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Abstract

Domain adaptation is an old and vexing prob-
lem for machine translation systems. The
most common and successful approach to su-
pervised adaptation is to fine-tune a baseline
system with in-domain parallel data. Stan-
dard fine-tuning however modifies all the net-
work parameters, which makes this approach
computationally costly and prone to overfit-
ting. A recent, lightweight approach, instead
augments a baseline model with supplemen-
tary (small) adapter layers, keeping the rest
of the model unchanged. This has the addi-
tional merit to leave the baseline model in-
tact and adaptable to multiple domains. In
this paper, we conduct a thorough analysis of
the adapter model in the context of a multido-
main machine translation task. We contrast
multiple implementations of this idea using
two language pairs. Our main conclusions are
that residual adapters provide a fast and cheap
method for supervised multi-domain adapta-
tion; our two variants prove as effective as the
original adapter model and open perspective to
also make adapted models more robust to label
domain errors.

1 Introduction

Owing to multiple improvements, Neural Machine
Translation (NMT) (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) nowadays delivers useful out-
puts for many language pairs. However, as many
deep learning models, NMT systems need to be
trained with sufficiently large amounts of data to
reach their best performance. Therefore, the quality
of the translation of NMT models is still limited in
low-resource language or domain conditions (Duh
etal., 2013; Zoph et al., 2016; Koehn and Knowles,
2017). While many approaches have been pro-
posed to improve the quality of NMT models in
low-resource domains (see the recent survey of
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Chu and Wang (2018)), full fine-tuning (Luong and
Manning, 2015; Neubig and Hu, 2018) of a generic
baseline model remains the dominant supervised
approach when adapting NMT models to specific
domains.

Under this view, building adapted systems is a
two-step process: (a) one first trains NMT with the
largest possible parallel corpora, aggregating texts
from multiple, heterogeneous sources; (b) assum-
ing that in-domain parallel documents are avail-
able for the domain of interest, one then adapts the
pre-trained model by resuming training with the
sole in-domain corpus. It is a conjecture that the
pretrained model constitutes a better initialization
than a random one, especially when adaptation data
is scarce. Indeed, studies of transfer learning for
NMT such as Artetxe et al. (2020); Aji et al. (2020)
have confirmed this claim in extensive experiments.
Full fine-tuning, that adapts all the parameters of a
baseline model usually significantly improves the
quality of the NMT for the chosen domain. How-
ever, it also yields large losses in translation qual-
ity for other domains, a phenomenon referred to
as “catastrophic forgetting” in the neural network
literature (McCloskey and Cohen, 1989). There-
fore, a fully fine-tuned model is only useful to one
target domain. As the number of domains to han-
dle grows, training, and maintaining a separate
model for each task can quickly become tedious
and resource-expensive.

Several recent studies (e.g. (Vilar, 2018; Wue-
bker et al., 2018; Michel and Neubig, 2018; Bapna
and Firat, 2019)) have proposed more lightweight
schemes to perform domain adaptation, while also
preserving the value of pre-trained models. Our
main inspiration is the latter work, whose pro-
posal relies on small adapter components that are
plugged in each hidden layer. These adapters are
trained only with the in-domain data, keeping the
pre-trained model frozen. Because these additional
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adapters are very small compared to the size of the
baseline model, their use significantly reduces the
cost of training and maintaining fine-tuned models,
while delivering a performance that remains close
to that of full fine-tuning.

In this paper, we would like to extend this archi-
tecture to improve NMT in several settings that still
challenge automatic translation, such as translating
texts from multiple topics, genre, or domains, in
the face of unbalanced data distributions. Further-
more, as the notion of “domains” is not always well
established, another practical setting is the trans-
lation of texts mixing several topics/domains. An
additional requirement is to translate texts from
domains unseen in training, based only on the un-
adapted system, which should then be made as
strong as possible.

In this context, our main contribution is a thor-
ough experimental study of the use of residual
adapters for multi-domain translation. We notably
explore ways to adjust and/or regularize adapter
modules to handle situations where the adaptation
data is very small. We also propose and contrast
two new variants of the residual architecture: in
the first one (highway residual adapters), adapta-
tion still affects each layer of the architecture, but
its effect is delayed till the last layer, thus making
the architecture more modular and adaptive; our
second variant (gated residual adapters) exploits
this modularity and enables us to explore ways to
improve performance in the face of train-test data
mismatch. We experiment with two language pairs
and report results that illustrate the flexibility and
effectiveness of these architectures.

2 Residual adapters

In this section, we describe the basic version of
the residual adapter architectures (Houlsby et al.,
2019; Bapna and Firat, 2019), as well as two novel
variants of this model.

2.1 Basic architecture
2.1.1 The computation of adapter layers

Our reference architecture is the Transformer
model of Vaswani et al. (2017), which we assume
contains a stack of layers both on the encoder and
the decoder sides. Each layer contains two sub-
parts, an attention layer, and a dense layer. Details
vary from one implementation to another, we sim-
ply contend here that each layer i € {1...L} (in
the encoder or the decoder) computes a transform
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of a fixed-length sequence of d-dimensional input
vectors h' into a sequence of output vectors h' ! as
follows (LIN denotes the (sub)layer normalization,
ReLU is the “rectified linear unit” operator):

hiy = LIN(h')

hi = Wi hi + a}

hi = ReLU(h})

hy = Wighs + aj
h' = hi + h'.
Overall, the i" adapter is thus parameterized by
matrices Wi, € R™? Wi, € R®, bias vectors
bi € Rb, b} € RY, with b the dimension of the
adapter . For the sake of brevity, we will sim-
ply denote h} = ADAP(i)(hi), and 0, p) the
corresponding set of parameters.

The “adapted” hidden vectors k' ., ,, where
L is the number of layers, will then be the input
of the (i + 1) layer; h” is passed to the decoder
if it belongs to the encoder side, or is the input of
output layer if it belongs to the decoder side. Note
that zeroing out all adapters enables us to recover
the basic Transformer, with ¢ = h’ for all i.

In the experiments of Section 3, we use 2 X L =
12 residual adapters, one for each of the L = 6
attention layers of the encoder and similarly for the
decoder.’

2.1.2 Design space and variants

This general architecture leaves open many design
choices pertaining to the details of the network
organization, the training procedure, and the corre-
sponding objective function.

The first question is the number of adapter layers.
While in principle, all Transformer layers can be
subject to adaptation, it is nonetheless worthwhile
to consider simpler adaptation schemes, which
would only alter a limited number of layers. Such
strategy might be especially relevant when the train-
ing data contains very small domains, as in the ex-
periments of Section 3, and for which a complete
adaptation may not be necessary or/and or prone
to overfitting. Likewise, it might be meaningful to
explore ways to share subsets of adapters across
domains. This, in turn, raises the issue of which
layer(s) to adapt, a question that can be approached
in the light of recent analyses of Transformers mod-
els, which conjecture that the higher layers encode

'In the decoder, the stack of self-attention and cross

encoder-decoder attention only counts as one attention layer
and only corresponds to one residual adapter.



global patterns with a more “semantic” interpreta-
tion, while the lower layers encode local patterns
akin to morpho-syntactic information (Raganato
and Tiedemann, 2018).

A related question concerns the regularization of
adapter layers to mitigate overfitting. Reducing the
number of adapters, or their dimensions, is simple,
but such choices are difficult to optimize numeri-
cally — an issue that becomes important as the num-
ber of domain grows. Less naive alternatives can
also be entertained, such as applying weight decay
or layer regularization to the adapter. Implement-
ing these requires to modify the objective function
in a way that still allows for a smooth optimiza-
tion problem. For instance, weight decay applies a
penalization on the weights of the adapters, com-
plementing the cross-entropy term with a function
of the norm of the parameters:

- 1
L= m %(—1Og(P(y|$)))

+ A >

1€{1,..,6}®{enc,dec}

10 xpap@ 12

An alternative scheme is layer regularization,
which penalizes the output of the adapters, cor-
responding to the following objective:

m ;;(—log(P(ya:))

+ A >

i€{1,..,6}®{enc,dec}

IADAP® (h;(z,y))]l2)

Finally, another independent design choice re-
lates to the training strategy for adapters. A first
option is to generalize supervised domain adapta-
tion to multi-domain adaptation and to proceed in
two steps: (a) train a generic model with all the
available data; (b) train each adapter layer with
domain-specific data, keeping the generic model
parameters unchanged. Another strategy is to adopt
the view of Dredze and Crammer (2008), where
the multi-domain setting is viewed as an instance
of multi-task learning (Caruana, 1997) with each
domain corresponding to a specific task. This sug-
gests training all the parameters from scratch, as
we would do in a multi-task mode. The generic pa-
rameters will still depend on all the available data,
while each adapter will only be trained with the
corresponding in-domain data.
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2.2 Highway Residual Adapters

In the basic architecture described in Section 2.1,
the computation performed by lower level layers
will impact all the subsequent layers. In this sec-
tion, we introduce an alternative implementation
of the same idea, which however delays the adapta-
tion of each layer to the last layer (of the encoder
or the decoder) as depicted on Figure 1. While the
basic architecture performs adaptation in sequence,
we propose here to perform it in parallel. In this
version, only the last hidden vector of the encoder
(decoder) is thus modified according to:

ht=n"+ Y ADAP'(h') (1)

1<i<L

One obvious benefit of this variant is that it al-
lows us to reuse the hidden vectors A’ of all hidden
layers when computing an adapted output for sev-
eral domains during the inference. In this situation,
the forward step needs only to compute the hidden
vectors h' once for the inner encoder layers, be-
fore an adapted sequence of vectors is computed at
the topmost layer. Therefore, we can fine-tune the
model to multiple domains at once without recom-
puting k. This variant also opens the way to more
parameter sharing across adapters, a perspective
that we will not explore further in this work. In-
stead, we use it to develop a second variation of the
adapter model, that is presented in the next section.

Figure 1: Highway residual adapter network

2.3 Gated Residual Adapters

The basic architecture presented above rests on
a rather simplistic view of “domains” as made of
well-separated and unrelated pieces of texts that are
processed independently during adaptation. Like-
wise, when translating test documents, one needs to
choose between either using one specific domain-
adapted model or resorting to the generic model. In



this context, using wrong domain labels can have a
strong (negative) effect on translation performance.

Therefore, we would like to design a version of
residual adapters that is more robust to such do-
main errors. This variant, called the gated residual
adapter model, relies on the training of a supple-
mentary component that will help decide whether
to activate, on a word per word basis, a given resid-
ual layer and to regulate the strength of this activa-
tion. To this end, we extend the highway version
of residual adapters as follows.

Formally, we replace the adapter computation of
equation (1) and take the adapted hidden (topmost)
layer to be computed as (this is for domain k):

hE=hE+ " ADAPL(R) © 2 (hY), ()
1<i<L

where the scalar z; (h%[t]) € [0, 1] measures the re-
latedness of the ™ word w; to domain k. The more
likely w; is in domain k, the larger z;, (h”[t]) should
be; conversely, for words? that are not typical of
any domain k (eg. function words), adaptation is
minimum and the corresponding adapted encoder
output (h”[t]) will remain close to the output of
the generic model (h”[t]). In our implementation,
we incorporate two domain classifiers on top of the
encoder and the decoder, that take the last hidden
layer of the encoder (resp. decoder) as input and
use the posterior probability P(k|h”[t]) of domain
k as the value for z;(h"[t]).

Training gated residual adapters thus comprises
three steps, instead of two for the baseline version:

1. learn a generic model with mixed corpora
from multiple domains.

2. train a domain classifier on top of the encoder
and decoder; during this step, the parame-
ters of the generic model are frozen. This
model computes the posterior domain proba-
bility P(k|h%[t]) for each word wy, based on
the representation computed by the last layer.

3. train the parameters of adapters with in-
domain data separately for each domain, while
freezing all the other parameters.

The term “word” is employed here by mere convenience,
as systems only manipulate sub-lexical BPE units; further-
more, the values of the hidden representations h" at position ¢
depend upon all the other positions in the sentence.
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3 Experimental settings

3.1 Data and metrics

We perform our experiments with two translation
pairs involving multiple domains: English-French
(En—Fr) and English-German (En—De). For the
former pair, we use texts® initially from 6 do-
mains, corresponding to the following data sources:
the UFAL Medical corpus V1.0 (MeD)*, the Eu-
ropean Central Bank corpus (8ank) (Tiedemann,
2012); The JRC-Acquis Communautaire corpus
(Law) (Steinberger et al., 2006), documentations
for KDE, Ubuntu, GNOME and PHP from Opus
collection (Tiedemann, 2009), collectively merged
in a 1 T-domain, Ted Talks (Ta1nxk) (Cettolo et al.,
2012), and the Koran (re1). Complementary ex-
periments also use v12 of the News Commentary
corpus (NEws). Corpus statistics are in Table 1.

En—De is a much larger task, for which we use
corpora distributed for the News task of WMT203
including: European Central Bank corpus (BaNKk),
European Economic and Social Committee cor-
pus (Eco), European Medicines Agency corpus
(MeD)®, Press Release Database of European Com-
mission corpus, News Commentary v15 corpus,
Common Crawl corpus (vews), Europarl v10
(cov), Tilde MODEL - czechtourism (TouRr)’,
Paracrawl and Wikipedia Matrix (weB). Statistics
are in Table 2.

We randomly select in each corpus a develop-
ment and a test set of 1,000 lines each and keep the
rest for training.® Development sets help choose
the best model according to the average BLEU
score (Papineni et al., 2002).°

3.2 Baseline architectures

Using Transformers (Vaswani et al., 2017) imple-
mented in OpenNMT-tf'? (Klein et al., 2017), we
train the following baselines:

e a generic model trained on a concatenation of
all corpora, denoted Mixed;

*Most corpora are available from the Opus web site:
http://opus.nlpl.eu

4https ://ufal.mff.cuni.cz/ufal_
medical_corpus

Shttp://www.statmt.org/wmt20/news.html

*https://tilde-model.s3-eu-west-1.
amazonaws.com/Tilde_MODEL_Corpus.html

"https://tilde-model.s3-eu-west—-1.
amazonaws.com/Tilde_MODEL_Corpus.html

8Scripts to replicate these experiments are available at
urlhttps://github.com/qmpham/experiments.git.

“We use truecasing and the multibleu script.

Yhttps://github.com/OpenNMT/OpenNMT -t £


http://opus.nlpl.eu
https://ufal.mff.cuni.cz/ufal_medical_corpus
https://ufal.mff.cuni.cz/ufal_medical_corpus
http://www.statmt.org/wmt20/news.html
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html
https://github.com/OpenNMT/OpenNMT-tf

MED LAW

BANK IT

TALK REL NEWS

2609 (0.68) 190 (0.05) 501 (0.13)

270 (0.07)

160 (0.04) 130(0.03) 260 (0)

Table 1: Corpora statistics for En—Fr : number of parallel lines (x 10®) and proportion in the basic domain mixture
(which does not include the nEws domain). MED is the largest domain, containing almost 70% of the sentences,

while REL is the smallest, with only 3% of the data.

BANK ECO MED GOV

NEWS TOUR WEB

4(0.00022) 2857 (0.15) 347 (0.018)

1828 (0.095)

3696 (0.19) 7 (0.00039) 10473 (0.54)

Table 2: Corpora statistics for En—De: number of parallel lines (x 10) and proportion in the basic domain mixture.
wEB is the largest domain, containing about 54% of the sentences, while BaNk and ToURr are very small.

e a fine-tuned model (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016), based
on the Mixed system, further trained on each
domain with early stopping when the develop-
ment BLEU score stops increasing during 3
consecutive epochs.

For all En—Fr models, we set the embeddings
size and the hidden layers size to 512. Transform-
ers use multi-head attention with 8 heads in each of
the 6 layers; the inner feedforward layer contains
2,048 cells. Residual adapters additionally use an
adaptation block in each layer, composed of a 2-
layer perceptron, with an inner ReL.U activation
function operating on normalized entries of dimen-
sion b = 1024. Bapna and Firat (2019) showed
that the performance of adapted models increases
with respect to the size of the inner dimension and
obtained performance close to the full fine-tuned
model with b = 1024, which is twice as large as
the dimension of a Transformer layer. We used the
same setting in our experiments.

Training uses a batch size of 12,288 tokens; op-
timization uses Adam with parameters 5; = 0.9,
B2 = 0.98 and Noam decay (warmup_steps =
4,000), and a dropout rate of 0.1 for all layers. For
the Mixed model, we use an initial learning rate of
1.0 and take the concatenation of the validation sets
of 6 domains for development. In the fine-tuning
experiments, we continue training using Mixed as
starting point, using the same learning rate sched-
ule, and continuing the incrementation of the num-
ber of steps. In the multi-task training, we use the
same learning rate schedule as for Mixed: for each
iteration, we sample a domain a probability propor-
tional to its size; we then sample a batch of 12,288
tokens that is used to update the shared parameters
and the parameters of the corresponding adapter.

Models for En—De are larger and rely on em-
beddings as well as hidden layers of size 1024; each
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Transformers layer contains 16 attention heads;
the inner feedforward layer contains 4,096 cells.
Adapter modules have the same architecture as for
the other language pair, except for their size, which
is doubled (b = 2, 048).

3.3 Multi-domain systems

In this section, we evaluate several proposals from
the literature on multi-domain adaptation and com-
pare them to full fine-tuning on the one hand, and
to two variants of the residual adapter architecture
on the other hand. The reference methods included
in our experiments are the following:

e asystem using “domain control” (Kobus et al.,
2017). In this approach, domain information
is introduced either as an additional token
for each source sentence (DC—Tag) or in the
form of a supplementary feature for each word
(DC-Feat);

e a system using lexicalized domain representa-
tions (Pham et al., 2019): word embeddings
are composed of a generic and a domain-
specific part (LDR);

o the three proposals of Britz et al. (2017). TTM
is a feature-based approach where the domain
tag is introduced as an extra word on the tar-
get side. The training uses reference tags and
inference is performed with predicted tags,
just like for regular target words. DM is a
multi-task learner where a domain classifier
is trained on top of the MT encoder, so as to
make it aware of domain differences; ADM is
the adversarial version of DM, pushing the en-
coder towards learning domain-independent
source representations. These methods only
use domain labels in training.



Model / Domain MED LAW | BANK | TALK IT REL | AVG
Mixed 37.3 54.6 50.1 335 | 43.2 775 | 494
FT-Full 37.7 59.2 54.5 34.0 | 46.8 90.8 | 53.8
DC-Tag 38.1 55.3 49.9 332 | 435 80.5 | 50.1
DC-Feat 37.7 54.9 49.5 329 | 43.6 79.9 | 49.9
LDR 37.0 54.7 49.9 339 | 43.6 79.9 | 49.8
TTM 37.3 54.9 49.5 32.9 | 43.6 799 | 49.7
DM 35.6 49.5 45.6 29.9 | 37.1 624 | 434
ADM 36.4 53.5 48.3 32.0 | 41.5 73.4 | 47.5
Res-Adap 37.3 57.9 53.9 33.8 | 46.7 90.2 | 53.3
Res—-Adap-MT 37.9 56.0 51.2 335 | 444 88.3 | 51.9
Res-Adap-MT™" 37.5 57.1 52.4 33.7 | 46.2 89.5 | 52.7

Res-Adap-MT (gen) 37.7 51.0 34.0 304 | 34.2 152 | 364

Table 3: Translation performance of various multi-domain MT systems (En—Fr) compared to variants of the

residual adapter models.

The two variants of the residual adapter model
included in this first round of experiment have been
presented in Section 2.1: Res—Adap is the multi-
domain version of the approach of Bapna and Fi-
rat (2019) based on a two-step training procedure;
while Res—Adap-MT is the “multi-task” version,
where the parameters of the generic model and of
the adapters are jointly learned from scratch. We
also report results for the same system, using the
the parameters of the Mixed model as initializa-
tion (Res—Adap-MT').!!

Because of the limit of our computational re-
sources, we restrict the experiments in this section
to the En—Fr task. Results are in Table 3.

These results first show that full fine-tuning out-
performs all other methods for the in-domain test
sets. However, Res—Adap is able to reduce the
gap with this approach for several domains, show-
ing the effectiveness of residual adapters. The
“multi-task”™ variant is slightly less effective in our
experiments than the basic version, where optimiza-
tion is performed in two steps. As it turns out, using
residual adapters proves here better on average than
the other reference multi-domain systems; it is also
much better than the generic system for translat-
ing data from known domains, outperforming the
Mixed system by more than 4 BLEU points in av-
erage. Gains are especially large for small domains
such as .aw and REL.

Comparing training schemes (Res—Adap vs
Res-Adap-MT vs Res-Adap-MT") suggests
that the simultaneous learning of all parameters

"'This system also includes a layer dropout policy that
cancels adapter layers with probability 0.5

is detrimental to performance in our settings: we
see that the 2-step procedure implemented in
Res—Adap always yields the best scores, even
when Res—Adap-MT is initialized with good pa-
rameter values . This may be because in this setting,
the adapters have access to a stable version of the
generic system. The last line (Res-Adap-MT (gen))
gives the results for a Res—Adap—MT trained sys-
tem in which we cancel the adapter in inference -
comparing this to Mixed shows how differently
the generic parts of these two systems behave.

3.4 Varying the positions and number of
residual adapters

Tables 4-5 report BLEU scores for 6 domains in
each language pair: MED,LAW,BANK,TALK,IT and
rReL for En—Fr; cov, Eco, TOUR, BANK, MED
and NEws for En—De. We first see that for the
latter direction, the basic version Res—Adap also
outperforms the mixed baseline on average, with
large gains for the small domains ToUR, BANK and
comparable results for the other domains.

By varying the number and position of residual
adapters (see Section 2.1), we then contrast several
implementations. Because the set of possible con-
figurations is large, we only perform experiments
for layers ¢ = 2,4, 6 (both for the encoder and de-
coder). Two settings are considered: keeping just
one adapter or keeping the three. The trend is the
same for the two language directions: suppressing
adapters always hurts the overall performance, al-
beit by a small margin: having six adapters is better
than three, which is better than keeping only one.
With only one adapter active, we observe small,
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insignificant changes in performance when varying
the adapter’s depth.

3.5 Regularizing fine-tuning

The translation from English into German includes
two domains (ToUR and BaANK) that are extremely
small and account only for a very small fraction
of the training data (respectively for 0.039% and
0.022% of the total number of sentences). Fine-
tuning on these domains can lead to serious over-
fitting. We assess two well-known regularization
techniques for adapter modules, that could help
mitigate this problem: weight decay and layer reg-
ularization.

For each method, the optimal hyper-parameter
A (weight decay or layer regularization coefficient,
see Section 2.1.2) are chosen by grid search in a
small set of values ({1073,107%,1075}).

Results in Tables 4 and 5 show that regularizing
the adapter model can positively impact the test
performance for the smallest domains (this is es-
pecially clear for weight-decay (Res—Adap-WD)
in En—De), at the cost however of a small drop
in performance for the other domains. Using layer
regularization proves here to be comparatively less
effective. Finding better ways to set the regulariza-
tion parameters, for instance by varying A for each
domain based on the available supervision data, is
left for future work.

3.6 Highway and Gated Residual Adaptaters

We now turn to the evaluation of our new ar-
chitectural variants: Highway residual adapters
Res—Adap—-HW on the one hand, and Gated resid-
ual adapters Res—Adap—Gated on the other
hand. We use the same domains and settings as
before, focusing here exclusively on the language
direction En—Fr.

To also evaluate the robustness with respect
to out-of-domain examples, we perform two ad-
ditional experiments. We first generate transla-
tions with erroneous (more precisely: randomly
assigned) domain information: the corresponding
results appear in Table 6 under column rRxD. We
also compute translation for a domain unseen in
training (NEws) as follows. For each sentence of
this test set, we automatically evaluate the closest
domain,'? then use the predicted domain label to
compute the translation. This is an error-prone pro-

2As measured by the perplexity of a language model
trained with only in-domain data..
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cess, which also challenges the robustness of our
multi-domain systems. Results are in Table 6.

A first observation is that for domains seen
in training, our variants Res—Adap-HW and
Res—-Adap—-Gated achieve BLEU scores that
are on a par to those of the original version
(Res—Adap), with insignificant variations across
test sets.

The two other settings are instructive in several
ways: they first clearly illustrate the brittleness of
domain-adapted systems, for which large drops in
performance (more than 15 BLEU points on av-
erage) are observed when the domain label is ran-
domly chosen. Our gated variant however proves
much more robust than the other adaptation strategy
and performs almost on par to the generic system
for that test condition. The same trend holds for the
unseen NEwWS domain, with Res—Adap—-Gated
being the best domain adapted system in our set,
outperforming the other variants by about 2 BLEU
points.

4 Related Work

Training with data from multiple, heterogeneous
sources is a common scenario in natural language
processing (Dredze and Crammer, 2008; Finkel
and Manning, 2009). It is thus no wonder that the
design of multi-domain systems has been proposed
for many tasks. In this short survey, we exclu-
sively focus on machine translation; it is likely that
similar methods (parameter sharing, instance selec-
tion/weighting, adversarial training, etc) have also
been proposed for other tasks.

Early approaches to multi-domain MT were pro-
posed for statistical MT, either considering multi-
ple data sources (eg. Banerjee et al. (2010); Clark
et al. (2012); Sennrich et al. (2013); Huck et al.
(2015)) or domains containing several topics (Ei-
delman et al., 2012; Hasler et al., 2014). Two main
strategies emerge: feature-based methods, where
domain labels are integrated through supplemen-
tary features; and instance-based methods, involv-
ing a measure of similarity between train and test
domains.

The former approach has also been adapted to
NMT: Kobus et al. (2017); Tars and Fishel (2018)
use an additional domain feature in an RNN model,
in the form of an extra domain-token or of addi-
tional domain-features associated with each word.
Chen et al. (2016) apply domain control on the
target side, using a topic vector to describe the



Model / Domain MED LAW | BANK | TALK IT REL | AVG | PARAMS

Mixed 37.3 54.6 50.1 335 | 43.2 775 | 494 65M/0
Res—-Adap 37.3 57.9 53.9 33.8 | 46.7 90.2 | 53.3 | 65M/12M
Res-Adap( 4,) 37.7 57 53 333 45 90 | 52.7 | 65M/6M
Res-Adapg) 37.7 55.8 51.5 33.9 | 43.6 89.2 | 519 | 65M/2M
Res-Adap y) 37.9 55.6 51.7 337 | 444 88.7 52 | 65M/2M
Res-Adapy) 37.8 55.5 514 34 | 43.8 86.7 | 51.5 | 65M/2M
Res—-Adap-WD 37.2 56.0 52.9 334 | 46.0 90.6 | 52.7 | 65M/12M
Res-Adap-LR 37.4 56.1 51.8 333 | 45.0 89.7 | 52.2 | 65M/12M

Table 4: Translation performance of various fine-tuned systems (En—Fr). We report BLEU scores for each domain,
as well as averages across domains. Column parRaMs reports the number of domain-agnostic/domain-specific
parameters.

Model / Domain GOV ECO | TOUR | BANK MED | NEWS | AVG PARAMS

Mixed 29.3 30.5 17.6 38.1 47.9 209 | 30.6 | 213M/OM
Res—-Adap 29.6 304 19.2 49.0 47.2 20.6 | 33.1 | 213M/48M
Res-Adap( 46) 29.7 30.5 18.8 49.6 47.1 20.6 | 32.7 | 213M/24M
Res-Adapg) 29.5 304 18.1 49.1 46.9 204 | 324 | 213M/8M
Res-Adapy) 29.7 304 18.1 49.6 47.0 20.6 | 32.6 | 213M/8M
Res-Adap(y) 29.6 304 18.3 494 46.7 20.6 | 32.5 | 213M/8M
Res—-Adap-WD 29.7 30.8 20.4 50.2 47.7 20.6 | 33.2 | 213M/48M
Res-Adap-LR 29.6 30.4 19.2 49.0 47.2 20.6 | 33.1 | 213M/48M

Table 5: Translation performance of various fine-tuned systems (En—De). We report BLEU scores for each
domain, as well as averages across domains. Column pArRAMS reports the number of domain-agnostic/domain-
specific parameters.

Model / Domain MED LAW | BANK | TALK IT REL | AVG || RND | NEWS
Mixed 37.3 54.6 50.1 335 | 43.2 7151494 || 494 23.5
FT-Full 37.7 59.2 54.5 34.0 | 46.8 90.8 | 53.8 || 32.5 20.2
Res-Adap 37.3 57.9 53.9 33.8 | 46.7 90.2 | 53.3 || 384 20.5
Res-Adap-HW 37.5 57.2 534 33.1 | 46.3 91.0 | 53.1 || 36.6 20.2

Res—-Adap—-HW-MT 374 | 564 | 521 33.7 | 44.8 89.8 | 524 | 27.1 20.4
Res-Adap-HW-MT " 3771 57.0| 525 33.5 | 46.1 89.0 | 52.6 || 46.5 21.4
Res-Adap-Gate 380 | 575 53.0| 335|460 | 90.1 |530] 490 | 225

Table 6: Translation performance of highway and gated variants for En—Fr. nEws is excluded from the training
data and considered as an out-of-domain test.
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whole document context. Similar ideas are de-
veloped in Chu and Dabre (2018); Pham et al.
(2019), where domain differences and similarities
are enforced through parameter sharing schemes.
Parameter-sharing also lies at the core of the work
by Jiang et al. (2019), who consider a Trans-
former model containing both domain-specific and
domain-agnostic heads.

Britz et al. (2017) study three general tech-
niques to take domain information into account
in training: they rely on either domain classifi-
cation or domain normalization on the source or
target side. A contribution of this study is an ad-
versarial training scheme to normalize representa-
tions across domains and make the combination
of multiple data sources more effective. Similar
techniques (parameter sharing, automatic domain
classification/normalization) are at play in Zeng
et al. (2018): in this work, the lower layers of the
MT use auxiliary classification tasks to disentangle
domain-specific from domain-agnostic represen-
tations. These representations are first processed
separately, then merged to compute the final trans-
lation.

Farajian et al. (2017); Li et al. (2018) are two re-
cent representatives of the instance-based approach:
for each test sentence, a small adaptation corpus
is collected based on similarity measures and used
to fine-tune a mix-domain model. As shown in
the former work, also adapting the training regime
on a per sentence basis is crucial to make these
techniques really effective.

Finally, note that a distinct evolution of the resid-
ual adapter model of Bapna and Firat (2019) is pre-
sented in Sharaf et al. (2020), where meta-learning
techniques are used to make fine-tuning more ef-
fective in a standard domain-adaptation setting.

5 Conclusion and outlook

In this paper, we have performed an experimental
study of the residual adapter architecture in the con-
text of multi-domain adaptation, where the goal is
to build one single system that (a) performs well
for domain seen in training, ideally as well as full
fine-tuning; (b) is also able to robustly handle trans-
lations for new, unseen domains. We have shown
that this architecture allowed us to quickly adapt
a model to a specific domain, delivering BLEU
performance than are much better than the generic,
mixed domain baseline, and close the gap with
the full-finetuning approach, at a modest computa-
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tional cost. Several new variants have been intro-
duced and evaluated for two language directions:
if none that able to clearly surpass the baseline,
residual adapter models, they provide directions
for improving this model in practical settings: un-
balanced data condition, noise in label domains, etc.
In our future work, we would like to continue the
development of the gated variant, which, it seems
to us, provides a flexible and robust tool to address
the various challenges of multi-domain machine
translation.
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