) and a proprietary metric com-
pliant with the Multidimensional Quality Metrics
framework (MQM), respectively. COMET-Rank
uses the Translation Ranking architecture to di-
rectly optimize the distance between “better* hy-
pothesis and the respective source and reference,
while pushing the “worse* hypothesis away. This
Translation Ranking model was directly optimised
on DA relative-ranks from 2017 to 2019. Finally,
COMET-QE removes the reference at input and
proportionately reduces the dimensions of the esti-
mator network to accommodate the reduced input.

3.25 EED

EED (Stanchev et al., 2019) is a character-based
metric, which builds upon CDER. It is defined as
the minimum number of operations of an exten-
sion to the conventional edit distance containing a
“jump” operation. The edit distance operations (in-
sertions, deletions and substitutions) are performed
at the character level and jumps are performed
when a blank space is reached. Furthermore, the
coverage of multiple characters in the hypothesis is
penalised by the introduction of a coverage penalty.
The sum of the length of the reference and the cov-
erage penalty is used as the normalisation term.

3.2.6 MEE

MEE (Ananya Mukherjee and Sharma, 2020) is
an automatic evaluation metric that leverages the
similarity between embeddings of words in candi-
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date and reference sentences to assess translation
quality. Unigrams are matched based on their sur-
face forms, root forms and meanings which aids to
capture lexical, morphological and semantic equiv-
alence. Semantic evaluation is achieved by using
pretrained fasttext embeddings provided by Face-
book to calculate the word similarity score between
the candidate and the reference words. MEE com-
putes evaluation score using three modules namely
exact match, root match and synonym match. In
each module, fmean-score is calculated using har-
monic mean of precision and recall by assigning
more weight to recall. The final translation score is
obtained by taking average of fmean-scores from
individual modules.

3.2.7 ESIM

Enhanced Sequential Inference Model (Chen et al.,
2017) is a neural model proposed for Natural Lan-
guage Inference that has been adapted for MT
evaluation by Mathur et al. (2019). It uses cross-
sentence attention and sentence matching heuris-
tics to generate a representation of the translation
and the reference, which is fed to a feedforward
regressor. This year’s scores were submitted by
Bawden et al. (2020) as part of the submission on
PARESIM.

3.3 OPENKIWI-BERT, OPENKIWI-XLMR

OPENKIWI-BERT and OPENKIWI-XLMR (Ke-
pler et al., 2019) are state of the art Quality Estima-
tion models developed for the WMT20 QE shared
task and are trained with WMT Metrics data from
2017 to 2019.

3.3.1 PARBLEU, PARCHRF++, PARESIM

PARBLEU, PARCHRF++, and PARESIM (Baw-
den et al., 2020) are variants of their respective
core metrics computed against the provided hu-
man reference and a set of automatically gener-
ated paraphrases. PARBLEU used five paraphrases,
while the other two used only one. Both BLEU and
CHRF++ have in-built support for multiple refer-
ences. For ESIM, we calculate the score for each
reference separately and then average them to get
the final score.

3.3.2 PRISM

PRISM (Thompson and Post, 2020) is a many-
many multilingual neural machine translation sys-
tem trained on data for 39 language pairs, with
data derived largely from WMT and Wikimatrix. It
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casts machine translation evaluation as a zero-shot
paraphrasing task, producing segment-level scores
by force-decoding between a system output and
a reference, in both directions, and averaging the
model scores. System-level scores are produced
by averaging segment-level ones. For evaluation
in Inuktikut, Khmer, Pashto, and Tamil, we used
a “Prism44” model that was retrained after adding
WMT-provided data for these languages to its orig-
inal training data set. All other languages were
evaluated with the original “Prism39” model.

3.3.3 SWSS+METEOR

SWSS (Semantically Weighted Sentence Similar-
ity, Xu et al. 2020) is an approach to extracting
semantic core words, which are words that carry
important semantic meanings in sentences, and us-
ing them in MT evaluation. It uses UCCA (Uni-
versal Conceptual Cognitive Annotation), a seman-
tic representation framework, to identify semantic
core words, and then calculates sentence similar-
ity scores on the overlap of semantic core words
of sentence pairs. Taking sentence-level seman-
tic structure information into consideration, SWSS
can improve the performance of lexical metrics
when combined with them. The submitted metric
(SWSS+METEOR) is a weighted combination of
SWSS and Meteor.

3.3.4 YIS1-0, Y1SI-1, YISI-2

YI1SI (Lo, 2019, 2020) is a unified semantic MT
quality evaluation and estimation metric for lan-
guages with different levels of available re-sources.
Y1SI-1 is a reference-based MT evaluation met-
ric that measures the semantic similarity between
a ma-chine translation and human references by
aggregating the idf-weighted lexical semantic sim-
ilarities based on the contextual embeddings ex-
tracted from pretrained language models (BERT,
CamemBERT, RoBERTa, XLLM, XLLM-RoBERTa,
etc.) and optionally incorporating shallow seman-
tic structures (denoted as YISI-1_SRL; not partic-
ipating this year). YISI-O is the degenerate ver-
sion of YISI-1 that is ready-to-deploy to any lan-
guage. It uses longest common character substring
to measure the lexical similarity. YISI-2 (Lo and
Larkin, 2020) is the bilingual, reference-less ver-
sion for MT quality estimation, which uses bilin-
gual mappings of the contextual embeddings ex-
tracted from pretrained language models (XLM
or XLM-RoBERTa) to evaluate the crosslingual
lexical semantic similarity between the input and



MT output. Like YISI-1, YISI-2 can exploit shal-
low semantic structures as well (denoted as Y1SI-
2_SRL; does not participate this year).

3.4 Pre-processing

Since some metrics, such as BLEU, aim to achieve
a strong positive correlation with human assess-
ment, while error metrics, such as TER, aim for a
strong negative correlation, in previous years we
compare metrics via the absolute value |r| of a
given metric’s correlation with human assessment.
However, this can mask instances of true negative
correlation for metrics that aim for a positive corre-
lation (and vice-versa).

For system, document and segment level scores,
we reverse the sign of the score of error met-
rics prior to the comparison with human scores,
whether on the system, document or segment level:
higher scores have to indicate better translation
quality.

4 Results

4.1 System-Level Evaluation

As in previous years, we employ the Pearson cor-
relation (r) as the main evaluation measure for
system-level metrics. The Pearson correlation is as
follows:

Z?:l(Hi - ﬁ)(M, - M)

r= (H
VI (Hy — H)2 ST (M~ N2

where H; are human assessment scores of all sys-
tems in a given translation direction, M; are the
corresponding scores as predicted by a given met-
ric. H and M are their means, respectively.

As recommended by Graham and Baldwin
(2014), we employ Williams significance test
(Williams, 1959) to identify differences in correla-
tion that are statistically significant. Williams test
is a test of significance of a difference in dependent
correlations and therefore suitable for evaluation
of metrics. Correlations not significantly outper-
formed by any other metric for the given language
pair are highlighted in bold in all the results tables
that show Pearson correlation of metric and human
scores.

Pearson correlation is ideal for reporting whether
metric scores have the same trend as human scores.
In practice, we use metrics to make decisions com-
paring MT systems, and Kendall’s Tau appears to
be more close to this use case, as it directly checks

whether the metric ordering of a pair of MT sys-
tems agrees with the human ordering. However,
unlike Pearson correlation, it is not sensitive to
whether the metric score differences correspond to
the human score differences. We stay with Pearson
correlation for the official results, but also report
Kendall’s Tau correlation in the appendix.

The calculation of Pearson correlation coeffi-
cient is dependent on the mean, which is very sen-
sitive to outliers. So if we have systems whose
scores are far away from the rest of the systems,
the presence of these “outlier” systems can give a
misleadingly high impression of the correlations,
and potentially change ranking of metrics. To avoid
this, we also report correlations over non-outlier
systems only.

To remove outliers, we are guided by the robust
outlier detection method proposed for MT metric
evaluation by Mathur et al. (2020). This method,
recommended by the statistics literature (Iglewicz
and Hoaglin, 1993; Rousseeuw and Hubert, 2011;
Leys et al., 2013) depends on the median and the
median absolute deviation (MAD) which is the me-
dian of the absolute difference between each point
and the median. The method removes systems
whose human scores are greater than 2.5 MAD
away from the median.

The cutoff of 2.5 is subjective, and Leys et al.
(2013) suggest the guidelines of using 3 (very
conservative), 2.5 (moderately conservative) or 2
(poorly conservative), and recommends 2.5. For
some language pairs, we override the 2.5 cutoff for
systems that are close to the cutoff. We give exam-
ples in Section 5, and list all identified outliers in
Table 15 in the Appendix.

4.1.1 System-Level Results

Tables 5 and 6 provide the system-level correlations
of metrics. These tables include results for all MT
systems, and in cases where we detect outliers, we
also report correlation without outliers.

This year, we also carry out an extended analysis
of the impact of (multiple) human references, see
the following paragraphs.

Scoring Human Translation In this section, we
investigate how well the metric submissions score
human translations. We have five language pairs
where two reference translations were provided by
WMT. The manual DA scoring of News Translation
Task included all the out-of-English human refer-
ences in the evaluation along with the MT systems.
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For to-English language pairs, only the secondary
human reference translations were manually scored
with DA as the primary human reference transla-
tion was shown to the monolingual annotators.

For these language pairs, the metrics can score
a human translation by using the other one as the
reference translation. For simplicity, we add the
second human reference translation to the list of
translation outputs and observe how its scoring by
the given metric affects the correlation.

Table 7 shows how well the metrics correlate
with the WMT human evaluation when including
human translations as additional output. In most
cases, the correlation decreases as metrics strug-
gle to correctly score translations that are different
from MT systems. Metrics that rely on fine-tuning
on existing human assessments from the previous
WMT campaigns (e.g. BLEURT, ESIM, COMET)
can handle human translations much better on av-
erage. Also, the Paraphrased references help the
lexical metrics correctly identify the high quality
of human translations.

We present a deeper analysis of how metrics
score human translations in Section 5.1.2. We base
this discussion on scatterplots of human vs metric
scores. We include scatterplots of selected metrics
in Appendix B.

Influence of References Rewarding multiple al-
ternative translations is the primary motivation be-
hind multiple-reference based evaluation. It is gen-
erally assumed that using multiple reference trans-
lation for automatic evaluation is helpful as we
cover a wider space of possible translations (Pap-
ineni et al., 2002b; Dreyer and Marcu, 2012; Bojar
et al., 2013). Nevertheless, new studies (Freitag
et al., 2020) showed that multi-reference evaluation
does not improve the correlation for high quality
output anymore. Since we have multiple references
available for five language pairs, we can look at
how much the choice of reference(s) influences
correlation.

Table 8 compares metric correlations on the pri-
mary reference set newstest2020, alternative refer-
ence newstestB2020, paraphrased reference new-
stestP2020 (only for English-German), or using
all available references newstestM2020. We only
report system-level correlations of metrics on MT
systems after discarding outliers.

4.2 Segment- and Document-Level
Evaluation

Segment-level evaluation relies on the manual
judgements collected in the News Translation Task
evaluation. This year, again we were unable to
follow the methodology outlined in Graham et al.
(2015) for evaluating of segment-level metrics be-
cause the sampling of segments did not provide
sufficient number of assessments of the same seg-
ment. We therefore convert pairs of DA scores for
competing translations to DARR better/worse pref-
erences as described in Section 2.3.2. We further
follow the same process to generate DARR ground
truth for documents, as we do not have enough
annotations to obtain accurate human scores.

We measure the quality of metrics’ scores
against the DARR golden truth using a Kendall’s
Tau-like formulation, which is an adaptation of the
conventional Kendall’s Tau coefficient. Since we
do not have a total order ranking of all translations,
it is not possible to apply conventional Kendall’s
Tau given the current DARR human evaluation
setup (Graham et al., 2015).

Our Kendall’s Tau-like formulation, 7, is as fol-
lows:

|Concordant| — | Discordant]| @)
T =
|Concordant| + | Discordant|

where C'oncordant is the set of all human compar-
isons for which a given metric suggests the same
order and Discordant is the set of all human com-
parisons for which a given metric disagrees. The
formula is not specific with respect to ties, i.e. cases
where the annotation says that the two outputs are
equally good.

The way in which ties (both in human and met-
ric judgement) were incorporated in computing
Kendall 7 has changed across the years of WMT
Metrics Tasks. Here we adopt the version used in
WMT17 DARR evaluation. For a detailed discus-
sion on other options, see also Machdcek and Bojar
(2014).

Whether or not a given comparison of a pair of
distinct translations of the same source input, s;
and s9, is counted as a concordant (Conc) or dis-
concordant (Disc) pair is defined by the following
matrix:

In previous years, we used bootstrap resampling
(Koehn, 2004; Graham et al., 2014) to estimate con-
fidence intervals for our Kendall’s Tau formulation,
and metrics with non-overlapping 95% confidence
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Metric

S1 <S9 S} =82 S1 >S9
g s3<sz | Conc Disc Disc
g S1 = S92 — — —
T S1 > So Disc Disc Conc

intervals are identified as having statistically sig-
nificant difference in performance. The tests are
inconclusive for most metric pairs this year and we
do not include them in the paper.

4.2.1 Segment-Level Results

Results of the segment-level human evaluation for
translations sampled from the News Translation
Task are shown in Tables 9 and 10, We expect that
comparing between segments translated by two
MT systems that are far apart in quality would be a
relatively easier task for automatic metrics. So we
also include results after discarding segments that
were translated by outlier systems.

Note that we do not include any human-
translated segments in this evaluation.

4.3 Document-level Results

Results of the document-level human evaluation
for translations sampled from the News Translation
Task are shown in Tables 11 and 12.

5 Discussion

5.1 System-Level Results

In general, there is no clear best metric this year
across all language pairs. For most language pairs,
the William’s significance test results in large clus-
ters of metrics. The set of “winners” according to
the test (i.e., the metrics that are not outperformed
by any other metric) are typically not consistent
across language pairs.

The sample of systems we employ to evaluate
metrics is often small, as few as six MT systems for
Pashto — English, for example. This can lead to
inconclusive results, as identification of significant
differences in correlations of metrics is unlikely at
such a small sample size. Furthermore, Williams
test takes into account the correlation between each
pair of metrics, in addition to the correlation be-
tween the metric scores themselves, and this latter
correlation increases the likelihood of a significant
difference being identified. In extreme cases, the
test would have low power when comparing a met-
ric that doesn’t correlate well with other metrics,

resulting in this metric not being outperformed by
other metrics despite having a much lower value of
correlation.

To strengthen the conclusions of our evaluation,
in past years (Bojar et al., 2016, 2017; Ma et al.,
2018), we included significance test results for
large hybrid-super-samples of systems 10K hybrid
systems were created per language pair, with cor-
responding DA human assessment scores by sam-
pling pairs of systems from the News Translation
Task, creating hybrid systems by randomly select-
ing each candidate translation from one of the two
selected systems. However, as WMT human an-
notations are collected with document context in
2020, this style of hybridization is susceptible to
breaking cross-segment references in M T outputs
and it would be unreasonable to shuffle individual
segments. The creation of hybrid systems would
need to be done by sampling documents instead of
segments from all sets of systems. Finally, it is pos-
sible that including documents translated by outlier
systems might falsely lead to high correlations. We
believe that this merits further investigation based
on data from previous of metrics tasks, and we do
not attempt it this year.

In the rest of this section, we present analysis
of various aspects of system-level evaluation based
on scatterplots of all metrics. Appendix B contains
scatterplots of metrics for each language pair. We
include BLEU, chrF, the “best” reference-based
metric and the “best” reference-free metric (we
acknowledge that this is not the best way to define
the best metric, but we choose the metric that is
most highly correlated with humans on the set of
all MT systems after removing outliers).

5.1.1 Influence of Domain in English —
Inuktitut

English — Inuktitut training data was the Canadian
Hansards domain, and the development data con-
tained a small amount of news data. The test set
was a mix of in-domain data from the Hansards and
news documents. The evaluation was only done
on the out-of-domain news documents, so we also
look at metric scores computed only on the subset
of news sentences.

Figure 1 shows that BLEU scores on the out-
of-domain dataset are considerably smaller than
the full dataset, showing that MT systems have a
higher quality on the in-domain dataset. The rela-
tive scores of metrics remain mostly stable when
we compare scores on the full test set to scores on
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Figure 1: English — Inuktitut: Human vs. BLEU
scores on the full dataset vs. the news subset. Only
the news subset was included in the human evaluation.
Each dot corresponds to an MT system, the outlier on
the top-right is UQAM_TANLE.

only the news subset that was evaluated. The main
exception is UQAM _TANLE; BLEU scores are re-
ally high on the out-of-domain data, and increase
very little when computed on the full dataset. When
looking at correlations with human scores (Table 7),
we expected correlations to increase when com-
puted over the news subset. This is true for most
metrics such as COMET-QE, but the correlation
stays the same or actually decreases for other met-
rics like PARBLEU.

5.1.2 Scoring Human Translations

The alternate reference was included in the man-
ual evaluation for German — English, Russian —
English and Chinese — English. All human refer-
ences were included in the out-of-English manual
evaluation.’

German — English: HUMAN-B was ranked
third in the manual evaluation. The lexical met-
rics (BLEU, cHRF, CHARACTER, EED, MEE,
Y1S1-0, CHRF++, PARBLEU, PARCHRF) give ex-
tremely low scores to the HUMAN-B reference.
This is also true for PRISM and all the reference-
free metrics except COMET-QE. The neural met-
rics also give low scores to the human reference,
however, the margin of error is much smaller.

"Findings 2020 in the official tables label the alternate
reference in into-English direction simply as HUMAN. The
“first” reference, which serves as the primary reference for
us, was not scored manually in DA into English. Out of
English, the primary reference for us is labelled HUMAN-A
in Findings.

COMET-QE is the only metric that gives high
scores to the HUMAN-B reference.

Appendix B also shows the scatterplot “new-
stestB2020” where HUMAN-B served as the refer-
ence for the metrics. We see some differences in
the vertical axis but the general picture remains the
same even with this fairly different human transla-
tion.

Russian — English: The HUMAN-B reference
was ranked after 6 MT systems in the manual evalu-
ation but still within the same cluster, so not signif-
icantly distinguishable. Lexical metrics give rela-
tively low scores to HUMAN-B. The neural metrics
give relatively higher scores, but score it above
Online-A and below ariell97197, i.e. differently
than DA judgements.

Chinese — English: The Human translation is
ranked 12th in the manual evaluation (in a giant
cluster which puts together all but one top and one
bottom system), and most metrics place it more
or less correctly. Many metrics, including lexical
metrics, still have correlations above 0.9 even after
including the Human translation.

English — German: According to the WMT hu-
man evaluation, the HUMAN-B reference receives
the highest scores, the HUMAN-A reference is
ranked fourth and Human-P, which was generated
by linguists paraphrasing the WMT references, is
ranked lower at 10th place. Each human reference
falls into a separate cluster of significance.

Lexical metrics score around 10 MT systems
above each WMT reference (using the other WMT
human translation as reference). COMET-QE and
some neural metrics (BLEURT, COMET-MQM,
COMET-HTER and MBERT-L2) score HUMAN-
A and HUMAN-B as better than all MT systems.

When using either of the WMT references, most
metrics, including all the lexical metrics, score the
paraphrased reference much lower than the rest of
the systems. The COMET family of metrics and
BLEURT-EXTENDED are the only metrics that
are able to recognise the merit of the paraphrased
references.

When using the paraphrased references, all
reference-based metrics score the two human trans-
lations above all MT systems, often by a large
margin. PRISM is the sole exception; it scores
the HUMAN-B reference about half way between
the MT systems. Interestingly, most of these met-
rics score HUMAN-A above HUMAN-B, i.e. dis-
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agreeing with DA judgements. Metric correlations
when including HUMAN-A system drop dramati-
cally when using the alternate WMT reference, but
the correlations are higher with the paraphrased ref-
erence. This also holds when scoring HUMAN-B
using the paraphrased vs the main WMT reference
(Table 7).

Of the reference-free metrics, COMET-QE
scores the two WMT references above all MT sys-
tems, and ranks the paraphrased reference similar
to its rank in the manual evaluation. OPENKIWI-
BERT and OPENKIWI-XLMR are a little bi-
ased against these human translations, and Y1SI-2
scores all human translations below all MT sys-
tems.

English — Chinese The manual evaluation
ranks the two Human translations above all MT
systems, but most metrics give these much low
scores.

To summarize, we see that the current MT met-
rics generally struggle to score human translations
against machine translations reliably. Rare excep-
tions include primarily trained neural metrics and
reference-less COMET-QE. While the metrics are
not really prepared to score human translations,
we find this type of test relevant as more and more
language pairs are getting closer to the human trans-
lation benchmark. A general-enough metric should
be thus able to score human translation comparably
and not rely on some idiosyncratic properties of
MT outputs. We hope that human translations will
be included in WMT DA scoring in the upcoming
years, too.

5.1.3 Influence of Outliers

There are no outlier systems for some language-
pairs like Khmer— English and English — Rus-
sian. For others, we have systems whose score is
far away from the scores of the rest of the systems.
As these outliers have a large influence on Pear-
son correlation, computing the correlation without
outliers typically makes the task harder for metrics
and results in a decrease in correlation.

For example, we identify three outliers in the
German — English set; the quality of the last
system is extremely low compared to rest. All
reference-based metrics have high correlations
when including all systems, but correlations drop
when discarding outliers. In particular, CHRF and
PARESIM both had a correlation of 0.95 when
computed over all systems, but this drops to 0.69
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and 0.83 respectively after removing outliers, re-
vealing that PARESIM is more reliable with this
language pair. An even larger drop is observed for
CHRF and CHRF++ in English — Czech, from 0.8
to 0.3. We find this particularly surprising because
CHRF has always performed well on this language
pair, including in the evaluation on the gradually
reducing set of top N systems, i.e. in harder and
harder conditions, see SACREBLEU-CHRF in Ap-
pendix A.4 of Ma et al. (2019).

In some cases, metrics can be inaccurate when
scoring outliers, resulting in an increased corre-
lation when correlation is recomputed over non-
outlier systems. For example, with Chinese
— English, the score of WMTBIOMEDBASE-
LINE score is much lower than the next system.
Most metrics correctly rank it last as well, but
COMET-HTER, COMET-MQM, COMET-QE and
OPENKIWI-BERT give it a higher score than the
next system(s). Note that the other metrics all have
a correlation of above 0.9 even after removing the
outlier.

In other cases, removing outliers decreases the
correlation of a metric and yet it helps its final
outcome. For instance SENTBLEU averaged over
all sentences becomes one of the “winners” in the
system-level evaluation of translation into English
(Table 5). If we trust the results without outliers
more, using averaged sentBLEU seems better than
using plain old BLEU and not significantly worse
than any other metric going from English into sev-
eral target languages.

For some language-pairs, we override the de-
cisions made by the outlier detection algorithm,
based on whether we believe including or remov-
ing these systems from consideration would have
an impact on the correlations: For example, with
Tamil — English, the last two systems are not clas-
sified as outliers by the algorithm, but their human
scores is some distance away from the rest of the
systems. CHRF, CHRF++ and PARCHRF++ are the
only metrics that correctly order these two systems.
OPENKIWI-BERT and OPENKIWI-XLMR both
get these two systems wrong with a large margin.
But for all metrics, removing these systems leads
to a significant drop in correlation. Thus we count
these two systems as outliers.

Another example is Japanese — English. For
this language-pair, we have two clusters of 7 and
3 systems. Metrics have high correlations when
considering all systems, but when looking at MT



systems within individual clusters, there are dis-
crepancies between the metric scores compared
to human scores. The outlier detection algorithm
flags only the last two systems as outliers, but the
presence of the third system has a disproportion-
ate impact on the correlation. We include all three
systems in the set of outliers.

The influence of references For all language
pairs where multiple references were available, the
correlations are typically very close whether us-
ing the primary reference or the alternate reference.
For metrics where we do see a difference, there is
no consistent pattern whether metrics prefer one
reference or the other. We note that although the
change in correlations is small when comparing
across reference sets, the set of “winners” accord-
ing to the William’s test for statistical significance
is not stable, particularly for English — German.
When combining references, in most cases, the cor-
relation with multiple references lies between the
correlation of the individual references. For exam-
ple, with English — German, BLEU correlates best
with the secondary reference with a correlation of
0.844. But with multiple references, the correlation
is 0.825, just above the correlation with the primary
reference with is 0.822 (Table 8).

There are a few exceptions where there is a small
increase in metric correlation above both individual
references. For example, the correlation of CHAR-
ACTER with German — English increases from
0.687 and 0.696 with a single reference to 0.713
with both references ( Table 8). But there are no
metrics which consistently show an improvement
with multiple references across multiple language
pairs.

5.1.4 Neural vs. Lexical Metrics

For many language pairs, when we look at cor-
relation clustering of the reference-based metrics
based on their system-level scores, we end up with
two major clusters: neural metrics and lexical met-
rics. We have seen that lexical and neural metrics
differ in how they score the human translations.
For English — German, all lexical metrics have a
slightly higher correlation than any neural metric
when evaluating MT systems. However, these met-
rics make major errors evaluating the HUMAN-A
translations with the HUMAN-B reference.

We also see such differences with some MT sys-
tems. Selected examples:

e English — Czech: All lexical metrics includ-
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ing BLEU and CHRF are very biased towards
ONLINE-B, with metric scores indicating that
this system is better than all others by a large
margin. It is ranked 7th in the human evalua-
tion. Neural metrics and reference-free met-
rics are more or less correct when scoring this
system. Surprisingly, ESIM is an exception to
this, and also ranks ONLINE-B on top.

e Polish — English: Lexical metrics like BLEU
give very low scores to ONLINE-G.

e Tamil — English: Lexical metrics con-
sistently score ONLINE-Z above MI-
CROSOFT_STC_INDIA, but the remaining
metrics including the reference-free metrics
rank them in the opposite order. The human
evaluation agrees with the lexical metrics.

o Khmer — English: lexical metrics score the
best system lower than the next two, whereas
most neural metrics get the order of the top
systems right.

5.1.5 Other Discrepancies between Metric
and Human Scores

Here we briefly draw attention to particularities we
spotted when manually examining the results.

o German — English: All metrics score Tohoku-
AIP-NTT higher than OPPO, and UEDIN
higher than PROMT_NMT.

e Russian — English: ONLINE-A, which is
ranked 2" in the human evaluation, receives
low metric scores. In contrast, some met-
rics including BLEU and PARBLEU choose
ARIEL197197, which is ranked 6th in the hu-
man evaluation, as the best system.

e Tamil — English: The highest ranked sys-
tem according to human scores, GTCOM, re-
ceives lower metric scores than the next three
to six systems. Metrics are biased towards
ONLINE-A and against ONLINE-Z.

e Chinese — English: HUOSHAN_TRANSLATE
is a clear winner according to human evalua-
tion, but BLEU ranks it lower than the next 3
systems. The different between human scores
for the next 8 systems is not statistically sig-
nificant where metric ordering of the systems
differently than human scores and these dis-
crepancies aren’t penalised harshly by Pear-
son correlation.



e English — Chinese: HUOSHAN_TRANSLATE
is a clear winner according to human eval-
uation, but BLEU ranks it lower than the
next 3 systems. The different between hu-
man scores for the next 8 systems is not sta-
tistically significant where metric ordering of
the systems differently than human scores and
these discrepancies aren’t penalised harshly
by Pearson correlation. While many metrics
including BLEU have high correlations, oth-
ers make major errors scoring the NTUTRANS.
OPENKIWI-BERT assigns really low scores
to

Overall, we note that these metric-human discrep-
ancies often feature online systems which are prob-
ably more diverse that the MT system submissions
to the WMT shared tasks.

5.1.6 Pearson vs. Kendall Tau

Overall, we found that Pearson correlation doesn’t
always give us the complete picture. In particular,
outliers have a large influence on the correlation
and can mask the presence of discrepancies be-
tween metric and human scores with the rest of the
systems. But making a decision on which systems
to discard is not easy.

In this paper, we also explore Kendall’s Tau as an
alternative to Pearson correlation. Tables 16 and 17
in the Appendix show Kendall Tau correlation of
metrics over all MT systems (not including human
translations).

Kendall’s Tau is less sensitive to outliers, and
directly measures whether metrics agree with hu-
mans when comparing pairs of systems. However,
Kendall’s Tau doesn’t consider the differences in
scores, and two metrics whose errors differ in mag-
nitude can have the same Kendall’s Tau correlation
(Figure 2).

5.2 Segment and Document-Level Results

On the more fine-grained evaluation scales, PRISM
and the trained neural metrics (the COMET and
BLEURT family of metrics) have a better agree-
ment with human judgements than lexical metrics
The correlations of the to-English language pairs
are consistently much lower, on average, compared
to that of the out-of-English language pairs. The
difference could be due to the differing set of anno-
tators: the to-English human evaluation was crowd-
sourced and therefore is likely to be noisier.
Finally, we find that correlations drop markedly
for most language pairs if we consider only the

OK-B: r=0.73;tau=0.62 _, ,, EED: r=0.97; tau = 0.62
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Figure 2: Scatterplots of human scores against two met-
rics that have the same Kendall Tau correlation with
human scores, though OPENKIWI-BERT has bigger er-
rors.

segment/document pairs that do not contain outlier
systems. We suspect that as the quality of outlier
system translations is typically low, and most of the
generated better-worse pairs that contain outliers
can be easy for metrics. Removing these pairs
would make the task a lot harder. It is also very
likely that the remaining pairs of translations are
noisier, which decreases metric agreement with
these pairwise judgements.

The document-level correlations are typically
higher than segment-level correlations. This could
be due to reduced noise in human scores when aver-
aging the scores of multiple segments. Computing
metric scores over documents that contain multiple
segments also helps reduce metric noise.

5.3 Reference-Based Metrics vs.
Reference-Free Metrics

We have four submissions of metrics that directly
compare MT outputs with the source segment:
COMET-QE, OPENKIWI-BERT, OPENKIWI-
XLMR, and YiIS1-2. Other members of the
COMET family of metrics use information from
both the source and reference. The remaining met-
rics compute scores by comparing the MT output
with the reference.

While the task of comparing segments in differ-
ent languages is harder than comparing segments in
the same language, reference-free metrics have one
advantage: they are not encumbered by reference-
bias. COMET-QE is the only metric that correctly
gives a high score to the human translation in Ger-
man — English , and one of the few metrics that
does so for English — Chinese.

This year, the reference-free metrics are highly
competitive with reference-based metrics for all
language-pairs. For English — Tamil, COMET-
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QE which has a near perfect correlation of 0.97
even after discarding outliers. In contrast, many
reference-based metrics including BLEU and chrF
give really high scores to ONLINE-B, which results
in low correlations.

6 Use Automatic Metrics to Detect
Incorrect Human Preference

It has been argued that non-expert translators lack
knowledge of translation and so might not notice
subtle differences that make one translation better
than another. Castilho et al. (2017) compared the
evaluation of MT output of professional translators
against crowd workers. Results showed that for
all language pairs, the crowd workers tend to be
more accepting of the MT output by giving higher
fluency and adequacy scores. Toral et al. (2018)
showed that the ratings acquired by professional
translators show a wider gap between human and
machine translations compared to judgments by
non-experts. They recommend using professional
linguists for MT evaluation going forward. Laubli
et al. (2020) show that non-experts assess parity
between human and machine translation where
professional translators do not, indicating that the
former neglect more subtle differences between
different translation outputs. Given the previous
work and the fact that the WMT human evalua-
tion has been conducted with a mix of researchers
and crowd workers, we rerun human evaluation
for a subset of the submissions with professional
linguists. In particular, we want to investigate if
we can use the quality scores obtained by the au-
tomatic metrics to detect incorrect human ratings.
We filtered out all pairs of systems where the hu-
man evaluation results disagree with all automatic
metrics. Taking the metric scores as a signal, we
rerun human evaluation for a subset of submis-
sions for 2 language pairs: German— English and
English—German. We hired 10 professional lin-
guists, who rerun the source-based direct assess-
ment human evaluation with the same document-
based template that has been used for the original
WMT ratings.

6.1 German—English

For German—English, we found that all automatic
metrics disagree with the human evaluation results
for OPPO and TOHOKU. OPPO yields a higher
human rating, while all automatic metrics gave TO-
HOKU a higher score. To investigate which of the
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results to trust, we rerun the source-based direct
assessment for these 2 systems with professional
linguists. The results in Table 13 show that profes-
sional linguists in fact prefer the output of TOHOKU
as predicted by all automatic metrics.

Evaluation OPPO TOHOKU

avg metric

(HUMAN-A ref) 8.85 8.95

avg metric

(Human-B ref) 10.15 10.26

WMT 84.6 81.5
Z-score 0.220 0.179

prof. linguist 81.0 81.7
Z-score -0.005 0.010

Table 13: WMT 2020 German—English comparing
the reference-based ratings acquired with crowd work-
ers/researcher (WMT) against source-based ratings ac-
quired with professional linguists.

6.2 English—German

For English—German, we rerun human evaluation
for the top 2 ranked MT systems (based on hu-
man evaluation): OPPO, TOHOKU and the human
translation HUMAN-A. The quality of human trans-
lations is usually underestimated by automatic met-
rics when computed with standard references. This
is also visible in this year’s evaluation campaign
where the average metric scores of all submission
for the human translation HUMAN-A is much lower
when compared to the top MT submissions. To
overcome this problem, Freitag et al. (2020) intro-
duced paraphrased references that also value the
translation quality of human translations and al-
ternative (less simple/monotonic) MT output. As
we can see in Table 14, the average metric scores
of all submissions when computed with the para-
phrased references HUMAN-P yield a much higher
score for the human translation HUMAN-A when
compared to all MT outputs.

The official WMT human evaluation ranked the
human translation third, right behind the two MT
outputs from OPPO and TOHOKU. Interestingly,
based on the z-scores, WMT predicts OPPO to be
of higher quality than TOHOKU which is in dis-
agreement with most of the metric scores when
calculated against both types of reference transla-
tions. Overall, the automatic metrics come to a
very different ranking than the human evaluation
for the top performing submissions.



Evaluation OPPO ToHOKU HUMAN-A

avg metric

(Human-B ref) 10.05  10.09 9.14

avg metric

(Human-P ref) 11.93 12.07 15.74

WMT 87.39  88.62 85.10
Z-score 0.495 0.468 0.379

prof. linguist ~ 73.66  74.70 84.09
z-score -0.051  -0.037 0.088

Table 14: WMT 2020 English—German comparing
the source-based ratings acquired with crowd work-
ers/researcher (WMT) against source-based ratings ac-
quired with professional linguists.

We rerun the human evaluation with the same
template, but with professional linguists. Inter-
estingly, the human translation has been ranked
first by a large margin. Furthermore, the MT out-
put of TOHOKU has been rated as higher quality
when compared to the MT output from OPPO.
The results of the human evaluation with profes-
sional linguists yield a perfect correlation to the
metric scores calculated with the paraphrased ref-
erence. This indicates not only the advantages of
paraphrased references when scoring human trans-
lations, but also that automatic metrics can be used
to identify incorrect human ratings.

7 Conclusion

This paper summarizes the results of WMT20
shared task in machine translation evaluation, the
Metrics Shared Task. Participating metrics were
evaluated in terms of their correlation with human
judgement at the level of the whole test set (system-
level evaluation), as well as at a more fine-grained
level (document-level evaluation and sentences or
paragraphs for segment-level evaluation). We re-
ported scores for standard metrics requiring the
reference as well metrics that compare MT out-
put directly with the source text. For system-level,
best metrics reach over 0.95 Pearson correlation
or better across several language pairs. In many
cases, this correlation drops considerably when the
correlation is recomputed after discarding outlier
systems.

Computing Pearson correlation without outliers
can change the rankings of metrics, and selecting
these outlier systems is not an exact science. We re-
port results both with all systems and after discard-
ing outliers as together, and also include Kendall
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Tau correlation, and hope that together, they give
a more complete picture than just reporting only
one of these numbers. In the end, we believe that
it is impossible to adequately describe data with
summary numbers, and that it’s best to visualise
data to understand patterns.

The results confirm the trends from previous
years, namely metrics based on word or sentence-
level embeddings, achieve the highest perfor-
mance (Ma et al., 2018, 2019).

For some language pairs, we had two references
available. On these test sets, we found that com-
puting scores with two references rarely helped
metrics achieve a higher correlation than using ei-
ther reference individually. This contradicts earlier
research that shows that multiple references im-
prove correlation (Bojar et al., 2013), but is in line
with more recent papers that show additional inde-
pendent references might not be helpful (Freitag
et al., 2020). We believe that the utility of addi-
tional independent references is dependent on the
MT systems evaluated, that perhaps they are not as
helpful when scoring high quality MT systems as
with low/mid quality MT.

In addition to scoring MT systems, this year, we
also requested scores for human reference transla-
tions. This highlighted the difference between lexi-
cal and embedding-based metrics, as lexical met-
rics consistently gave low scores to human transla-
tions. However, when using the English-German
paraphrased references, all metrics scored the other
human references above all MT systems, highlight-
ing the advantages of using paraphrased references
when scoring human translations.

In addition to human references, there are some
MT systems where metrics (either the majority of
metrics, or only the lexical metrics) make major
errors. It remains an open question as to what it
is about these systems that metrics struggle with
scoring them correctly.

Compared to last year, the performance of the
reference-free metrics has improved, and the corre-
lations this year are competitive with the reference-
based metrics, and in many cases, outperform
BLEU. In particular, COMET-QE is good at recog-
nising the high quality of human translations where
BLEU falls short.

In terms of segment-level Kendall’s 7 results,
the standard metrics correlations was very low for
the to-English language pairs, particularly after dis-
carding translations by outlier systems. The corre-



lations of the out-of-English language pair are more
in line with recent years, reaching a maximum of
above 0.6.

It has been shown that context is really important
when humans are rating MT outputs (Toral et al.,
2018), and the WMT human evaluation is moving
towards evaluating segments with the document
context (Barrault et al., 2019). This creates a mis-
match with automatic metrics, all of which, this
year, score each segment independently. This year,
we introduce document-level evaluation of metrics.
When computing document-level scores, some met-
rics from the COMET family include document
context when computing segment scores within the
document. All other metrics included in this year’s
evaluation either use the average of the segment
scores or compute the document score based on
statistics computed independently for each segment.
In the future, we hope to see more metrics that con-
sider broader context when evaluating translations
at all three levels.

For this year, we are unable to draw any mean-
ingful conclusions from the document-level evalua-
tion task, as it is hard to tease apart the influence of
noise in the ground truth, inadequate segment-level
translations and inadequate translation in context
of the document.

We believe that the noise in the DARR judge-
ments is a big factor in the low correlations in
the to-English language pairs. We need further
research into understanding the factors that con-
tribute to the Kendall Tau scores and how much we
can trust these results.

There are shortcomings in the methods used to
evaluate metrics at the system-, document-, and
segment-level, and we believe that improving meth-
ods for evaluating and analysing automatic metrics
is a rich area for future research.

Finally, we assume that any discrepancies be-
tween metrics and WMT manual evaluation is a
metric error, and we acknowledge that this might
not be true in all cases. There is always scope for
improvement in human evaluation methodology,
and the best practice recommendations for human
evaluation are always evolving.

We rerun human evaluation by using the same
template as the WMT evaluation, but switching
the rater pool from non-experts to professional lin-
guists for a subset of translations where all metrics
disagree with the WMT human evaluation. This
experiment revealed a new use case of automatic
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metrics and demonstrated that automatic metrics
can be used to identify bad ratings in human eval-
uations. The new obtained ratings were in line
with the scores suggested by the automatic metrics
and also confirmed the higher translation quality of
human translations when compared to MT output.

In this paper, we looked at how outliers influence
metric evaluation, and we wonder how the presence
of these systems influence DA annotations. In a
perfect world, annotators score each translation on
its own merits without being influenced by previ-
ous instances. In this world, given the presence
of much worse translations, do annotators assign
high scores to the remaining translations that look
relatively better? Does an MT system receive an
unfair advantage if it is consistently scored along-
side a low-scoring outlier? And does standardising
the scores of individual annotators exacerbate this
issue? These and other research questions remain
open this year, keeping the WMT tasks increas-
ingly interesting as MT systems are getting closer
to human performance.
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A List of Outliers

Ip Outliers

cs-en ZLABS-NLP.1149, CUNI-DOCTRANSFORMER.1457

de-en YOLO.1052, ZLABS-NLP.1153, WMTBIOMEDBASELINE.387
1u-en NIUTRANS.1206, FACEBOOK_AI.729

ja-en ONLINE-G.1564, ZLABS-NLP.66, ONLINE-Z.1640

pl-en ZLABS-NLP.1162

ru-en ZLABS-NLP.1164

ta-en ONLINE-G.1568, TALP_UPC.192

zh-en WMTBIOMEDBASELINE.183

en-cs ZLABS-NLP.1151, ONLINE-G.1555

en-de ZLABS-NLP.179, WMTBIOMEDBASELINE.388, ONLINE-G.1556

en-iu_news UEDIN.1281, OPPO.722, UQAM_TANLE.521
en-iu_full UEDIN.1281, OPPO.722, UQAM_TANLE.521

en-iu UEDIN.1281, OPPO.722, UQAM_TANLE.521
en-pl ONLINE-Z.1634, ZLABS-NLP.180, ONLINE-A.1576
en-ta TALP_UPC.1049, SJTU-NICT.386, ONLINE-G.1561

Table 15: List of all MT systems that we consider as outliers

B Scatterplots

Here we show scatterplots of human and metric scores of selected metrics.

We report the correlation of each metric with human scores on all systems as well as all systems minus
the outliers. Note that we do not exclude human translations when computing these correlations.

In the following scatterplots, the violet triangles indicate individual indicate MT system submissions by
researchers and pink downward triangles are online systems. 8 The red crosses are outlier systems.

The black diamonds are human translations. For newstest2020 reference set, this is the HUMAN-A
translation, and for newstestB2020 reference set, this is the HUMAN-B translation. The plots for English
— German have two human translations included, and we annotate the label in the plot. In many cases,
metric errors scoring these translations stand out.

Metric scores of MT systems with multiple references does not deviate from the scores of either
reference. So we do not include the scatterplots of the other reference sets unless a human translation is
included (which is interesting).

We will have scatterplots for all metrics over all reference sets in the metrics package to be made
available at http://www.statmt.org/wnmt20/results.html

cs-en
BLEU: r=0.85/0.80 chrF: r=0.87/0.81 _0.37 EED: r=0.88/0.84 OpenKiwi-Bert: r=0.73/0.70
30 A 058 A X oA
X A A x o015 R A X
A A A -0.38 A A
A
28 ~ 0.57 A 0.10 A
-0.39 A
6 2 0.56 0.05
A A -0.40
0.55 A AA 0.00
24
-0.41
0.54 005
2 5 053 x 042 % -0.10 X
-0.1 0.0 0.1 -0.1 0.0 0.1 -0.1 0.0 0.1 -0.1 0.0 0.1

8We distinguish between the two in these scatterplots as we notice that metrics often make errors when scoring online
systems.
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“Including the YOLO.1052 system, which has an extremely low quality, would make it hard to distinguish between the rest of
the systems, so these plots exclude the system.
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C Additional System-level Results

We also report Kendall Tau correlation of metrics at the system level.
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cs-en de-en ja-en pl-en ru-en ta-en zh-en iu-en km-en ps-en

12 12 10 14 11 14 16 11 7 6
HUMAN_RAW 0.727 0.758 0.778 0.429 0.673 0.604 0.650 0.891 0.905 1.000
SENTBLEU 0.788 0.758 0.733 0.297 0.564 0.692 0.850 0.455 0.619 0.600
BLEU 0.848 0.697 0.778 0.407 0.455 0.692 0.833 0.309 0.714 0.600
TER 0.758 0.788 0.689 0.287 0.600 0.780 0.800 0.514 0.878 0.867
CHRF++ 0.818 0.697 0.778 0.407 0.673 0.714 0.850 0.418 0.619 0.733
CHRF 0.818 0.727 0.822 0.363 0.709 0.714 0.833 0.418 0.619 0.733
PARBLEU 0.809 0.779 0.778 0.420 0.491 0.685 0.807 0.404 0.714 0.867
PARCHRF++ 0.818 0.727 0.822 0.407 0.709 0.714 0.817 0.491 0.619 0.733
CHARACTER 0.758 0.758 0.822 0.341 0.745 0.692 0.800 0.527 0.810 0.733
EED 0.788 0.727 0.733 0.297 0.782 0.758 0.833 0.636 0.714 0.733
Y1S1-0 0.758 0.758 0.689 0.231 0.782 0.802 0.833 0.600 0.714 0.733
SWSS+METEOR - - 0.822 0.341 0.818 0.736 0.817 0.491 0.714 0.733
MEE 0.758 0.697 0.867 0.363 0.709 0.692 0.783 0.636 0.714 0.733
PRISM 0.758 0.727 0.867 0.341 0.564 0.648 0.800 0.673 0.714 0.867
YiSi-1 0.758 0.758 0.778 0.451 0.564 0.692 0.817 0.673 1.000 0.867
BERT-BASE-L2 0.758 0.848 0.822 0.407 0.491 0.604 0.633 0.564 1.000 0.867
BERT-LARGE-L2 0.758 0.848 0.867 0.341 0.564 0.626 0.700 0.527 1.000 0.867
MBERT-L2 0.758 0.818 0.822 0.429 0.564 0.604 0.750 0.673 1.000 0.867
BLEURT 0.758 0.788 0.822 0.407 0.600 0.604 0.650 0.527 1.000 0.867
BLEURT-EXTENDED 0.727 0.848 0.778 0.341 0.455 0.582 0.617 0.527 0.905 0.867
ESIM 0.727 0.848 0.822 0.451 0.491 0.670 0.717 0.636 1.000 0.867
PARESIM-1 0.727 0.879 0.822 0.451 0.491 0.670 0.700 0.636 1.000 0.867
COMET 0.727 0.758 0.778 0.407 0.564 0.626 0.733 0.636 1.000 0.867
COMET-2R 0.727 0.788 0.778 0.451 0.527 0.582 0.717 0.600 1.000 0.867
COMET-HTER 0.667 0.788 0.822 0.275 0.491 0.604 0.533 0.564 1.000 0.867
COMET-MQM 0.667 0.727 0.822 0.275 0.455 0.582 0.517 0.636 1.000 1.000
COMET-RANK 0.576 0.727 0.822 0.341 0.455 0.626 0.650 0.309 0.810 1.000
BAQ_DYN - - - - - - 0.817 — - -
BAQ_STATIC — — — — — — 0.867 — — —
COMET-QE 0.697 0.788 0.778 0.297 0.455 0.516 0.550 0.491 0.905 0.733
OPENKIWI-BERT 0.697 0.667 0.733 0.187 0.455 0.429 0.450 -0.055 0.714 0.467
OPENKIWI-XLMR 0.727 0.636 0.822 0.275 0.418 0.560 0.567 0.018 1.000 0.867
Y1S1-2 0.576 0.515 0.778 0.319 0.527 0.582 0.750 0.491 0.810 0.867

Table 16: Kendall Tau correlation of system-level metrics with DA human assessment for all MT systems not
including Human translations. In addition to the metrics, we also include raw human scores where annotator
scores were not standardised.
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en-cs en-de en-ja en-pl en-ru en-ta en-zh en-iu_full en-iu_news

12 14 11 14 9 15 12 11 11
HUMAN_RAW 1.000 0.868 0.964 0.846 0.778 0.810 0.818 0.600 0.600
SENTBLEU 0.515 0.802 0.855 0.604 0.944 0.867 0.727 0.236 0.273
BLEU 0.515 0.802 0.818 0.582 0.889 0.829 0.727 0.236 0.236
TER 0.515 0.824 0.018 0.641 0.556 0.752 0.242 0.309 0.309
CHRF++ 0.485 0.868 0.782 0.604 0.889 0.829 0.727 0.309 0.309
CHRF 0.485 0.868 0.818 0.604 0.889 0.810 0.727 0.345 0.309
PARBLEU 0.504 0.736 0.611 0.633 0.761 0.842 0.718 0.404 0.345
PARCHRF++ 0.515 0.846 0.818 0.670 0.889 — 0.727 — —
CHARACTER 0.515 0.890 0.782 0.560 0.944 0.771 0.697 0.236 0.345
EED 0.545 0.868 0.782 0.604 0.833 0.867 0.727 0.273 0.273
Y1S1-0 0.545 0.846 0.818 0.604 0.944 0.790 0.515 0.236 0.345
MEE 0.576 0.802 — 0.582 0.667 0.829 — 0.273 0.382
PRISM 0.818 0.868 0.818 0.670 0.611 0.562 0.576 0418 0.600
Yi1Si1-1 0.606 0.868 0.782 0.626 0.833 0.810 0.758 0.091 0.273
YISI-COMBI — 0.824 — — — — — — —
BLEURT-YISI-COMBI - 0.824 — — - — — — —
MBERT-L2 0.788 0.846 0.782 0.736 0.778 0.752 0.909 — —
BLEURT-EXTENDED 0.879 0.802 0.782 0.780 0.833 0.771 0.848 0.382 0.345
ESIM 0.606 0.912 0.855 0.692 0.833 0.752 0.788 0.382 0.455
PARESIM-1 0.667 0.890 0.818 0.692 0.833 0.752 0.818 0.382 0.455
COMET 0.909 0.846 0.745 0.736 0.722 0.771 0.606 0.382 0.382
COMET-2R 0.909 0.890 0.891 0.714 0.611 0.790 0.606 0.309 0.418
COMET-HTER 0.909 0.802 0.818 0.736 0.667 0.619 0.576 0.491 0.491
COMET-MQM 0.909 0.802 0.818 0.736 0.667 0.619 0.545 0.527 0.455
COMET-RANK 0.848 0.780 0.782 0.692 0.556 0.524 0.515 0.127 0.345
BAQ_DYN - - - - - - 0.697 — -
BAQ_STATIC — — — — — — 0.788 — —
EQ_DYN - - - - - - 0.727 - -
EQ_STATIC — — — — — — 0.818 — —
COMET-QE 0.848 0.802 0.709 0.802 0.667 0.543 0.576 0.600 0.673
OPENKIWI-BERT 0.758 0.780 0.236 0.538 0.722 0.314 0.606 -0.273 0.200
OPENKIWI-XLMR 0.909 0.780 0.818 0.692 0.667 0.657 0.545 0.018 0.200
Y1S1-2 0.485 0.582 0.527 0.077 0.444 0.886 0.121 0.309 0.455

Table 17: Kendall Tau correlation of out-of-English system-level metrics with DA human assessment for all MT
systems not including Human translations. In addition to the metrics, we also include raw human scores where
annotator scores were not standardised.
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