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Abstract
Priming is a well known and studied psychol-
ogy phenomenon based on the prior presen-
tation of one stimulus (cue) to influence the
processing of a response. In this paper, we
propose a framework to mimic the process
of priming in the context of neural machine
translation (NMT). We evaluate the effect of
using similar translations as priming cues on
the NMT network. We propose a method
to inject priming cues into the NMT network
and compare our framework to other mecha-
nisms that perform micro-adaptation during in-
ference. Overall, experiments conducted in a
multi-domain setting confirm that adding prim-
ing cues in the NMT decoder can go a long
way towards improving the translation accu-
racy. Besides, we show the suitability of our
framework to gather valuable information for
an NMT network from monolingual resources.

1 Introduction

Priming is a well studied human cognitive phe-
nomenon, founded on the establishment of associa-
tions between a stimulus and a response (Tulving
et al., 1982). Multiple studies have shown how ex-
ternal stimuli (cues) may have a profound effect on
perception. In the case of language translation, ex-
ternal stimuli having such effects are said to prime
language understanding and potentially have a im-
pact the actions of a human translator. Imagine for
instance a translator facing the ambiguous sentence
I was in the bank, and the effect on translation ac-
curacy if primed with the cue river. Most likely,
the human translator would consider the “edge of
river” sense rather than “financial institution” for
translation. In the context of human translation,
cross-lingual priming is particularly effective as
cues in the target language may notably influence
the final translation word choice.

Several research works have introduced the prim-
ing analogy in deep neural networks. In computer

vision priming has been broadly studied: for in-
stance, in Rosenfeld et al. (2018), the authors intro-
duce a cue about the presence of a certain class of
object in an image that significantly improves ob-
ject detection performance. Concerning language
generation, Brown et al. (2020) use a combination
of prompt and example to guide the GPT-3 network
when performing a task, where the prompt is a sen-
tence that describes the task (i.e. “Translate from
English to French”); and is followed by an exam-
ple of the task (i.e. “sea otter ; loutre de mer”).
In the context of NMT, experiments reported (Sen-
nrich et al., 2016a; Kobus et al., 2017; Dinu et al.,
2019) aim at influencing translation inference with
respectively politeness, domain and terminology
constraints. More related to our work, (Bulte and
Tezcan, 2019; Xu et al., 2020) introduce a simple
and elegant framework where similar translations
(cues) are used to prime an NMT model, effectively
boosting translation accuracy. In all cases, priming
is performed by injecting cues in the input stream
prior to inference decoding.

In this paper, we extend a framework that mim-
ics the priming process in neural networks, in the
context of machine translation. Following up on
previous work (Bulte and Tezcan, 2019; Xu et al.,
2020), we consider similar translations as exter-
nal cues that can influence the translation process.
We push this concept further: a) by proposing a
novel scheme to integrate similar translation cues
into the NMT network. We examine the atten-
tion mechanism of the network and confirm that
priming stimuli are actually taken into account;
b) by extending an efficient network to train dis-
tributed representations of sentences that are used
to identify accurate translations used as priming
cues1; c) by analyzing how on-the-fly priming com-
pares to micro-adaptation (fine-tuning). Finally, we

1https://github.com/jmcrego/cbon

https://github.com/jmcrego/cbon
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show that our priming approach can also be used
with monolingual data, providing a scenario where
NMT can be effectively helped by large amounts
of available data. Our proposal does not require
to change the NMT architectures or algorithms, re-
lying solely on input preprocessing and on prefix
(forced) decoding (Santy et al., 2019; Knowles and
Koehn, 2016), a feature already implemented in
many NMT toolkits.

The remainder of the paper is organized as fol-
lows: Section 2 gives details regarding our prim-
ing approach. The experimental framework is pre-
sented in Section 3. Results and discussion are
respectively in Sections 4 and 5. We review related
work in Section 6 and conclude in Section 7.

2 NMT Priming On-the-fly

This section describes our framework for priming
neural MT with similar translations. We follow the
work by (Bulte and Tezcan, 2019; Xu et al., 2020)
and build a translation model that incorporates sim-
ilar translations from a translation memory (TM)
to boost translation accuracy. In this work, TMs
are parallel corpora containing translations falling
in the same domain as test sentences.

We first describe the methods employed in this
work to compute sentence similarity. We then in-
troduce various augmentation schemes considered
to prime the NMT network with retrieved similar
translations. Overall, we pay special attention to
efficiency, since retrieval is applied on a sentence-
by-sentence basis at inference.

2.1 Similarity Computation
We detail the sentence similarity tools evaluated in
this work. The first employs discrete word represen-
tations, while the rest rely on building distributed
representations of sentences to perform similar sen-
tence retrieval:

FM: fuzzy matching is a lexicalized matching
method aimed to identify non-exact matches of
a given sentence. Following Xu et al. (2020), we
use FuzzyMatch2, where the fuzzy match score
FM(si, sj) between two sentences si and sj is:

FM(si, sj) = 1− ED(si, sj)

max(|si|, |sj |)

with ED(si, sj) being the Edit Distance between
si and sj , and |s| is the length of s.

2https://github.com/systran/FuzzyMatch

S2V: we use sent2vec3 (Pagliardini et al.,
2018) to generate sentence embeddings. The net-
work implements a simple but efficient unsuper-
vised objective to train distributed representations
for sentences. The model is based on efficient
matrix factor (bilinear) models (Mikolov et al.,
2013a,b; Pennington et al., 2014).

Borrowing the notations of Pagliardini et al.
(2018), training the model is formalized as an opti-
mization problem:

min
U ,V

∑
s∈C

fs(UV ιs)

for two parameter matrices U ∈ R|V|×d and V ∈
Rd×|V|, where V denotes the vocabulary and d is
the embedding dimension. Minimization of the
cost function fs is performed on a training corpus
C of sentences s.

In sent2vec, ιs is a binary vector encoding
the bigrams in s (bag of bigrams encoding).

CBON: the Continuous Bag of n-grams (CBON)
model denotes our re-implementation of the pre-
vious sent2vec model. In addition to multiple
implementation details, the main difference is the
use of arbitrary large n-grams to model sentence
representations, where sent2vec only used bi-
grams.

Both sent2vec and CBON learn a source (or
context) embedding vw for each n-gram w in the
vocabulary V . Once the model is trained, the em-
bedding of sentence s (hs) is obtained as the aver-
age of its n-gram embeddings:

hs =
1

|R(s)|
∑

w∈R(s)

vw

where R(s) is the list of n-grams (including uni-
grams) occuring in sentence s and vw is the target
embedding of n-gram w.

The similarity score EM(si, sj) between two
sentences si and sj is then defined via the cosine
similarity of their sentence vector representations
hi and hj :

EM(si, sj) =
hi · hj

||hi|| × ||hj ||
,

where ||h|| denotes the norm of vector h.
Note that models differ in their vocabularies,

which are built selecting the most frequent n-grams.
3https://github.com/epfml/sent2vec

https://github.com/systran/FuzzyMatch
https://github.com/epfml/sent2vec
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Both models implement Negative Sampling to
avoid the softmax computation.

2.2 Priming Schemes
We now explore various ways to integrate similar
translations for priming NMT:

tgtk we follow here mostly the work of Bulte
and Tezcan (2019), where the input sentence in the
source language is augmented with the k transla-
tions (in the target language) having the highest
matching score (FM or EM) in the TM.

In training, sentence pairs (s,t) are preprocessed
as follows: the source sentence s is concatenated
with translations tk of the k most similar sentences
(sk) to s found in the TM. Augmented translations
are sorted by matching score, with k = 1 denoting
the most similar. Sentences in the source stream
are separated using the special token ◦.

src: tk ◦ ... ◦ t2 ◦ t1 ◦ s
tgt: t

In inference, only the source-side is input to the
translation network.

In Xu et al. (2020), an issue regarding unrelated
tokens present in similar translations tk is raised.
The model effectively learns to copy most of the
content present in similar translations, but has diffi-
culties to avoid also copying unrelated words. Con-
sider for instance the input sentence s = pertussis
vaccin with similar sentence s1 = measles vaccin
and its corresponding translation t1 = vaccin con-
tre la rougeole. Following the tgtk scheme, the
NMT input consists of:

vaccin contre la rougeole ◦ pertussis vaccin
yielding the output: vaccin contre la rougeole.
The word rougeole is actually the translation of an
unrelated word (measles). The model often copies
such unrelated tokens (Xu et al., 2020), due to the
fact that they are present in the input stream as
similar translations (tk) and are usually semanti-
cally related to the correct translation choice (here
coqueluche, the correct translation for pertussis).

tgtk+STU adopts the proposal of Xu et al.
(2020) to alleviate the unrelated word problem. It
relies on an additional source stream (factor) to la-
bel related/unrelated tokens. Following on our ex-
ample, in this scheme the input of the NMT model
contains two parallel streams:

src1: vaccin contre la rugeole ◦ pertussis vaccin
src2: T T T U T S S
tgt: vaccin contre la coqueluche

Tokens in the second stream are: S for source to-
kens, U for unrelated and T for related target tokens.
rougeole is thus tagged as an unrelated word that
must not be copied in the translation output. Word
embeddings are built after concatenating both fac-
tor embeddings. Xu et al. (2020) claim achieving a
8% reduction of unrelated tokens when using this
scheme.

Note that this solution is computationally ex-
pensive as it requires to identify related/unrelated
tokens in each input sentence and in the correspond-
ing similar translations, based in Xu et al. (2020) on
word alignments and edit distance computations.

s+tk the solution proposed in this paper also
addresses the unrelated word problem, at a much
reduced computational cost. It considers both sides
of similar translations (sk and tk). Training streams
take the form:

src: sk ◦ ... ◦ s2 ◦ s1 ◦ s
tgt: tk ◦ ... ◦ t2 ◦ t1◦ t

In inference, target-side similar translations tk are
used by the model as a target prefix. The ini-
tial steps of the beam search use the given prefix
tk ◦ ... ◦ t2 ◦ t1◦ in forced decoding mode, return-
ing to a regular beam search after the last ◦ token
is generated. A similar strategy of concatenating
previous and current sentences was explored by
Tiedemann and Scherrer (2017) in the context of
handling discourse phenomena. However, since
we use true translation as prefixes, our strategy
does not suffer from exposure bias (Ranzato et al.,
2016) and the subsequent error propagation prob-
lem. Continuing on our running example, during
inference the model receives:

input: measles vaccin ◦ pertussis vaccin
prefix: vaccin contre la rougeole ◦

the encoder embeds the input stream, and force-
decodes the target prefix, before starting the trans-
lation generation. Note that during beam search,
the decoder has thus access both to all input tokens
(sk and s) as well as to similar translations tk (in
the translation prefix).

Following our approach the NMT model learns
to attend to priming cues on both source and target
streams. Besides, our solution removes the need to
mix source and target vocabularies as in previous
schemes.
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3 Experimental Framework

3.1 Corpora

We experiment with the English-French language
pair and data originating from eight domains, corre-
sponding to texts from three European institutions:
the European Parliament (EPPS), the European
Medicines Agency (EMEA) and the European Cen-
tral Bank (ECB); Legislative texts of the European
Union (JRC); IT-domain corpora corresponding to
KDE4 and GNOME; News Commentaries (NEWS);
and parallel sentences extracted from Wikipedia
(WIKI). Table 1 contains statistics regarding the
corpora used in this work4 (Tiedemann, 2012).
Statistics are computed after splitting off punctua-
tion.

Corpus #Sents (K)
Lmean Vocab (K)

English French English French

Parallel Corpora
EPPS 1,992.8 27.7 32.0 129.5 149.2
NEWS 315.3 25.3 31.7 90.5 96.7
WIKI 749.0 25.9 23.5 527.5 506.6
ECB 174.1 28.6 33.8 45.3 53.5
EMEA 336.8 16.8 20.3 62.8 68.9
JRC 475.2 30.1 34.5 81.0 83.5
GNOME 51.9 9.6 11.6 19.0 21.6
KDE4 163.9 9.1 12.4 48.7 64.7

Monolingual Corpora
WIKI 6,426.8 - 24.1 - 1,626.3
NEWS 83,567.8 - 25.5 - 3,444.1

Table 1: Corpora statistics. Note that K stands for thou-
sands and Lmean is the average length in words.

Each corpora is considered as a different domain.
Training data sets are also employed as TM of the
corresponding domain. This is, similar sentences
are mined from the same training set that is used
to build the model. Note that we also consider
monolingual (French) corpora. For the News do-
main we use all available monolingual WMT news
crawl data5. For the Wikipedia domain, we use
the French-side of the WikiMatrix data (Schwenk
et al., 2019a).

We randomly split the parallel corpora by keep-
ing 500 sentences for validation, 1, 000 sentences
for testing and the rest for training. All data is
preprocessed using the OpenNMT tokenizer6 (con-
servative mode).

4Freely available from http://opus.nlpl.eu
5http://data.statmt.org/news-crawl/
6https://github.com/OpenNMT/Tokenizer

3.2 System Configurations

This section gives learning/inference details of the
various systems used in this work.

Similarity
For fuzzy matching FM we follow several works
(Koehn and Senellart, 2010; Bulte and Tezcan,
2019; Xu et al., 2020) and keep the n-best matches
when FM(s1, s2) ≥ 0.5 with no approximation.
Concerning S2V, the model is trained with default
options during 20 epochs using all training data.
We use an embedding dimension of 300 cells. Re-
garding CBON, we learn models using also the en-
tire training data during one epoch (∼50,000 it-
erations). Similarly to S2V we use 10 negative
samples per positive word to approximate the soft-
max, a batch size of 2k examples, and embedding
size of 300 cells. We build CBON models using
3-grams and 4-grams to enable a comparison with
sent2vec which only uses bigrams. All vocab-
ularies are selected keeping the 500,000 most fre-
quent n-grams (n = 2 for S2V and n = 3 and 4
for CBON).

For both CBON and S2V models, we use the
5-best matches when EM(s1, s2) ≥ 0.87. In all
cases, perfect matches are not used for training.
Accuracy results on the priming task indicate that
3-grams yield slightly lower accuracy results than
those obtained with 4-grams. In the remainder, we
always use the 4-gram version of CBON.

Sentence Retrieval
To identify similar translations using distributed
representations, we use the faiss8 search
toolkit (Johnson et al., 2019) through its Python
API with exact FlatIP index.

Translation
Our NMT models rely on the Transformer base
architecture of Vaswani et al. (2017), implemented
in the OpenNMT-tf9 toolkit (Klein et al., 2017).
We use the standard setting of Transformers for all
experiments: size of word embedding: 512; size
of hidden layers: 512; size of inner feed-forward
layer: 2, 048; number of heads: 8; number of lay-
ers in the encoder or in the decoder: 6. In the
tgt1+STU scheme, token (508 cells) and STU (4

7Optimization experiments on a held-out development set
are carried out for both models.

8https://github.com/facebookresearch/
faiss

9https://github.com/OpenNMT/OpenNMT-tf

http://opus.nlpl.eu
http://data.statmt.org/news-crawl/
https://github.com/OpenNMT/Tokenizer
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/OpenNMT/OpenNMT-tf
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cells) streams are concatenated, thus using the same
number of parameters in all schemes.

For training, we use the Adam (Kingma and
Ba, 2015) optimiser with a batch size of 4, 096
tokens. We set the warmup steps to 4, 000 and up-
date the learning rate for every 8 iterations. Models
are optimised during 300K iterations, using a sin-
gle NVIDIA V100 GPU. We limit the length of
training sentences to 300 BPE tokens (Sennrich
et al., 2016c) in both source and target sides to
enable the integration of similar sentences. We
use a joint BPE-vocabulary of size 32K for both
source and target texts. Inference is performed
with a beam size of 5 using CTranslate210, a
custom C++ runtime inference engine for Open-
NMT models that enables fast CPU decoding
and also implements prefix decoding. For eval-
uation, we report BLEU (Papineni et al., 2002)
scores computed by detokenized case-sensitive
multi-bleu.perl11.

We re-implement the work of Farajian et al.
(2017) as a contrastive model that we denote
µadapt. Note that we only experiment with the
basic version of this work, where the closest neigh-
bours of the input sentence are first retrieved from
the memory and then used to fine-tune a generic
model during 15 additional iterations with a fixed
learning rate of 0.0005; the fine-tuned model is
then used to produce the translation of the given
input sentence. In addition, Farajian et al. (2017)
include a variant where learning rate and number
of epochs are dynamically adapted considering sen-
tence similarity. Adaptation is run on a sentence-
by-sentence basis.

4 Results

Retrieval algorithms employed in this work are sig-
nificantly faster than NMT Transformer decoding,
thus implying a limited decoding overhead.

Table 2 reports efficiency scores (tokens/second)
for computing vector representations (Vector), per-
forming sentence retrieval (Retrieval) and transla-
tion (NMT) for the WIKI test set according to the
similarity model and priming schema used. Results
show that the computational cost is dominated by
the NMT step. This step, in turn, is affected by the
length of the input (and prefix) streams.

10https://github.com/OpenNMT/
CTranslate2

11https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

Model Schema Vector Retrieval NMT
Base - - - 806

FM
tgt1

- 25K
750

s+t1 687
S2V tgt5 222K

17K
639

CBON
tgt5

59K
s+t5 523

Table 2: Efficiency (tokens/second) of each step for dif-
ferent inference configurations. All steps run on CPU
(16 cores). K stands for thousands.

Table 3 reports BLEU scores for our various con-
figurations, tested on 8 domain-specific test sets.
The last column (avg) reports average results. This
table also reports the number of input sentences
(out of 1, 000) for which at least one similar sen-
tence was retrieved (in a smaller font).

All NMT models are built using the concate-
nation of the original parallel corpora in Table 1.
Our Base configuration does not integrate similar
sentences in the training data. All other models ex-
tend the original corpora with sentences retrieved
following similarity methods (Sim) introduced in
Section 2.1 and integration schemes presented in
Section 2.2 (Scheme).

The second block of results in Table 3 displays
scores obtained when performing translations ex-
tended with fuzzy matches FM. In line with re-
sults presented by Xu et al. (2020), using a second
stream to mark related/unrelated tokens (+STU)
yields a boost in performance of around 1 BLEU
points. When the s+t1 scheme is used, the average
improvement reaches 1.25 BLEU points.

The third block compares translation results ob-
tained when identifying similar translations by S2V
and CBON. In both cases, the s+t5 scheme is
used. The choice for 5-best similar translations and
EM(si, sj) ≥ 0.8 threshold is made after running
optimization work on a held out development set.
Sentences identified by CBON outperform those se-
lected by S2V. The idiosyncrasy of fuzzy matching
does not enable to find multiple similar sentences
for a given input sentence. Overall best results are
obtained by the CBON s+t5 configuration. Note
that as expected, the number of similar translations
found using distributed representations is larger
than those found by fuzzy matching.

Finally, the last block in Table 3 gives results
for a system that retrieves similar sentences to
dynamically adapt the model on a sentence-per-

https://github.com/OpenNMT/CTranslate2
https://github.com/OpenNMT/CTranslate2
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
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Sim Scheme ECB EMEA EPPS GNOME JRC KDE4 NEWS WIKI avg

Base - 49.23 49.53 42.83 49.99 59.05 49.52 36.66 35.15 46.50

FM tgt1 56.21 59.34 42.08 60.95 65.86 53.49 35.80 34.54 51.03
(Bulte and Tezcan, 2019) 585 765 195 686 612 575 54 184 457

FM tgt1+STU 57.30 61.03 42.95 62.68 67.24 54.68 35.54 35.16 52.07
(Xu et al., 2020) 585 765 195 686 612 575 54 184 457

FM s+t1
56.16 60.88 43.18 62.50 67.58 55.25 36.55 36.94 52.38

585 765 195 686 612 575 54 184 457

S2V s+t5
57.16 60.44 43.19 62.44 65.39 51.32 35.98 35.82 51.47

740 840 161 639 735 623 39 297 509

CBON s+t5
56.50 61.04 42.22 63.76 68.75 55.83 35.41 36.38 52.49

710 896 195 854 733 862 63 378 586

FM µadapt 53.09 55.02 43.04 53.88 62.99 48.70 36.48 35.81 48.63
(Farajian et al., 2017) 585 765 195 686 612 575 54 184 457

CBON µadapt 53.41 53.32 43.20 54.77 63.37 52.06 36.47 36.39 49.12
(Farajian et al., 2017) 710 896 195 854 733 862 63 378 586

Table 3: BLEU scores for various model configurations and 8 test domains. Smaller numbers correspond to the
number of input sentences in each domain for which at least one similar sentence is found.

sentence basis (Farajian et al., 2017; Li et al., 2018).
We show micro-adaptation results when similar
sentences are found by CBON and FM models
(µadapt). In our experiments, micro-adaptation
does not yield the gains observed with priming
methods. As previously stated, the best perform-
ing variants of the adaptation method presented in
Farajian et al. (2017) were not included in our com-
parison. Variants employ a dynamically adapted
learning rate and number of epochs.

Monolingual Corpora

Retrieval results shown in Table 3 (small font num-
bers) indicate a reduced number of similar sen-
tences found for some domains (NEWS, EPPS and
WIKI). In the context of scarce similar sentences,
the boost in translation quality observed for most
domains is subsequently reduced. The case of the
NEWS domain is particularly harmful since worst
results are always obtained when compared to our
Base system.

However, very large monolingual collections of
texts exist, far exceeding the amount of available
parallel corpora. The latter are more expensive to
collect and typically only exist for a limited number
of domains and language pairs. With the objective
to enhance NMT with monolingual corpora, we

now apply the methods presented above to mono-
lingual corpora.

We collect monolingual corpora in the target
language (French in this work) and translate each
sentence back into English to obtain synthetic par-
allel data. Similar to back-translation experiments
in Sennrich et al. (2016b), we only use original
(human-crafted) target-language data. We expect
this to add less noise than incorporating synthetic
target-language data into the NMT input. Once
translated into English, the various priming ap-
proaches identify similar synthetic sentences and
injects both the synthetic source and original tar-
get in the NMT input stream. Note that cross-
lingual sentence embedding models exist (Sabet
et al., 2019; Schwenk and Douze, 2017; Conneau
and Lample, 2019) but our preliminary experiments
using these tools did not show satisfactory results.

Thus, we exploit large collections of French texts
for the News and Wikipedia domains (as detailed
in Table 1) that we translate into English to enable
similarity retrieval. Table 4 reports BLEU scores
obtained by our best performing network CBON
following the s+t5 scheme.

The supplementary number of similar sentences
(468 input sentences have similar translations) col-
lected for the WIKI domain over parallel and mono-
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lingual12 corpora (par+mon) yields an improve-
ment of 2 BLEU points. However, very few (97)
similar sentences are identified13 over near 95 mil-
lion sentences (par+mon), showing a small gain
when compared to using only parallel sentences
(par). The network does not succeed to outperform
the accuracy of the base system. As outlined
by Bulte and Tezcan (2019) and Xu et al. (2020)
the accuracy of networks implementing priming
may slightly drop in performance when no similar
translations are integrated.

Sim Scheme Data NEWS WIKI

Base - - 36.66 35.15

CBON s+t5 par
35.41 36.38

63 378

CBON s+t5 par+mon
36.05 38.20

97 468

Table 4: Translation performance for the NEWS and
WIKI domain test sets using similar sentences retrieved
from parallel data (par) and from both parallel and
monolingual (par+mon) data. The first two rows cor-
respond to experiments already shown in Table 3.

5 Discussion

Unrelated Words

As previously outlined in Section 2, Xu et al. (2020)
raised a problem regarding unrelated words. It con-
cerns those words that, even through they appear in
similar translations, must not be used to translate
input sentences. An example of translation with
unrelated word is given in Section 2.2 where the
input sentence with similar translation:

vaccin contre la rougeole ◦ pertussis vaccin

is translated as: vaccin contre la rougeole, the
right translation being: vaccin contre la co-
queluche. The error is due to the fact that word
rougeole is present in the input stream and is se-
mantically related to coqueluche. The problem
is particularly hurting when it involves keywords
(like the proper noun in our example) which con-
vey essential information regarding the meaning of
sentences.

The work by Xu et al. (2020), that we denoted
tgt1+STU, obtains an average reduction of these

12Test French sentences entirely found in monolingual
WIKI corpora are not considered as similar translations.

13In all cases we consider similar sentences si and sj when
(EM(si, sj) ≥ 0.8)

erroneous words in the translation hypotheses of
8%. We conduct the same experiment to analyse
the performance of the new scheme s+t1 intro-
duced in this work. Table 5 reports the total num-
ber of unrelated words in 1-best similar sentences
obtained by fuzzy matching14. As can be seen,
the scheme s+t1 further mitigates the apparition
of unrelated words in translations, with a drop of
-8.3%.

NMT Attention
We analyse the Encoder and Decoder self-attention
layers, aiming to better understand how our CBON
s+t model configuration makes use of similar
translations.

Figure 1: Average attention values of all heads through
all layers for the encoder (top) and decoder (bottom).
Dashed lines are used to separate similar and input sen-
tences.

Figure 1 displays the attention15 values for sen-
14We follow the procedure detailed in Xu et al. (2020) to

identify related/unrelated words.
15We use the average of all heads through all layers.
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Scheme ECB EMEA EPPS GNOME JRC KDE4 NEWS WIKI avg
tgt1+STU 3,555 2,320 312 1,285 3,515 940 39 344 1,538
s+t1 3,199 1,985 306 1,195 3,413 845 31 310 1,410
unrelated 6,310 4,405 4,405 2,473 6,309 2,358 236 1,591 3,510

Table 5: Number of unrelated words appearing in test sets according to different augmentation schemes. The last
row indicates the total number of unrelated words included in 1-best FM similar sentences.

tence s = [I am thinking of three important fac-
tors .] when translated into t = [Je pense à trois
facteurs essentiels .] using the similar translation
example s1 = [I am thinking of three ideas .] and
t1 = [Je pense à trois idées .]. For visualization
purposes we mask the attention of the sentence
separator token ◦.

Concerning the encoder self-attention (top), we
can clearly observe that the encoder pays attention
to the words in the similar sentence (down-left)
when embedding the input sentence (down-right).
Equivalently, the decoder self-attention (bottom)
also attends to the similar translation (down-left:
prefix words generated in forced mode) when pro-
ducing the translation of sentence s. Note that
when the decoder is about to generate the French
word trois [three], attention weights (rectangle) are
the highest for the preceding words (in particular to
pense [think]), with trois (circle in the similar trans-
lation) also receiving a substantial weight. This
suggests that the model has learned to use similar
translations passed in the form of a target prefix to
help generating translations.

Priming Model

The priming network leverages similar sentences
from a TM so as to yield more accurate translations.
From a mathematical perspective, the search for
the best translation t̄ is conditioned to the input
sentence s as well as to similar pairs of translations
s1 and t1:

t̄ = arg max
t

P (t|s, s1, t1)

to facilitate reading we use one single similar trans-
lation (s1 and t1) rather than k-best translations.

To evaluate the intuition that P (t|s, s1, t1) gives
better translations than P (t|s), we report the aver-
age of logP (t|s, s1, t1) computed by CBON s+t5

and of logP (t|s) computed by Base over test sets
sentences with similar sentences translations.

Table 6 reports the difference between the token
average of logP (t|s, s1, t1) and the token average

of logP (t|s). More precisely, for each test sen-
tence s, we compute the log probability of predict-
ing reference t, we then sum all the calculated log
probabilities and divide the sum by the total num-
ber of tokens in the references. For each test set,
we computed the average log probability of model
CBON s+t5 and Base. We report the difference
in the average of both models. Results indicate
that logPCBON s+t5(t|s1, s, t1) are actually greater
than logPBase(t|s) in most cases, with the excep-
tion of EPPS and NEWS for which the base system
yields higher probabilities. We observe a strong
correlation between values reported and the gap in
BLEU score for the same model configurations.

Domain CBON s+t5 − Base
ECB 0.222
EMEA 0.231
EPPS -0.039
GNOME 0.248
JRC 0.165
KDE4 0.252
NEWS -0.173
WIKI 0.009

Table 6: Differences of token average log probability
between CBON s+t5 and Base model.

Similarity over Synthetic Sentences

Results in Table 4 show a clear boost in perfor-
mance (∼2 BLEU points) when making use of syn-
thetic translations of the WIKI monolingual data
set. We now want to measure the noise introduced
by synthetic translations when compared to human
translations. Thus, we consider the input sentences
of the WIKI test set for which we found similar sen-
tences in both the parallel (human translation) and
monolingual (synthetic translation) corpus (279
sentences).

Results in Table 7 show a clear drop in BLEU
scores when using synthetic matches. As expected,
machine translation quality degrades the results
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of similarity search which in turns provides less
valuable similar translations.

Priming sentences WIKI
par (human) 52.50
mon (synthetic) 49.94

Table 7: Results for a reduced test set (279 sentences)
using CBON when priming with human and synthetic
(back-translated) translations.

6 Related Work

Our work relates to the ideas introduced in Bulte
and Tezcan (2019) and Xu et al. (2020). Both of
them leverage similar translations from parallel
corpora and inject similar sentences in the NMT
network. While Bulte and Tezcan (2019) integrates
fuzzy matches into the NMT model by concate-
nating similar translations to source sentences, Xu
et al. (2020) extended the framework by adding ad-
ditional source side features to distinguish between
related and unrelated words, employed distributed
sentence representations. A similar idea is also ex-
plored in Schwenk et al. (2019b), where the authors
use multilingual sentence embeddings to retrieve
pairs of similar sentences and train models uniquely
with such sentences.

Previously, Niehues et al. (2016) augmented in-
put sentences with pre-translations generated by a
phrase-based MT system. Our work, in contrast,
integrates similar sentences in both source and tar-
get sides and employs similar translations found in
parallel as well as monolingual data sets.

A similar strategy of concatenating previous and
current sentences was explored by Tiedemann and
Scherrer (2017) further evaluated by Bawden et al.
(2018) in the context of tackling discourse phenom-
ena. Our work employs force decoding to allow
including true translations in the decoder target-
side. Thus, avoiding the error propagation prob-
lem (Ranzato et al., 2016) of longer sequences in
auto-regressive models.

Bapna and Firat (2019) propose a neural MT
model that incorporates retrieved neighbours rely-
ing on local phrase level similarities. Using deep
pre-trained models (Peters et al., 2018; Radford
et al., 2019; Devlin et al., 2019; Le et al., 2020;
Conneau and Lample, 2019) to compute contextu-
alized sentence representations has become com-
mon fashion in recent works (Feng et al., 2020;
Chang et al., 2020). However, deep models suffer

from computation complexity when applied on-
the-fly for inference. We propose an extension of
sent2vec (Pagliardini et al., 2018) to compute
sentence representations that also inherits from the
computationally efficient bilinear models (Mikolov
et al., 2013a,b; Pennington et al., 2014).

Similar to our work, Farajian et al. (2017) and
Li et al. (2018) retrieve similar sentence to dynami-
cally adapt each individual input sentence. Farajian
et al. (2017) obtains best performance when tuning
the adaptation learning rate and number of epochs
according to level of similarity between the input
and retrieved sentences. In Xu et al. (2019) the
model is dynamically adapted to a entire test set to
reduce adaptation time.

In computer vision, priming network has been
recently studied. For the object detection task ,
Rosenfeld et al. (2018) primed the network via an
external information that affects all the processing
layers. Upon processing each image in the network,
Rosenfeld et al. (2018) also presented the network
with the category of the object in the image; this
information is injected at all layers.

7 Conclusions

Inspired by the human psychological phenomenon
of priming, we have presented a simple framework
for priming NMT networks. Following other re-
search works, we used similar translations as prim-
ing cues to influence the NMT network. We pre-
sented a novel method that injects similar transla-
tions in the NMT network as prefixes of the decoder.
The proposed method obtains higher translation ac-
curacy results and reduces the undesirable effect
observed in previous methods of copying unrelated
words when performing translations.

We also proposed an extension to sent2vec
that considers larger n-gram orders. It allows us to
identify similar sentences (cues) that yield higher
accuracy rates as measured on translation test sets.

We evaluate results on a multi-domain setting
using a single model trained on a heterogeneous
data set, built from multiple corpora and domains,
achieving better results when compared to previ-
ous micro-adaptation approaches. In addition, we
showed the suitability of our approach to gather
valuable information from large monolingual cor-
pora.

In our future work, we would like to explore
alternative algorithms to compute distributed sen-
tence representations from word embeddings, such
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as TF-IDF. Furthermore, we would like to consider
source sentence coverage when selecting n-best
similar translations. As regards distributed repre-
sentations we plan to experiment with cross-lingual
networks to retrieve similar translations directly
from human-crafted monolingual data in order to
eliminate the noise introduced by synthetic transla-
tions.
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