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Abstract

This paper describes DiDi AI Labs’ submis-
sion to the WMT2020 news translation shared
task. We participate in the translation direc-
tion of Chinese→English. In this direction,
we use the Transformer as our baseline model,
and integrate several techniques for model en-
hancement, including data filtering, data selec-
tion, back-translation, fine-tuning, model en-
sembling, and re-ranking. As a result, our
submission achieves a BLEU score of 36.6 in
Chinese→English.

1 Introduction

We participate in the WMT2020 news translation
shared tasks in Chinese→ English direction. For
this translation direction, we train several variants
of Transformer (Vaswani et al., 2017) models on
the provided parallel data enlarged with synthetic
data from monolingual data. We experiment with
several techniques proposed in the past translation
tasks and adopt effective ones as components of
our system.

Our data preparation pipeline consists of data fil-
tering, data augmentation, and data selection. For
data filtering, we filter sentence pairs based on lan-
guage model scoring, alignment model scoring, etc.
For data augmentation, we experiment with itera-
tive back-translation (Sennrich et al., 2016; Edunov
et al., 2018) methods and iterative knowledge distil-
lation (Freitag et al., 2017) methods. We leverage
source-side monolingual data by applying iterative
knowledge distillation, and target-side monolingual
data by back-translation methods, including greedy
search, beam search, and noised beam search. For
data selection, we select an in-domain corpus with
N-grams language models and binary classifiers. A
tri-gram token-level language model and a bi-gram
character-level language model are introduced for
English and Chinese respectively. Out-of-domain

sentences which have similar scores as in-domain
sentences are chosen. We also treat data selection
as a text classification problem, and use BERT (De-
vlin et al., 2019) as the basic classifier. In this way,
we collect a corpus of high-quality in-domain train-
ing data, which improves translation performance
significantly.

To enhance a single model, we use several
variants of Transformer, including Transformer
with relative position attention (Shaw et al., 2018),
Transformer with larger feedforward inner (FFN)
size (8, 192 or 15, 000), and Transformer with re-
versed source. We then ensemble these models
with adequate model diversity and data diversity to
further improve the performance.

Domain conflicts influence the translation per-
formance significantly. For example, there exist
differences between written English and spoken
English. Usually, a model cannot do the best in
all domains due to the conflicts. In this work, we
propose to obtain domain information with unsu-
pervised clustering and exploit this information for
translation. Specifically, we partition the training
data, dev data, and test data into different clusters,
and translate each cluster part of the test set with the
model fine-tuned on the corresponding training set.
Exploiting domain information helps improve the
translation significantly. Details will be discussed
in Section 3.

This paper is structured as follows: Section 2
describes variants of Transformer we used in the
competition. In Section 3, we introduce several
techniques for model enhancement, including data
filtering, back-translation, fine-tuning, model en-
sembling. Section 4 presents experimental settings,
results and analysis. Finally, in Section 5 we draw
a brief conclusion of our work in the WMT2020.



106

2 Model

2.1 Transformer
The Transformer adopts a sequence-to-sequence
structure, using stacked encoder and decoder layers
of self-attention. Encoder layers consist of a self-
attention layer followed by a feed-forward layer.
Decoder layers consist of a masked self-attention
layer, an encoder-decoder attention layer, and a
feed-forward layer to incorporate source informa-
tion and generate texts. The residual connections
(He et al., 2016) and layer normalization (Ba et al.,
2016) are introduced in the encoder and decoder
layers for better convergence. In contrast to recur-
rent neural networks, the Transformer implicitly
leverages relative and absolute position informa-
tion in its structure. The Transformer introduces
position encoding based on sinusoids in its inputs
to incorporate position information.

In the competition we use Transformer Big as
the baseline model, in which both the encoder and
decoder have 6 layers, the number of heads is 16,
the hidden size is 1, 024, and the feedforward inner
(FFN) size is 4, 096.

2.2 Transformer with Relative Position
Attention

The original Transformer leverages position infor-
mation by taking absolute positional embeddings
as inputs and does not explicitly capture the infor-
mation in its structure. Thus the original Trans-
former cannot leverage position information effi-
ciently. Here we used relative positional embed-
dings in the self-attention mechanism proposed in
Shaw et al. (2018) for the encoder layers and de-
coder layers. We do an ablation study and find
that the model with relative positional embedding
has faster convergence and better performance than
Transformer Big. We adopt Transformer with rela-
tive position attention as a basic architecture in the
final ensemble model.

2.3 Transformer with Larger FFN Size
Since increasing the model size can help improve
the performance on the NMT tasks, we experi-
ment with Transformer with a larger embedding
dimension, FFN size, number of heads, and num-
ber of layers. We find that using a larger FFN size
(8, 192 or 15, 000) gives a reasonable improvement
in the performance while maintaining a manage-
able network size. We adopt a Transformer with
FFN size of 8, 192 and a Transformer with FFN

size of 15, 000 as basic models in the final ensem-
ble model, which has a larger inner dimension of
feed-forward network than Transformer Big. Since
Transformer with a larger FFN size is more likely
to overfit, we set the dropout rate from 0.1 to 0.3
and use a label smoothing rate of 0.2.

2.4 Transformer with Reversed Source

We reverse the source sentences of the bilingual cor-
pus and train a Transformer with source reversed.
In this way, the model can learns a different mean-
ing of the positional embeddings, which helps cap-
ture the source sentences from a different perspec-
tive. Viewing source in a reversed order provides
another kind of model diversity and data diversity
and presents positive effects in the final model en-
semble.

3 System Overiew

3.1 Data Filtering

Previous works (Sun et al., 2019; Xia et al., 2019;
Guo et al., 2019) show that the translation perfor-
mance improves as the quality of parallel corpus
improves. We filter the training bilingual corpus
with the following schemes:

• Normalize punctuation with Moses scripts

• Filter out the sentences longer than 120 words
or sentences including a single word more
than 40 characters.

• Filter out the sentences which contain HTML
tags or duplicated translations.

• Filter out the sentences whose languages de-
tected by fastText1 (Joulin et al., 2017) are not
identical to the translation direction.

• Filter out the sentences whose alignment
scores obtained by fast-align2 (Dyer et al.,
2013) are low.

• Filter out the sentences whose n-gram scores
from language models are low.

• Filter out the sentences whose length ratio
between the source and target are not in range
of 1 : 3 and 3 : 1

1https://github.com/facebookresearch/fastText
2https://github.com/clab/fast align
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In this paper, we also filter out noisy sentence
pairs with the translation acceptability filter pro-
posed in (Zhang et al., 2020). Specifically, we
feed the sentence pair (s, t) into multilingual BERT,
which accepts two-sentence input due to its next-
sentence prediction objective. Instead of using the
[CLS] token representation, we use a Convolutional
Neural Network (CNN) layer that takes the BERT
output and generates the final representation of the
pair. Our experiments show that using CNN layer
pooling achieves marginal gains over [CLS] pool-
ing. We use the softmax probability as the degree
of parallelism and filter the sentences. The trans-
lation quality of the model boosts with the data
filtering strategies.

3.2 Large-scale Back-Translation

The provided monolingual data contains a certain
amount of noise, in which noise may affect the
translation quality implicitly. Therefore, we adopt
the data filtering schemes described in Section 3.1.

Previous work (Edunov et al., 2018) shows that
leveraging the back-translation mechanism on the
large-scale monolingual corpus can help improve
the translation quality. Edunov et al. (2018) in-
vestigates several methods to generate synthetic
source sentences, including greedy search, beam
search, sampling top-K outputs, adding noise to
beam search output, and adding noise to input sen-
tences.

• Both greedy search and beam search are ap-
proximate algorithms to identify the maxi-
mum a-posteriori (MAP) output, i.e. the sen-
tence candidate with the largest estimated
probability given an input. This leads to less
rich translations and is particularly problem-
atic for text generation tasks such as back-
translation.

• Sampling top-K method selects the k most
likely tokens from the output distribution, re-
normalizes, and samples from this restricted
set. This method is a trade-off between MAP
and unrestricted sampling.

• Adding noise to input sentences or beam
search outputs can help improve the quality
and robustness of the translation.

We experiment with the above methods and ob-
serve that language pairs with abundant parallel

corpus like Chinese→ English obtain obvious im-
provement with beam search and adding noise. In
our back-translation scheme, we add noise to in-
put sentences, and use a beam search to produce
the synthetic sentences. In particular, we delete
words, replace words by a filler token and swap
words according to a random permutation with the
probability of 0.05.

Zhang et al. (2018) proposed an iterative joint
training of the source-to-target model and target-to-
source model for the better quality of synthetic data.
Specifically, in each iteration, the target-to-source
model is responsible for generating synthetic par-
allel training data for the source-to-target model
using the target-side monolingual data. At the same
time, the source-to-target model is employed for
generating synthetic bilingual training data for the
target-to-source model using the source-side mono-
lingual data. The performance of both the target-to-
source and source-to-target model can be further
improved iteratively. We stop the iteration when
we can not achieve further improvement.

Since there are amounts of genres in both paral-
lel and synthetic data, we adopt a language model
to divide data into a coarse domain-specific corpus.
We train multiple language models on different
types of monolingual data (News crawl, Gigaword,
etc.), and score the sentences with the language
models. We select the top 600K sentences for each
domain. In the final submission, we adopt an itera-
tive joint training scheme and train models on both
bilingual and synthetic data of different genres to
improve translation quality.

3.3 Knowledge Distillation

Alternate knowledge distillation (Hinton et al.,
2015; Freitag et al., 2017) and ensemble iteratively
is adopted in the competition to further boost the
performance of a single model. We simply use an
ensemble model as the teacher model and boost
the single student model by data augmentation. In
our experiments, we use Transformer Big, Trans-
former with relative position, Transformer with
larger FFN size, and Transformer with reversed
source as basic models. For each model type, we
ensemble other model types as the teacher model
to boost the model performance. For example, the
ensemble model of a Transformer with relative po-
sition, a Transformer with larger FFN size, and a
Transformer with reversed source are adopted as
a teacher model to improve the performance of a
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Transformer Big.
Considering that distillation from a poor-quality

teacher model is likely to hurt the student network
and thus results in an inferior performance, we
selectively use distillation in the training process.
In our experiments, we filter out data according
to the sentence-level BLEU scores whose English
translations lower than 28.

3.4 In-domain Data Selection and
Fine-tuning

Domain adaptation plays an important role in im-
proving the performance towards given test data.
A practical method for domain adaptation is train-
ing on the large-scale data and then fine-tuning on
the in-domain data (Luong and Manning, 2015).
We select the small in-domain corpus with several
approaches, including N-grams language model
similarity and binary classification.

N-grams: We adopt the algorithm proposed in
Duh et al. (2013); Axelrod et al. (2011), which se-
lects sentence pairs from the large out-of-domain
corpus that are similar to the in-domain data. In
our work, we train a tri-grams token-level language
model for English and a bi-grams character-level
language model for Chinese. We use the parallel
texts as the out-of-domain corpus and all available
test sets in the past WMT tasks and News Com-
mentary as the in-domain corpus. We score the
sentence pairs with bilingual cross-entropy differ-
ences as follows:

CE(HI−SRC , HO−SRC)+CE(HI−TGT , HO−TGT ) (1)

where we denote out-of-domain corpus as O, in-
domain corpus as I . HI−SRC denotes language
models over the source side and HI−TGT denotes
language models over the target side on in-domain
data. HO−SRC denotes language models over the
source side andHO−TGT denotes language models
over the target side on out-of-domain data. CE
denotes the cross-entropy function which evaluates
the differences between distributions.

Finally, we sort all sentence pairs and select the
top 600K sentences with the lowest scores to fine-
tuning the parameter of the model.

Binary Classification: We also treat in-domain
data selection as a text categorization problem.
There are two categories: in-domain (1) and out-
of-domain (0). We use the pre-trained language
model BERT as the basic classifier. For the fine-
tuning data, all available newstest data and News

Commentary are regarded as positive data, and ran-
domly sampled data from the large-scale corpus are
regarded as negative data. Then BERT is exploited
to score the sentence pairs. We sort all sentence
pairs and select the top 600K sentences with the
highest scores as fine-tuning data.

All the in-domain data obtained by the above
methods are adopted to fine-tuning the single model
and provide about a 2 BLEU scores improvement.

3.5 Model Ensemble

Ensemble learning is a widely used technique in
the real-world tasks, which provides performance
improvement by taking advantages of multiple sin-
gle models. In neural machine translation, a prac-
tical way of the model ensemble is to combine
the full probability distribution over the target vo-
cabulary of different models at each step during
sequence prediction. We experiment with the max,
avg, and log-avg strategies, and find the log-avg
strategy achieves the best performance. We im-
plement a model ensemble module in OpenNMT3

(Klein et al., 2017). In our experiments, we observe
that simply enlarging the size of ensemble models
does not necessarily improve translation perfor-
mance. However, brute-force search of all models
is prohibitively expensive and unrealistic. As the
number of models increases, the decoding of the
ensemble will take more time than a single model
and exceed the limits of computer resource capac-
ity. Therefore, we adopt a greedy model ensemble
algorithm (Li et al., 2019) as shown in Algorithm
1.

Since model and data diversity are important
factors for an ensemble system, we train diverse
models with different initialization seeds, different
parameters, different architectures, and different
training data sets. All the models are fine-tuned to
achieve superior performance.

3.6 Domain Style Translation

Translation performance differs in different topic
domains. For intuitive explanation, we take native
style and translation style as an example, and our
topic domains are generated by using unsupervised
clustering, not limited to these two styles. Native
style and translation style are much different. A
single model cannot do the best in both styles. For
the Chinese → English task in WMT 2017 and
2018, the source side of both dev set and test set

3https://github.com/OpenNMT/OpenNMT-tf
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Algorithm 1: An simple ensemble algo-
rithm based on greedy search
Input: a model list Ωcand sorted by the

scores on development data.
Output: a final model list Φfinal

1 for all combination of 2 models that model
∈ top-8 models do

2 obtain translation by ensemble decoding
and evaluate with BLEU score;

3 end
4 Choose the best 2 model combination as the

initial Φfinal;
5 while there is tiny improvement as the

model number increases do
6 choose one single model from the rest of

Ωcand to the Φfinal which performs
better when combined with Φfinal;

7 end

are composed of two parts: documents created orig-
inally in Chinese (translation style) and documents
created originally in English (native style). For the
Chinese→English task, if the Chinese sentences
are created from native Chinese corpus, then the
corresponding English sentences are in translation
style, so the model fine-tuned on these parallel sen-
tences helps with translation style. Similarly, if the
English sentences are created from native English
corpus, the model fine-tuned on these sentences
helps with native style. Previous work (Sun et al.,
2019) shows exploiting translation style and native
style achieves much better performance. In our
work, we classify sentences into different topic cat-
egories (not limited to translation style and native
style), and translate each specific part of the test
set with the model fine-tuned on the corresponding
training set.

Domain Label: We use pre-trained BERT mod-
els to extract [CLS] vector as the sentence embed-
ding and obtain two clusters by K-Means clustering.
We use the cluster id as the domain label.

Domain Classification: Pre-trained BERT mod-
els are fine-tuned as a text classification task, based
on the source and target side with the domain label
we defined above. In this way, we can select several
fine-tuning data w.r.t. different topic domains.

Decoding Stage: Since the test data is composed
of a mixed-genre data, we first classify the domain

of each sentence in the test set and obtain the proba-
bilities corresponding to each domain. Then we ap-
ply a weighted ensemble method to integrate NMT
models. Specifically, when computing the output
probability of the next word, we multiply the out-
put probability in each domain-specific translation
model with the corresponding domain probability
of each sentence.

3.7 Re-ranking
We obtain n-best hypotheses with an ensemble
model and then train a re-ranker using k-best MIRA
(Cherry and Foster, 2012) on the validation set. K-
best MIRA works with a batch tuning to learn a
re-ranker for the n-best hypotheses. The features
we use for re-ranking are:

• Length Features: length ratio and length dif-
ference between the source sentences and hy-
potheses

• NMT Features: scores from the ensemble
model

• Language Model Features: scores from multi-
ple n-gram language models

4 Experiments and Results

4.1 Experiment Setup
Our implementation of the Transformer models is
based on the version 2.3.0 of OpenNMT-tf. We use
Transformer Big as a basic model. Transformer Big
has 6 layers in both encoder and decoder respec-
tively, where each layer consists of a multi-head at-
tention sublayer with 16 heads and a feed-forward
sublayer with inner dimension 4096. The word
embedding dimensions and the hidden state dimen-
sions are set to 1024 for both encoder and decoder.
In the training phase, the dropout rate Pdropout is
set to 0.1. Variants of Transformer described in
Section 2 are adopted in the competition.

In the training phase, we use cross entropy as the
loss function and apply label smoothing of 0.1. We
use Adam (Kingma and Ba, 2014) as our optimizer,
with parameters settings β1 = 0.9, β2 = 0.98
and ε = 10−8. The initial learning rate is set to
10−4 for training and 10−5 for fine-tuning. The
models are trained on 4 GPUs for about 500, 000
steps. Each model learns from data randomly sam-
pled from the whole corpus, including bilingual
data, synthetic data from back-translation, and syn-
thetic data from knowledge distillation. Models
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Transformer Big Transformer with
relative position attention

Transformer with
larger FFN size

Transformer with
reversed source

baseline 26.01 26.23 26.12 26.08
+ data augmentation 27.02 27.03 27.13 26.69
+ In-domain data finetuning 29.33 29.49 29.62 29.18
+ model ensemble 29.72
+ domain style weighted 31.77
+ reranking* 31.86

Table 1: BLEU evaluation results on the WMT 2018 Chinese→ English test set (* denotes the submitted system)

newstest19
baseline 26.19
+ data augmentation 27.45
+ In-domain data finetuning 37.23
+ model ensemble 37.64
+ domain style weighted 38.59
+ reranking 38.99

Table 2: BLEU evaluation results on the WMT 2019
Chinese→ English test set

newstest18 newstest19
NEU (Li et al., 2019) 30.9 34.2
MSRA (Xia et al., 2019) 30.9 39.3
Baidu (Sun et al., 2019) 31.83 38
ours 31.86 38.99

Table 3: Comparison with related work on the WMT
2018 and 2019 Chinese→ English test set

used in iterative back-translation and knowledge
distillation are trained for 200, 000 steps. We vali-
date the model every 1, 000 steps on the develop-
ment data and save the checkpoints with the best
BLEU scores. After training, we average the last 10
checkpoints for every single model of the general
domain.

In the fine-tuning phase, we use the averaged
model obtained in the training phase as pre-train
weights for domain models, and train with in-
domain data selected as in Section 3.4 for 10, 000
steps without early stop. After fine-tuning, we aver-
age the last 10 checkpoints for every single model
of the specific domain.

For evaluation, we adopt the cased BLEU scores
calculated with SacreBLEU (Post, 2018).

4.2 Pre-processing and Post-processing
In pre-processing, we conduct data filtering, to-
kenization, subword encoding. For Chinese sen-
tences, we use the DiDi tokenizer for tokenization.
For English data, we do punctuation normalization
and use Spacy4 tokenizer for tokenization. We filter
parallel sentences as described in Section 3.1. Fi-
nally, we collect a preprocessed bilingual training

4https://github.com/explosion/spaCy

data consisting of 10M parallel sentences and 20M
synthetic sentences. We adopt subword encoding
for Chinese → English. Specifically, we learn a
BPE with 40K merge operations, in which 37.8K
and 27.8K subword tokens are adopted as Chinese
and English vocabularies separately.

In the post-processing phase, we conduct un-
known (UNK) words replacement, de-tokenization,
punctuation, and numerals normalization. UNK
words are simply removed in the sentences. We use
the Moses scripts to true-case and de-tokenize the
English translations.

4.3 Chinese→ English

We adopt methods in Section 3 for Chinese →
English task. Firstly we adopt techniques of itera-
tive back-translation and knowledge distillation for
generating synthetic parallel data based on mono-
lingual data. We combine the synthetic data and
bilingual data as the training data and randomly
split training data into 6 portions and do experi-
ments to obtain 3 most effective portions. We train
several models with different initialization seeds,
different training datasets, and different architec-
tures with the sampled synthetic data and bilingual
data. In this way, we obtain models with diversity.
After that, we fine-tune the model with different
in-domain data. Next, we do the model ensem-
ble by exploiting the translation domain style and
choose the best model on development data as the
final submission. Here we use WMT 2018 test
set and WMT 2019 test set as our development
data. Finally, we adopt several re-ranking and post-
processing methods to obtain the final submission.

Table 1 shows the results on WMT 2018 test
data of Chinese→ English. As shown in the table,
data augmentation with iterative back-translation
and knowledge distillation consistently improve the
BLEU score. Fine-tuning with selected in-domain
corpus plays an important role in our system, which
helps achieve improvement about more than a 2
BLEU score. We observe that ensemble with log-
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avg strategy achieves slight improvement, which
may be caused by the conflicts between different
topic domains. To alleviate domain conflicts, we
incorporate the domain style information, which
achieves 2.15 improvement over the best single
model. We also observe a relatively slight improve-
ment with re-ranking. The reason may be that we
use the training data to train both the re-ranker and
the NMT models, which produces similar scores
while dealing with the same sentences. Similar
conclusions can be drawn from Table 2.

Table 3 shows the BLEU comparisons with re-
lated works on the WMT 2018 and WMT 2019
test sets. From the table, we observe that our sys-
tem achieves the best performance on the WMT
2018 test set and the second best performance on
the WMT 2019 test set. This demonstrates the
effectiveness of the proposed system.

In our final submission, the model is an ensem-
ble of 6 models, including 2 Transformer, 1 Trans-
former with relative position attention, 2 Trans-
former with larger FFN size, and 1 Transformer
with reversed source. We do translation with
beam size=10 and length penalty=1.4. Finally, we
achieve a cased BLEU score of 36.6 in WMT 2020
Chinese→ English competition.

5 Conclusion

In this paper, we present our NMT systems for
WMT2020 news translation shared tasks in Chi-
nese→ English translation direction. Our final sys-
tem achieves substantial improvement over base-
line systems by integrating the following tech-
niques:

1. Data filtering

2. Data augmentation, including iterative back-
translation, knowledge distillation, etc.

3. Fine-tuning with in-domain data

4. Model ensemble and leverage domain topic
information

As a result, our submitted system achieves a 36.6
BLEU score in the Chinese→ English direction of
WMT 2020 news translation shared tasks.
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