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Abstract

We participate in the WMT 2020 shared news
translation task on Chinese→English. Our sys-
tem is based on the Transformer (Vaswani
et al., 2017) with effective variants and the
DTMT (Meng and Zhang, 2019) architec-
ture. In our experiments, we employ data
selection, several synthetic data generation
approaches (i.e., back-translation, knowledge
distillation, and iterative in-domain knowledge
transfer), advanced finetuning approaches and
self-bleu based model ensemble. Our con-
strained Chinese→English system achieves
36.9 case-sensitive BLEU score, which is the
highest among all submissions.

1 Introduction

Our WeChat AI team participates in the WMT 2020
shared news translation task on Chinese→English.
In this year’s translation task, we mainly focus
on exploiting several effective model architectures,
better data augmentation, training and model en-
semble strategies.

For model architectures, we mainly exploit two
different architectures in our approaches, namely
Transformers and RNMT. For Transformers, we im-
plement the Deeper transformer with Pre-Norm, the
Wider Transformer with a larger filter-size and the
average attention based transformer (Zhang et al.,
2018). For the RNMT, we use the deep transition
based DTMT (Meng and Zhang, 2019) model. We
finally ensemble four kinds of models in our sys-
tem.

For synthetic data generation, we explore various
methods for out-of-domain and in-domain data gen-
eration. For out-of-domain data generation, we ex-
plore the back-translation method (Sennrich et al.,
2016a) to leverage the target side monolingual
data and the knowledge distillation method (Kim
and Rush, 2016) to leverage the source side of
golden parallel data. For in-domain data generation,

we employ iterative in-domain knowledge transfer
to leverage the source-side monolingual data and
golden parallel data. Furthermore, data augmenta-
tion methods, including noisy fake data (Wu et al.,
2019) and sampling (Edunov et al., 2018), are used
for training more robust NMT models.

For training strategies, we mainly focus on the
parallel scheduled sampling (Mihaylova and Mar-
tins, 2019; Duckworth et al., 2019), the target de-
noising and minimum risk training (Shen et al.,
2016; Wang and Sennrich, 2020) algorithm for in-
domain finetuning.

We also exploit a self-bleu (Zhu et al., 2018)
based model ensemble approach to enhance our sys-
tem. As a result, our constrained Chinese→English
system achieves the highest case-sensitive BLEU
score among all submitted systems.

In the remainder of this paper, we start with an
overview of model architectures in Section 2. Sec-
tion 3 describes the details of our systems and train-
ing strategies. Then Section 4 shows the experimen-
tal settings and results. Finally, we conclude our
work in Section 5.

2 Model Architectures

In this section, we first describe the model archi-
tectures we use in the Chinese−→English Shared
Task, including the Transformer-based (Vaswani
et al., 2017) models and RNN-based (Bahdanau
et al., 2014; Meng and Zhang, 2019) models.

2.1 Deeper Transformer

As shown in previous studies (Wang et al., 2019;
Sun et al., 2019), deeper Transformers with pre-
norm outperform its shallow counterparts on vari-
ous machine translation benchmarks. In their work,
increasing the encoder depth significantly improves
the model performance, while they only introduce
mild overhead in terms of speed in training and
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inference, compared with increasing the decoder
side depth.

Hence, we train deeper Transformers with a deep
encoder aiming for a better encoding representation.
In our experiments, we mainly adopt two settings,
with the hidden size 512 (Base) and 1024 (Large).
We adopt a 30-layer encoder for Base models and
20/24-layer encoders for Large models. Further
increasing the encoder depth does not lead to a
significant BLEU improvement. To keep the total
trainable parameters the same among models, the
filter sizes of Base and Large models are 16384
and 4096, respectively. For training, the batch size
is 4,096 tokens per GPU, and we train each model
using 8 NVIDIA V100 GPUs for about 7 days.

2.2 Wider Transformer
Inspired by last year’s Baidu system (Sun et al.,
2019), we also train Wider Transformers with a
larger inner dimension of the Feed-Forward Net-
work than the standard Transformer Large system.
Specifically, two settings are used in our experi-
ments. With a filter size of 15,000, we set the num-
ber of encoder layers to 10, and with a filter size
of 12,288, we set the number of encoder layers to
12. The number of total trainable parameters of the
Wider Transformer is kept approximately the same
as our Deeper Transformers.

In our experiments, we also set the batch size to
be 4,096 and train the Wider Transformers with 8
NVIDIA V100 GPUs for about 7 days.

2.3 Average Attention Transformer
To introduce more diversity in our Transformer
models, we use Average Attention Transformer
(AAN) (Zhang et al., 2018) as one of our candi-
date architectures. The Average Attention Trans-
former replaces the decoder self-attention module
in auto-regressive order with a simple average at-
tention, and introduces almost no loss in model
performance.

We believe that even though the performance of
AAN does not drop in terms of BLEU, the output
distributions of AAN networks should be different
from the output distributions of original Transform-
ers, which brings diversity for the final ensemble.
This also complies with our findings in self-bleu
experiments (Section 3.6).

In practice, AAN models are trained for both the
Wider Transformer and Deeper Transformer. The
batch size and other hyper-parameters are kept the
same as its non-AAN counterpart.

2.4 DTMT
DTMT (Meng and Zhang, 2019) is the recently
proposed deep transition RNN-based model for
Neural Machine Translation, whose encoder and
decoder are composed of the well-designed tran-
sition blocks, each of which consists of a linear
transformation enhanced GRU (L-GRU) followed
by several transition GRUs (T-GRUs). DTMT en-
hances the hidden-to-hidden transition with multi-
ple non-linear transformations, as well as maintains
a linear transformation path throughout this deep
transition by the well-designed linear transforma-
tion mechanism to alleviate the vanishing gradient
problem. This architecture has demonstrated its su-
periority over the conventional Transformer model
and stacked RNN-based models in NMT (Meng
and Zhang, 2019), and also achieves surprising per-
formances on other NLP tasks, such as sequence
labeling (Liu et al., 2019) and aspect-based senti-
ment analysis (Liang et al., 2019).

In our experiments, we use the bidirectional deep
transition encoder, where each directional deep
transition block consists of 1 L-GRU and 4 T-GRU.
The decoder contains a query transition block and
the decoder transition block, each of which consists
of 1 L-GRU and 4 T-GRU. Therefore the DTMT
consists of a 5 layer encoder and a 10 layer decoder,
with a hidden size of 1,024. We use 8 NVIDIA
V100 GPUs to train each model for about three
weeks and the batch size is set to 4,096 tokens per
GPU.

3 System Overview

In this section, we describe our system used in the
WMT 2020 news shared task.

Figure 1 depicts the overview of our Wechat
NMT. Our system can be divided into four parts,
namely data filtering, synthetic data generation, in-
domain finetuning, and ensemble. The synthetic
generation part further includes the generation of
out-of-domain and in-domain data. Next, we will
illustrate these four parts.

3.1 Data Filter
Following previous work (Li et al., 2019), we filter
the training bilingual corpus with the following
rules:

• Normalize punctuation with Moses scripts.

• Filter out the sentences longer than 100 words,
or exceed 40 characters in a single word.



241

In-Domain Synthetic

Training

Finetuning

Out-of-Domain Synthetic

Ensemble

In-domain Knowledge Transfer

Model NModel 1 Model 2 …….

Normal

Forward Translation Data

Bilingual Data + Out synthetic + In Synthetic

Back 
Translation

Knowledge 
Distillation

N x

Finetuning Normal Target
Denoise

Scheduled
Sampling MRT

Models Deeper
Transformer

Wider
Transformer

AveAtt
Transformer DTMT

Figure 1: Architecture of WeChat NMT system. For simplicity, the data filtering module is ignored in the overview.

NUM
Bilingual Data 20.7M
Chinese Monolingual Data 153.5M
English Monolingual Data 121.2M

Table 1: Statistics of all training data.

• Filter out the duplicated sentence pairs.

• The word ratio between the source and the
target words must not exceed 1:4 or 4:1.

We also filter the monolingual corpus with the lan-
guage model trained by the corresponding data of
the bilingual training corpus.

In our experiments, the bilingual training data is
a combination of News Commentary v15, Wiki
Titles v2, WikiMatrix, CCMT and the UN cor-
pus. The Chinese monolingual data includes News
crawl, News Commentary, Common Crawl and
Gigaword corpus. The English monolingual data
includes News crawl, News discussions, Europarl

v10, News Commentary, Common Crawl, Wiki
dumps and the Gigaword corpus. After data fil-
tering, statistics of all training data are shown in
Table 1.

3.2 Out-of-Domain Synthetic Data
Generation

Now, we describe our techniques for constructing
both out-of-domain and in-domain synthetic data.
The out-of-domain synthetic corpus is generated
via both large-scale back-translation and knowl-
edge distillation to enhance the models’ perfor-
mance for all domains. Then, we propose itera-
tive in-domain knowledge transfer, which transfers
in-domain knowledge to the huge monolingual cor-
pus (i.e., Chinese), and builds our in-domain syn-
thetic corpus. In the following sections, we elabo-
rate above techniques in detail.
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3.2.1 Large-scale Back-Translation
Back-translation is shown to be very effective to
boost the performance of NMT models in both
academic research (Hoang et al., 2018; Edunov
et al., 2018) and previous years’ WMT competi-
tions (Deng et al., 2018; Sun et al., 2019; Ng et al.,
2019; Xia et al., 2019). Following their work, we
also train baseline English-to-Chinese models with
the parallel data provided by WMT2020. Both the
Left-to-Right Transformer (L2R) and the Right-to-
Left Transformer (R2L) are used to translate the
filtered monolingual English corpus combined with
the English side of golden parallel bitext to Chinese.
Then the generated Chinese text and the original
English text are regarded as the source side and
target side, respectively.

In practice, it costs us 7 days on 5 NVIDIA V100
GPU machines to generating all back-translated
data.

3.2.2 Knowledge Distillation
Knowledge distillation (KD) is proven to be a pow-
erful technique for NMT (Kim and Rush, 2016) to
transfer knowledge from the teacher model to stu-
dent models. In particular, we first use the teacher
models to generate synthetic corpus in the forward
direction (i.e., Chinese→English). Then, we use
the generated corpus to train our student models.

In this work, with baseline Chinese→English
models (i.e., L2R and R2L) as teacher models, we
translate the Chinese sentences of the parallel cor-
pus to English to form our synthetic KD dataset.
The knowledge distillation costs about 2 days on
2 NVIDIA V100 GPU machines to generate all
synthetic data.

3.3 Iterative In-domain Knowledge Transfer
Since in-domain finetuning demonstrates substan-
tial BLEU improvements (Sun et al., 2019; Li et al.,
2019), we speculate that the parallel data and the
dev/test sets fall in different domains. Therefore,
adapting our models to the target domain in ad-
vance will provide gains over the dev/test sets and
give a better initialization point for in-domain fine-
tuning. To this end, we use knowledge transfer to
inject more in-domain information into our syn-
thetic data.

In particular, we first use normal finetuning (see
Section 3.5) to equip our models with in-domain
knowledge. Then, we ensemble these models and
use the ensemble model to translate the Chinese
monolingual corpus into English. For our ensemble

translator, we use 4 models with different architec-
tures. Next, we pair original Chinese sentences with
generated in-domain pseudo English sentences to
form a pseudo parallel corpus. So far, the in-domain
knowledge from ensembled models is transferred
to the generated pseudo-parallel corpus. Finally, we
retrain our model with both the in-domain pseudo-
parallel and out-of-domain parallel data.

We refer to the above process as the in-domain
knowledge transfer. In our experiments, we find
that iteratively performing the in-domain knowl-
edge transfer can further provide improvements
(see Table 2). For each iteration, we replace the in-
domain synthetic data and retrain our models, and
it costs about 10 days on 8 NVIDIA V100 GPU
machines. For the final submission, the knowledge
transfer is conducted twice.

3.4 Data Augmentation
Aside from synthetic data generation, we also apply
two data augmentation methods over our synthetic
corpus. Firstly, adding synthetic/natural noises to
training data is widely applied in the NLP fields
(Li et al., 2017; Belinkov and Bisk, 2017; Cheng
et al., 2019) to improve model robustness and en-
hance model performance. Therefore, we proposed
to add token-level synthetic noises. Concretely, we
perform random replace, random delete, and ran-
dom permutation over our data. The probability of
enabling each of the three operations is 0.1. We
refer to this corrupted corpus as Noisy data.

Secondly, as illustrated in (Edunov et al., 2018),
sampling generation over back-translation shows
its potential in building robust NMT systems. Con-
sequently, we investigate the performance of sam-
pled synthetic data. For back-translated data, we
replace beam search with sampling in its genera-
tion. For in-domain synthetic data, we replace the
golden Chinese with the back sampled pseudo Chi-
nese sentences. We refer to the data with sampling
generation as Sample data.

As a special case, we refer to the without aug-
mentation data as Clean data.

3.5 In-domain Finetuning
We train the model on large-scale out-of-domain
data until convergence and then finetune it on small-
scale in-domain data, which is widely used for do-
main adaption (Luong and Manning, 2015; Li et al.,
2019). Specifically, we take Chinese−→English test
sets of WMT 17 and 18 as in-domain data, and
filter out documents that are originally created in
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English (Sun et al., 2019). We name above fine-
tuning approach as normal finetuning. In all our
finetuning experiments, we set the batch size to
4096, and finetune the model for around 400 steps1

on the in-domain data.
Furthermore, the well-known problem of expo-

sure bias in sequence-to-sequence generation be-
comes more serious under domain shift (Wang and
Sennrich, 2020). To solve this issue, we further ex-
plore some advanced finetuning approaches and
describe details in the following paragraphs.

Parallel Scheduled Sampling. We apply a two-
pass decoding strategy for the Transformer de-
coder when finetuning, which is named as parallel
scheduled sampling (Mihaylova and Martins, 2019;
Duckworth et al., 2019). In the first pass, we obtain
model predictions as a standard Transformer, and
then mix the predicted sequence with the golden
target sequence. In the second pass, we feed the
above mixture of both golden and predicted tokens
as decoder inputs for the final prediction. Thus the
problem of the training-generation discrepancy is
alleviated in the finetuning stage. According to our
preliminary experiments, we set the proportion of
predicted tokens in mixed tokens to 50%.

Target Denoising. In the training stage, the
model never sees its own errors. Thus the model
trained with teacher-forcing is prone to accumu-
lated errors in testing (Ranzato et al., 2015). To
mitigate this training-generation discrepancy, we
add noisy perturbations into decoder inputs when
finetuning. Thus the model becomes more robust to
prediction errors by target denoising. Specifically,
the finetuning data generator chooses 30% of sen-
tence pairs to add noise, and keeps the remaining
70% of sentence pairs unchanged. For a chosen
pair, we keep the source sentence unchanged, and
replace the i-th token of the target sentence with
(1) a random token of the current target sentence
15% of the time (2) the unchanged i-th token 85%
of the time.

Minimum Risk Training. To further avoid the
problem of exposure bias, we propose to use min-
imum risk training (Shen et al., 2016) in the fine-
tuning stage, which directly optimizes the expected
BLEU score instead of the Cross-Entropy loss, and

1According our experiments, finetuning with more steps
will make the model easy to overfit on the small in-domain
data.

naturally avoids exposure bias. Specifically, the ob-
jective is computed by,

R(θ) =
S∑
s=1

∑
y∈S(x(s))

Q(y|x(s); θ, α)∆(y, y(s)),

(1)
where x(s) and y(s) are two paired sentences. ∆ de-
notes a risk function and S(x(s)) ∈ Y is a sampled
subset of full search space. Then, the distribution
Q is defined over space S(x(s)),

Q(y|x(s); θ, α) =
P (y|x(s); θ)α∑

y′∈S(x(s)) P (y′|x(s; θ)α
.

(2)
In practice, we use 4 candidates for each source

sentence x(s). Although the paper claimed that sam-
pling generates better candidates, we find that the
beam search performs better in our extremely large
Transformer model. The risk function we used is
the 4-gram sentence-level BLEU (Chen and Cherry,
2014) and we tune the optimal α via grid search
within {0.005, 0.05, 0.5, 1, 1.5, 2}. Each model is
fine-tuned for a max of 1000 steps.

3.6 Ensemble
We split each training data into three shards among
Clean, Noisy and Sample data respectively, which
yields a total number of 9 shards. For each shard,
we train seven varieties (two Deeper transform-
ers, two Wider transformers, two AANs and one
DTMT) with different model architecture. Then we
apply four finetuning approaches on each model,
thus the total number of models is quadrupled
(about 200 models). For ensemble, it is difficult
and inefficient to enumerate over all combinations
of candidate models (e.g., grid search). Therefore
a pruning strategy for model selection is neces-
sary when ensemble. We try to greedily select the
top-performing models for the ensemble. However,
only slight improvement is obtained (less than 0.1
BLEU), as our models are too similar to each other
after finetuning.

To further promote diversity among candidate
models, we propose the self-bleu driven pruning
strategy for advanced ensemble. Specifically, we
take the translations of one model as hypothe-
ses and translations of other models as references.
Then we calculate the BLEU score for each model
to evaluate its diversity among other models. Mod-
els with small BLEU scores are selected for en-
semble, and vice versa. According to our experi-
ments, we observe that (1) AAN and DTMT show
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SETTINGS DEEPER WIDER AVEATT DTMT
Baseline 26.24 26.35 26.17 26.08
+ Back Translation 29.64 29.70 29.48 28.88

+ Finetune 35.71 35.89 35.80 35.03
+ 1st In-domain Knowledge Transfer 38.14 38.22 38.21 37.98

+ Finetune 38.36 38.25 38.13 37.85
+ 2nd In-domain Knowledge Transfer 38.32 38.29 38.34 38.05

+ Finetune 38.49 38.31 38.38 38.12
+ Advanced Finetune 39.08 39.12 38.93 38.66

+ Normal Ensemble 39.19
+ Advanced Ensemble? 39.89

Table 2: Case-sensitive BLEU scores (%) on the Chinese→English newstest2019, where ‘?’ denotes the submitted
system. For each model architecture, we report the highest score among the three shards of clean data.

FINETUNING APPROACH DEEPER WIDER AVEATT DTMT
Normal 38.49 38.31 38.38 38.12
Parallel Scheduled Sampling 38.76 38.84 38.93 –
Target Denoising 38.88 38.92 38.63 38.66
Minimum Risk Training 39.08 39.12 38.78 38.45

Table 3: Case-sensitive BLEU scores (%) on the Chinese→English newstest2019 for different finetuning ap-
proaches after the 2nd in-domain knowledge transfer. For each model architecture, we report the highest score
among three shards of clean data and bold the best result among different finetuning approaches.

a clear difference with other architectures; (2) data
sharding is effective to promote diversity, espe-
cially for models trained with Clean data; (3) dif-
ferent finetuning approaches cannot bring diversity
for the same model. Under the guidance of self-
bleu scores, our advanced ensemble models con-
sist of 20 single models with differences in model
architectures, data types, shards and finetuning ap-
proaches. As shown in Table 2, the advanced en-
semble achieves absolute improvements over the
normal ensemble (up to 0.7 BLEU improvements).

4 Experiments

4.1 Settings

All of our experiments are carried out on 15 ma-
chines with 8 NVIDIA V100 GPUs each of which
has 32 GB memory. We use cased BLEU scores cal-
culated with Moses2 mteval-v13a.pl script as eval-
uation metric. newstest2019 is used as the develop-
ment set. For all experiments, we use LazyAdam
optimizer with β1 = 0.9, β2 = 0.998 and ε = 10−9.
The learning rate is set to 2.0 and decay with train-
ing steps. We use warmup step = 8000. We set
beam size to 4 and alpha to 0.6 during decoding.

2http://www.statmt.org/moses/

4.2 Pre-processing and Post-processing

We segment the Chinese sentences with an in-house
word segmentation tool. For English sentences, we
successively apply punctuation normalization, tok-
enization and truecasing with the scripts provided
in Moses. To enable open-vocabulary, we use byte
pair encoding BPE (Sennrich et al., 2016b) with
32K operations for both Chinese and English sides.

For the post-processing, we apply de-truecaseing
and de-tokenizing on the English translations with
the scripts provided in Moses.

4.3 Main Results

Table 2 shows that the translation quality is largely
improved with proposed techniques. We observe a
solid improvement of 2.8∼3.4 BLEU for the base-
line system after back translation. In-domain fine-
tuning yields substantial improvements among all
model architectures, which are 6.07∼6.32 BLEU.
The finetuned Transformer models achieve about
35.89 BLEU scores, and the DTMT achieves a
35.03 BLEU score. These findings demonstrate
that the domain of training corpus is apart from the
target domain, and hence domain adaptation has
great potential in improving model performance in
the target domain.

As described in Section 3.3, we inject the in-
domain knowledge into our monolingual corpus.



245

Two In-domain knowledge transfers provide an-
other up to 3.02 BLEU score gain (i.e., from about
35.03 to 38.05). The in-domain knowledge transfer
brings more improvement compared with the nor-
mal finetuned models. Besides, we find that models
further finetuned after in-domain transfer performs
slightly better (about 0.1 BLEU). The improvement
suggests that although in-domain transfer has al-
ready provided plenty of in-domain knowledge, it
still has room for in-domain finetuning. We fur-
ther apply advanced finetuning techniques to our
models, as described in Section 3.5. The advanced
finetuning further brings about 0.81 BLEU score
gains, and we obtain our best single model with
39.12 BLEU scores.

In our preliminary ensemble experiments, we
combine some top-performing models at each de-
coding step, but only achieve slight improvement
over single models (about 0.1 BLEU). With our
advanced ensemble strategies in section 3.6, fur-
ther improvements are achieved over the normal
ensemble (0.7 BLEU). As a result, our WMT 2020
Chinese→English submission achieves a cased
BLEU score of 36.9 on newstest2020, which is
the highest among all submissions.

4.4 Effects of Advanced Finetuning
Approaches

In this section, we describe our experiments on
advanced finetuning. Here we take clean models as
examples, but models trained with noisy data and
sampled data show similar trends.

As shown in Table 3, all three advanced finetun-
ing methods significantly outperform normal fine-
tuning. For Wider and Deeper Transformers, Mini-
mum Risk Training provides the highest BLEU
gain, which is 0.81. For the Average Attention
Transformer, Parallel Schedule Sampling improves
the model performance from 38.38 to 38.93. For the
DTMT model, Target Denoising performs the best,
improving from 38.12 to 38.66. These findings are
in line with the conclusion of Wang and Sennrich
(2020) that links exposure bias with domain shift.
For each type of model, we only keep the best-
performing finetuned one for the final model en-
semble.

5 Conclusion

In this paper, we introduce the system WeChat
submitted for the WMT 2020 shared task on
Chinese→English news translation. Our system

is based on the Transformer (Vaswani et al., 2017)
with different variants and the DTMT (Meng and
Zhang, 2019) architecture. Data selection, several
effective synthetic data generation approaches (i.e.,
back-translation, knowledge distillation, and itera-
tive in-domain knowledge transfer), advanced fine-
tuning approaches (i.e., parallel scheduled sam-
pling, target denoising, and minimum risk training)
and self-bleu based model ensemble are employed
and proven effective in our experiments. Our con-
strained Chinese→English system achieved 36.9
case-sensitive BLEU score which is the highest
among all submissions.
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