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Abstract

In this paper, we introduced our joint team
SJTU-NICT ’s participation in the WMT 2020
machine translation shared task. In this shared
task, we participated in four translation direc-
tions of three language pairs: English-Chinese,
English-Polish on supervised machine trans-
lation track, German-Upper Sorbian on low-
resource and unsupervised machine translation
tracks. Based on different conditions of
language pairs, we have experimented with
diverse neural machine translation (NMT)
techniques: document-enhanced NMT, XLM
pre-trained language model enhanced NMT,
bidirectional translation as a pre-training, ref-
erence language based UNMT, data-dependent
gaussian prior objective, and BT-BLEU
collaborative filtering self-training. We also
used the TF-IDF algorithm to filter the training
set to obtain a domain more similar set with the
test set for finetuning. In our submissions, the
primary systems won the first place on English
to Chinese, Polish to English, and German to
Upper Sorbian translation directions.

1 Introduction

Our SJTU-NICT team participated in the WMT20
shared task, including supervised track, unsu-
pervised, and low-resource track. During the
participation, we placed our attention on Polish
(PL) → English (EN) and English (EN) →
Chinese (ZH) on the supervised track, while on the
unsupervised and low-resource track, the German
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(DE)↔ Upper Sorbian (HSB) both directions are
focused.

Our baseline system in supervised track is
based on the Transformer big architecture proposed
by Vaswani et al. (2017), in which its open-
source implementation version Fairseq (Ott
et al., 2019) is adopted. In the unsupervised and
low-resource track, we draw on the successful
experience of the XLM framework (Conneau et al.,
2019), and used the two-stage training mode of
masked language modeling (MLM) pre-training
+ back-translation (BT) finetune to obtain a very
strong baseline performance. Marian (Junczys-
Dowmunt et al., 2018) toolkit is utilized for training
the decoder in reranking using machine translation
targets instead of common GPT-style language
modeling targets.

In order to better play the role of WMT
evaluation in polishing the methods proposed or
improved by our team (He et al., 2018; Li et al.,
2018; Zhang et al., 2018; Zhang and Zhao, 2018;
Xiao et al., 2019; Zhou and Zhao, 2019; Li et al.,
2019b; Luo and Zhao, 2020), we divided the
three language pairs we participated in into three
categories:
1. Traditional language pair with rich parallel
corpus: EN-PL,
2. Language pair with document-level information:
EN-ZH,
3. Language pair with no or low parallel resources:
DE-HSB.

In the supervised PL→EN translation direction,
we based on the XLM framework to pre-train
a Polish language model using common crawl
and news crawl monolingual data, and proposed
the XLM enhanced NMT model inspired from
the idea of incorporating BERT into NMT (Zhu
et al., 2020). Besides, we trained a bidirectional
translation model of EN-PL based on the parallel
corpus and further finetuned it to the PL→EN
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direction.

In the supervised EN→ZH translation with
document information, we propose a document
enhanced NMT model based on Longformer
(Beltagy et al., 2020). The training of our proposed
document enhanced NMT model is split into
three stages. In the first stage, we pre-train the
Longformer document encoder with MLM target
on the document text in Wikipedia dumps, UN
News, and News Commentary monolingual corpus.
A conventional Transformer-big NMT model is
trained in the second stage. In the final stage, the
Longformer encoder and conventional Transformer
big NMT model are used to initialize the full
document-enhanced NMT model parameters, in
which the Longformer encoder is adopted to
extract representations for the document of an input
sequence, and then the document representations
are fused with each layer of the encoder and
decoder of the NMT model through attention
mechanisms.

In the unsupervised machine translation track
on DE-HSB, we experimented with the reference
language based UNMT (RUNMT) (Li et al., 2020b)
framework we proposed recently. Under this
framework, we choose English as the reference
language, and use the Europarl parallel corpus
of EN-DE to enhance the unsupervised machine
translation between DE and HSB. Specifically,
we adopted reference language translation (RAT),
reference language back-translation (RABT), and
cross-lingual back-translation (XBT) three training
targets with the help of the cross-lingual agreement
provided by the EN-DE parallel corpus to enhance
the unsupervised translation performance.

Due to the introduction of more explicit
supervision signals brought by parallel corpus in
the low-resource machine translation track on DE-
HSB, we discarded the use of the weaker agreement
provided by the reference language, conducted
joint training on the unsupervised back-translation
and the supervised (forward-)translation directly,
and introduced BT-BLEU based collaborative
filtering technology for further self-training. In
addition, inspired by our previous work (Sun et al.,
2020b), we also use MLM and translation language
modeling (TLM) to continue pre-training the model
while machine translation training.

In addition, in all basic NMT models, we
empower the training process with our proposed
data-dependent gaussian prior objective (D2GPo)

(Li et al., 2020a), so that the model can maintain
the diversity of the output. When the main
model training is finished, the TF-IDF algorithm
is employed to filter the training set according
to the input of the test set, a training subset
whose domain is more similar to the test set is
obtained, and then used to finetune the model for
reducing the performance degradation caused by
domain inconsistency. For the final submission,
an ensemble of several different trained models
outputs the n-best predictions, and used the
decoder trained with Marian toolkit to performs
reranking to get the final system output.

2 Methodology

2.1 XLM-enhanced NMT

Pre-trained language models such as ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019), XLM
(Conneau et al., 2019), XLNet (Yang et al.,
2019), ALBERT (Lan et al., 2019) etc. have
recently demonstrated a very dominant effect on
natural language processing tasks. Several works
(Clinchant et al., 2019; Imamura and Sumita,
2019; Zhu et al., 2020) leveraged a pre-trained
BERT model for improving NMT and found that
BERT can bring significantly better results over the
baseline.

Since BERT and other pre-trained language
models are trained on large scale corpus beyond
the data provided by the WMT20 organizers, the
direct use of BERT will make the system submitted
unconstrained. Using an XLM model, a variant of
BERT, pre-trained from scratch on the monolingual
data provided by the official to enhance our NMT
model, is a good choice to keep the system
constrained. Moreover, the XLM model has
the advantages of simple training preprocessing,
low requirement for training environment that
no specialized hardware such as TPU is needed.
Inspired by the BERT-fused model proposed by
Zhu et al. (2020), we built a XLM-enhanced
model, in which we utilize XLM context-aware
representations to adaptively interact with all layers
in the NMT model with attention mechanism,
instead of serving it as input embeddings only.

In the XLM-enhanced model, XLM as an
additional encoder and the original encoder of
NMT constitute a dual-encoder structure, which
is very similar to our previous work (Li et al.,
2019a). The XLM-encoder attention and XLM-
decoder attention are essentially the same with the
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Representation Learning Frameworks (RLFs) we
proposed: Source-side fusion RLF (SRLF), Target-
side fusion RLF (TRLF), and both-side fusion
RLF (BRLF, which is a combination of SRLF and
TRLF). Specifically, in the SRLF, given a source
language input x, a Pre-trained Language Modeling
(PLM) encoder (like BERT, XLM) first encodes it
into a context-aware representation:

HP = PLMk(x), (1)

whereHP is the output of the k-th layer of the PLM
encoder. As PLM and NMT models adopt different
sub-word segmentation rules or algorithms and the
addition of special tokens are different, the input
sequence length of PLM and NMT encoders is
inconsistent or cannot correspond in every position.
Assuming that i represents the position of the input
sequence of NMT encoder, the hidden state H l

E

after fusion with HP in SRLF of the l-th layer is:

H l
E =

1

2
(attnS(H

l−1
E , H l−1

E , H l−1
E )

+attnP(H
l−1
E , HP , HP )),

(2)

where attnS is a multi-head self-attention layer
and attnP is the multi-head attention layer. HE

will eventually be output from the last layer as the
final representation.

In the TRLF framework, the dual-encoder
provides two encoded outputs; the decoder will
use both contexts at the same time. In the case of
layer l in the decoder, we have

H l
DS = attnMS(H

l−1
D , H l−1

D , H l−1
D ),

H l
D =

1

2
(attnEC(H

l
DS , HE , HE)

+attnPC(H
l
DS , HP , HP )),

(3)

where attnMS is the multi-head future-masked self-
attention layer, attnEC and attnPC are independent
multi-head attention layer for context query.

In the condition that SRLF framework is
only used, the representation of PLM is only
fused into the final representation HE in the
encoder side; then the decoder side continues
to use the original decoding ways: H l

D =
attnPC(H

l
DS, HE, HE). While the the TRLF

framework is only adopted, the output of NMT
encoder is HE = attnS(H

l−1
E , Hl−1E , Hl−1E ). A

BRLF framework is a combination of these two
frameworks.

Moreover, in the training of the RLFs, a same
drop-net trick proposed by Zhu et al. (2020) is

adopted to ensure that the features output by PLM
and the conventional encoder are fully utilized. In
this method, the interval of 0-1 is divided into three
parts according to the pre-set drop-net ratio pnet,
where [0, pnet2 ) is the probability of attending to
the final sum for the first attn in HL

E and HL
D,

[pnet2 , 1− pnet
2 ) is the probability for the whole HL

E

and HL
D equation, [1 − pnet

2 , 1] is the probability
for the second attn in in HL

E and HL
D.

2.2 Bidirectional NMT
Machine translation, in general, is unidirectional,
that is, from the source language to the target
language. The encoder-decoder framework for
NMT has been shown effective in large data
scenarios, and the more high-quality bilingual
training data, the better performance the model
tends to achieve. Recent works (Zoph et al.,
2016; Kim et al., 2019) on translation transfer
learning (Torrey and Shavlik, 2010; Pan and
Yang, 2009) from rich-resource language pairs
to low-resource language pairs demonstrate that
translation has some universal nature in essence
between different language pairs. As the source-
to-target (S2T) forward translation and target-to-
source (T2S) backward translation can be seen as
two special language pairs in bilingual translation,
it can make use of the translation universal nature
to improve each other, i.e., dual learning (He et al.,
2016). Based on this motivation, we developed a
bidirectional NMT model, in which the S2T and
T2S translation were trained and optimized jointly.
Therefore, the training data was doubled to make
better and full use of the costly bilingual corpus.

Given parallel corpus C = {(x(n), y(n))}Nn=1,
the bidirectional NMT model is trained in two
phase. In the first bidirectional translation as pre-
training phase, a joint training objective is used to
jointly maximize the likelihood of both translation
direction on the bilingual data:

L(θparent) =
N∑
n=1

(log p(y(n)|x(n))+log p(x(n)|y(n))),

(4)
where θparent is the parameters of the model,
namely parent model, obtained in this phase.

The second phase is unidirectional translation
fine-tuning. Although there are commonalities in
different translation directions, the differences are
also very obvious. To further expose the model to
the direction difference and improve the effect of
unidirectional translation, we further finetune the
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bidirectional pre-trained model on the bilingual
data. Take S2T translation as an example; the
model is optimized as follows:

L(θS→T ) =
N∑
n=1

log p(y(n)|x(n)), (5)

where θS→T is the parameters of child model which
is initialized with θparent. Similarly, the T2S child
model can also be obtained.

Due to the introduction of bidirectional
translation in one model, follow the practice
of Conneau and Lample (2019), shared sub-
word vocabulary and shared encoder-decoder
(source and target) embedding were employed
to improves the alignment of embedding spaces
across languages. In addition, since the encoder
and decoder need to be able to handle two
languages simultaneously, a language embedding
was used to indicate the language being processed,
so as to reduce confusion of the model.

2.3 Document-enhanced NMT
In spite of its success (Vaswani et al., 2017),
sentence-level NMT has been based on strong
independence and locality assumptions generally,
in which the interrelations among these discourse
(Jurafsky, 2000) elements were ignored. This
results in that the translations may be perfect at the
sentence-level but lack crucial properties of the text,
hindering understanding (Maruf et al., 2019). To
help to resolve ambiguities and inconsistencies in
translations, some MT pioneers (Bar-Hillel, 1960;
Xiong et al., 2013; Sennrich, 2018) exploit the
underlying discourse structure information of a
text to address this issue, while others (Bawden
et al., 2018; Voita et al., 2018; Jean and Cho, 2019;
Wang et al., 2019; Scherrer et al., 2019) extend
the translation units with the context or use an
additional context encoder and attention. It is worth
noting that the essence of the document-level NMT
claimed with additional context and attention is still
sentence-level MT, whose translation is still output
sentence by sentence. We named it as document-
enhanced NMT more precisely.

Due to computational efficiency and tractability
concerns, the document-enhanced NMT models
mostly used document embedding, document
topic information, and limited past or future
context sentences, etc., rather than the truly
whole document information. Recently, with the
increase in computational power available to us

and the well-designed neural network structures
(Dai et al., 2019; Kitaev et al., 2019; Beltagy
et al., 2020) for long sequence encoding, we are
finally in a position to employ the whole document
information for enhancing sentence-level NMT.
In addition, we argue that since long sequences
encoding is easier than decoding, truly whole
document-level translation is still a long way off,
since the bidirectional context is available in the
encoder, but only the past is visible by the decoder.

Longformer To make the long documents
processed with Transformer (Vaswani et al.,
2017) architecture feasible or easier, a modified
Transformer architecture named Longformer was
proposed by Beltagy et al. (2020), in which
the limitation for memory and computational
requirements is addressed with a novel self-
attention operation scales linearly with the
sequence length.

In Longformer, the original full self-attention
(O(n2) time and memory complexity) is sparsified
to makes it efficient for longer sequences. There
are three “attention patterns” for specifying pairs
of input locations attending to one another.

• Sliding Window Self-attention is performed
in a fixed-size window w and multiple stacked
layers of such sliding windowed attention
results in a large receptive field as analogs
to CNNs.

• Dilated Sliding Window Inspired by the
dilated CNNs (Oord et al., 2016), dilation
gaps of size d is introduced to the window
to further increase the receptive field without
increasing computation.

• Global Attention Though the receptive field
is enlarged by stacking multiple layers and
dilation in sliding window and dilated sliding
window attention patterns, some part of the
long sequence has the requirement for keeping
the full and global receptive field due to
the downstream tasks, so global attention is
introduced to make up this need.

In our document-enhanced NMT model, some
heads in multi-head attention are set to use the
sliding window pattern to focus on the local context
which was revealed very important (Kovaleva
et al., 2019), while others with dilation focus
on longer context. Besides, as Longformer is
incorporated into the NMT model, we perform
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global attention on the position of [CLS] token
in which the representation of the whole sequence
(i.e., the document embedding) is generated. This
makes the previous document-enhanced model
with document embedding as a special case of
ours. It is worth noting that since the sentence
being translated is part of the document, setting its
positions in the document to use global attention
pattern will improve the performance; but to
reduce the document computation and use cache
for acceleration (not recalculate the document for
each sentence), we only attend the [CLS] position
globally.

In our document-enhanced model, the Long-
former is first pre-trained with the masked language
modeling objective on the monolingual document
corpus. It is fixed throughout the NMT training
to reduce the model parameters optimized in the
training stage. Thus, Longformer can also be
thought of as a pre-trained language model, as it
provides a document context representationHP for
the NMT model, the integration of Longformer in
Document-enhanced NMT is consistent with the
XLM model in XLM-enhanced NMT.

2.4 Reference Language based UNMT

The rise of UNMT almost completely relieves the
parallel corpus curse, though UNMT is still subject
to unsatisfactory performance due to the vagueness
of the clues available for its core back-translation
training. Further enriching the idea of pivot
translation by extending the use of parallel corpora
beyond the source-target paradigm, we propose
a new reference language-based framework for
UNMT, RUNMT, in which the reference language
only shares a parallel corpus with the source, but
this corpus still indicates a signal clear enough to
help the reconstruction training of UNMT through
a proposed reference agreement mechanism.

Specifically, we proposed three kinds of
reference agreement utilization approaches in (Li
et al., 2020b): reference agreement translation
(RAT), reference agreement back-translation
(RABT), and cross-lingual back-translation (XBT).

RAT RAT utilizes the principle for translating
paired sentences into the target language T of the
source S and referenceR language. Since the input
the parallel, the both translation outputs should
be the same. Given a parallel sentence pair 〈s, r〉
between language S andR, we would ideally have
P(·|s; θS→T ) = P(·|r; θR→T ), where θS→T and

θR→T represent S → T and R → T translation
models respectively. However, as the two models
are trained on different data, the agreement may be
corrupted. Therefore, we combine the two models
to obtain the agreed-upon translation output t̃a:

t̃a ∼ P(·|s, r; θS→T , θR→T ), (6)

where P(·|s, r; θS→T , θR→T ) is

J∏
i=1

[
1

2
(P(·|s, t̃<i; θS→T ) + P(·|r, t̃<i; θR→T ))],

(7)
t̃<i indicates the decoded tokens before the i-the
generation step.

Finally, two synthetic sentence pairs 〈s, t̃a〉 and
〈r, t̃a〉 are used to train the models S → T and
R → T . Since the silver learning target is
optimized, the smoothed cross-entropy loss Lε is
used instead of the ordinary cross-entropy loss L.
The learning objective for RAT can be written as:

LRAT(S, T ,R) = Lε(θS→T ) + Lε(θR→T ), (8)

RABT With the regularized pseudo-parallel
sentences in RAT, we not only train the S → T
and R → T forward-translation models (as the
generation direction is the same as the training
direction), but also train the BT models, i.e., T →
S and T → R. The learning objective of RABT
can be described as:

LRABT(S, T ,R) = L(θT →S) + L(θT →R). (9)

XBT The parallel corpus between languages
S and R can not only bring agreement in the
translations of the same target language T , but also
cross-lingual agreement, that is, using the target
language as the bridge to form pivot translation
(Wu and Wang, 2007; Utiyama and Isahara, 2007;
Paul et al., 2009) patterns: S → T → R and
R → T → S. In XBT, paired sentences s and r
are translated to language T : t̃s and t̃r, and forms
two new pseudo-parallel pairs: 〈t̃s, r〉 and 〈t̃r, s〉,
which promote the training of translation T → R
and T → S. The objective function of XBT is:

LXBT(S, T ,R) = L(θT →R) + L(θT →S), (10)

2.5 CFST: Collaborative Filter for
Self-Training with BT-BLEU

Self-training, proposed by Scudder (1965), is a
semi-supervised approach that utilizes unannotated
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Algorithm 1 Classic Self-training

1: Train a base NMT/UNMT model fθS→T on C
2: repeat
3: Apply fθS→T to the unlabeled instances U
4: Select a subset Q ⊂ {(x, fθS→T (x))|x ∈
U}

5: Update model fθS →T on Q with self-
training objective and C with original objective

6: until convergence or maximum iterations are
reached

data to create better models. Recently, self-training
has been successfully applied to both NMT and
UNMT fields (He et al., 2019; Sun et al., 2020a),
especially for the unbalanced low-resource training
data scenarios.

Formally, in self-training strategy for ma-
chine translation, a parallel dataset C =
{(x(n), y(n))}Nn=1 in NMT and a unpaired
monolingual datasetD = {x(m)}Mm=1∪{y(n)}Nn=1

in UNMT is used to train the initial model. Then,
a subset of pseudo parallel data is incorporated to
update the model with a pseudo-supervised NMT
(PNMT) objective (including forward translation
and backward translation) for both NMT and
UNMT as shown in Algorithm 1. In NMT, a
large unlabeled dataset U = {x(j)}Lj=1 is used for
the synthesis of pseudo-parallel corpora. While
in UNMT, since the model is trained with back-
translation on unpaired monolingual data, the
pseudo-parallel corpora is synthesized by the
monolingual data, i.e., U = {x(m)}Mm=1.

Considering the translation quality can’t effec-
tively be evaluated across languages in machine
translation with only the monolingual data,
therefore the selection of the subset Q, is one
of the key factors for self-training. It is usually
selected based on some confidence scores (e.g. log
probability or perplexity, PPL) (Yarowsky, 1995),
but it is also possible for S to be the whole pseudo
parallel data (Zhu and Goldberg, 2009). In the
backward translation based on the pseudo-parallel
data, the DAE method widely used in UNMT can
alleviate the impact of the noise resulted from the
synthesized sentences on model training, since
the synthesized sentences are only used as input.
However, in the forward translation training, the
quality of noisy targets will directly affect the
success of the model training. Therefore, the
selection of synthetic parallel corpus becomes
particularly critical.

Algorithm 2 BT-BLEU based Collaborative Filter
1: Split U equally into two subsets U1 =

{x(j)}L/2j=1 and U2 = {x(j)}Lj=L/2+1
2: Apply fθS→T to the unlabeled instances U1 and
U2

3: Train two backward translation models f (1)θT→S

with {(fθS→T (x), x)|x ∈ U1} and f (2)θT→S
with

{(fθS→T (x), x)|x ∈ U2} respectively
4: Translate {fθS→T (x)|x ∈ U2} with model
f
(1)
θT→S

, while {fθS→T (x)|x ∈ U1} with model

f
(2)
θT→S

5: Calculate BT-BLEU B for two subsets:
BLEU(f

(2)
θT→S

(fθS→T (x)), x), ∀x ∈ U1 and

BLEU(f
(1)
θT→S

(fθS→T (x)), x), ∀x ∈ U2
6: Q = {(x, fθS→T (x))|x ∈ U1,B > γ} ∪
{(x, fθS→T (x))|x ∈ U2,B > γ}

We propose a collaborative filtering algorithm
based on BT-BLEU to select high quality pseudo-
parallel pairs, as shown in Algorithm 2. The BT-
BLEU, as defined in (Li et al., 2020b), is a BLEU
of x ∈ S and x̃ generated in the S → T → S
back-translation process. As long as the model of
T → S is fixed and the preference for translation
of certain sentences is reduced as much as possible,
BT-BLEU can reflect the translation quality of
S → T to some extent, because of the necessary
but insufficient condition that only the better the
translation of S → T is, the better the translation
of T → S can be.

To achieve the goal of reducing translation
preferences, we split the pseudo parallel set into
two subsets, ensure no overlap between two subsets.
The model trained on subset 1 is used for back-
translation on the subset 2, while the model
on subset 2 back-translate the subset 1. This
collaborative translation process enables the two
models not to see the sentences to be translated,
which guarantees the translation not relies on
tricks. Additionally, we found that the sentences
in different lengths have different difficulties for
back-translation; we further divide the sentences
into different bags according to their lengths and
use different BT-BLEU threshold γ for filtering.

2.6 TF-IDF Finetune

NMT has been prominent in many machine
translation tasks. However, in some domain-
specific tasks, only the corpora from similar
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Systems
Dev Test

BLEU BLEU chrF

Base Data:
Transformer big 25.8 - -
XLM-enhanced 26.8 - -

Base Data + ParaCrawl:
Transformer big 30.0 32.2 0.596
+D2GPo 30.9 - -
XLM-enhanced 31.4 - -
Bidirectional NMT 29.5 - -

+Finetune 31.2 - -
Ensemble 32.0 34.0 0.606

++TF-IDF finetune 32.3 34.2 0.609
++Re-ranking 32.5 34.6 0.610

Table 1: PL→EN performance (sacreBLEU and chrF
score) for different models.

domains can improve translation performance. If
a trained NMT model is evaluated on a domain
mismatch corpus, the translation performance
may even degrade. Therefore, domain adaptation
techniques are essential to solve the NMT domain
problem. It is a very common domain adaptation
approach to further finetune the translation model
trained on the domain-mixed corpus by using data
that is the same or similar to the test set in domain.
Therefore, we need to select sentences that are as
close to the input domain as possible in the domain-
mixed training set.

We argue that low-frequency words contain
more domain information than high-frequency
words, since low-frequency words are mostly
domain-specific nouns, etc., which may indicate
the topic directly. Therefore, we adopt the
TF-IDF algorithm to search and filter on the
whole training set. In fact, the improved version
of TF-IDF algorithm, BM25 (Robertson and
Zaragoza, 2009), is employed to calculate the
sentence similarity. BM25 is based on probabilistic
information retrieval theory, whose score for a term
q to a sequence Q is:

s(Q, q) =
IDF ∗ ((k + 1) ∗ TF)

(k ∗ (1.0− b+ b ∗ LQ
Lavg

) + TF)
, (11)

where IDF is the Inverse Document Frequency for
term q appears in the whole corpus, TF is the Term
Frequency for q in D, LQ represents the sequence
length, Lavg is the average length of corpus D, k
and b is the adjustable parameters.

With this scorer, every sequence will obtain a
BM25 vector on the terms of the corpus:

V = [s(Q, t), ∀t ∈ Dterms], (12)

whereDterms indicates the all terms set in corpusD.
We calculate the cosine similarity as final scores
between the query and every source sentence in
corpus, and ranked on the scores to get the top-
K pairs (K=1000 in our experiments) as the sub-
training set for finetuning.

3 Data Preprocessing and Model Setup

Before model training, we preprocessed the data
uniformly and customized the processing according
to the requirements of each model. We normalized
punctuation, remove non-printing characters, and
tokenize all data with the Moses tokenizer (Koehn
et al., 2007) except for the Chinese. For Chinese,
we removed the segmentation space in some
training data and then use PKUSeg (Luo et al.,
2019) toolkit to cut all Chinese sentences, so as to
obtain unified word segmentation annotations. We
use joint byte pair encodings (BPE) with 40K split
operations for subword segmentation (Sennrich
et al., 2016).

In XLM-enhanced NMT and Document-
enhanced NMT, we first train a basic NMT
(Transformer big) model on the sentence-level
data until convergence, then initialize the encoder
and decoder of the XLM-enhanced NMT and
Document-enhanced NMT full model with the
obtained model. The PLM-encoder attention
attnP and PLM-decoder attention attnPC are
randomly initialized.

EN-PL On the language pair EN-PL, we
explored performance in two training data settings.
The first is base data, including Europarl v10, Tilde
Rapid corpus, and WikiMatrix bitext data, whose
raw data is on the sentence-level. In the second
setting base data + paracrawl, we converted the
paragraph-level alignment data in Paracrawl to
sentence-level alignment and incorporated it with
the base data. In the conversion process, we
adopted the method and program proposed by
(Gale and Church, 1993) for aligning sentences
based on a simple statistical model of character
lengths, which uses the fact that longer sentences
in one language tend to be translated into longer
sentences in the other language, and that shorter
sentences tend to be translated into shorter
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Systems
19test Test

BLEU BLEU chrF

Transformer big 37.2 - -
+D2GPo 37.7 - -
XLM-enhanced 38.9 - -
Document-enhanced 39.2 - -
Ensemble 40.0 48.6 0.418

++TF-IDF finetune 40.2 48.8 0.422
++Re-ranking 40.5 49.1 0.427

Table 2: EN→ZH performance (charBLEU and chrF
score) for different models.

sentences. A probabilistic score is assigned to
each proposed correspondence of sentences, based
on the scaled difference of lengths of the two
sentences (in characters) and the variance of this
difference. This probabilistic score is used in
a dynamic programming framework to find the
maximum likelihood alignment of sentences.

For the Polish pre-trained XLM language model,
we used all NewsCrawl monolingual data and
some CommonCrawl monolingual data. Since the
CommonCrawl data is very large and noisy and
can potentially decrease the performance of LM
if it is used in its raw form. We apply language
identification filtering (langid; Lui and Baldwin
(2012)), keeping sentences with correct languages.
In order to filter out the sentences shorter than 5
words or longer than 150 words more precisely,
we re-split sentences using Spacy (Honnibal and
Montani, 2017) toolkit.

EN-ZH In EN-ZH, the pre-training of Long-
former as a document encoder is unique. As
described in (Beltagy et al., 2020), the Longformer
needs a large number of gradient updates to
learn the local context first; before learning to
utilize longer context. In the first phase of the
staged training procedure, an initial RoBERTa
(Liu et al., 2019) model implemented in Fairseq
(Ott et al., 2019) repository was trained on the
sentence-level text available. In each subsequent
phase, we trained the model on the paragraph text,
doubled the window size and the sequence length,
and halve the learning rate. For the paragraph
text, the Wikidumps and NewsCommentary v15
have document intervals and can be used directly,
while UN v1.0 has no document intervals but
the sentence order is not interrupted. Therefore,
we use the BERT Next Sentence Prediction

(NSP) classification model provided by Google
for document interval prediction to recover the
documents.

DE-HSB In RUNMT on EN-DE-HSB, Europarl
v10 EN-DE parallel corpus is used for EN-DE
NMT and RAT/RABT/XBT training1. Addition-
ally, the BPE size increases to 50K for three
languages. In CFST, the filtering threshold of BT-
BTBLEU is set to γ = 50.0.

4 Results and Analysis

Results and ablations for PL→EN2 are shown
in Table 1, EN→ZH in Table 2, unsupervised
DE↔HSB in Table 3 and low-resource DE↔HSB
in Table 4. We report case-sensitive SacreBLEU
scores using SacreBLEU (Post, 2018) for EN-PL,
DE-HSB, and BLEU based on characters for EN-
ZH. In the results, “+” means addition based on
baseline, and “++” means cumulative addition
based on the previous one.

In PL→EN, the introduction of ParaCrawl
data improves the baseline performance on the
dev dataset by about 4.2 BLEU. +D2GPo,
XLM-enhanced NMT, Bidirectional NMT, and
ensembling outperforms our strong baseline by 2
BLEU point. Finally, finetuning and reranking
further gives another 0.5 BLEU.

For EN→ZH, as with PL→EN, we see similar
improvements with +D2GPo, XLM-enhanced
NMT, ensembling and reranking. We also observe
that the addition of Document-enhanced NMT is
much more substantial, improving single model
performance by over 1.5 BLEU.

In the unsupervised track, we compared CLM,
MLM, and Explicit Sentence Compression (ESC)
pre-training approaches joint trained with BT in
the second stage of UNMT, respectively, and
found that MLM and ESC had similar effects
and were stronger than CLM. Moreover, the pre-
training baseline of MLM was stronger than that of
MASS. The combination of unsupervised training
of DE-HSB and supervised training of EN-DE
achieves the purpose of transfer learning, and the
improvement is greater than 3 BLEU. Based on
the conclusion of MLM and BT joint training
on the UNMT Baseline, we also got a similar

1Our systems in unsupervised track are not a constrained
unsupervised system due to the utilization of additional
parallel corpora.

2The team name for PL→EN submission is “NICT-rui” in
the OCELoT site to distinguish between different sub-teams.
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Systems
DE→HSB HSB→DE

Dev Test Official Dev Test Official

UnsupSMT (Artetxe et al., 2018) 17.1 14.7 - 13.8 12.6 -

MASS baseline 29.8 26.0 - 31.4 27.3 -
UNMT baseline 31.1 27.2 - 31.3 27.2 -

+CLM finetune 29.2 25.6 - 28.6 24.5 -
+MLM finetune 32.4 28.3 - 32.4 27.3 -
+ESC finetune 32.1 28.3 - 32.2 27.8 -

EN-DE-HSB MUNMT baseline 29.3 25.6 - 30.0 26.2 -
++EN-DE NMT 33.6 29.3 - 33.6 29.6 -
++MLM finetune 35.1 30.5 28.6 34.9 30.7 28.6
++RAT + RABT + XBT 47.8 41.8 40.3 40.6 35.9 32.8

Table 3: DE↔HSB unsupervised performance (sacreBLEU score) for different models.

Systems
DE→HSB HSB→DE

Dev Test Official Dev Test Official

UNMT baseline 31.1 27.2 - 31.3 27.2 -
++MLM finetune 32.4 28.3 - 32.4 27.3 -
++DE-HSB NMT 59.9 53.0 52.5 61.6 53.1 54.6
++TLM finetune 60.2 53.2 - 61.4 52.7 -
++CFST 61.3 54.5 60.2 62.2 53.9 55.6
++D2GPo 61.4 54.6 60.4 62.9 54.5 56.6

Ensemble+Re-ranking 61.5 54.7 60.7 63.3 56.1 58.5

EN-DE-HSB MUNMT baseline 29.3 25.6 - 30.0 26.2 -
++EN-DE NMT + MLM finetune 35.1 30.5 28.6 34.9 30.7 28.6
++DE-HSB NMT 59.8 53.0 - 62.0 53.7 -

Table 4: DE↔HSB low-resource performance (sacreBLEU score) for different models.

trend on the MUNMT system. In the final system,
the enhancement of RAT+RABT+XBT brought a
BLEU increase of 11.7 and 4.2, respectively.

In the low-resource track, the model in the
unsupervised track is used as the pre-trained model,
and DE-HSB NMT and BT are jointly trained. Due
to the DE-HSB parallel corpus, we can not only use
MLM for monolingual pre-training, but also use
TLM for cross-lingual pre-training. The addition
of CFST and D2GPo further improves the effect of
the model, indicating that these contributions are
orthogonal. In addition, comparing UNMT with
MUNMT given a parallel corpus, we found that
although MUNMT used more data, it did not bring
about a large enough effect improvement, so we
will leave it for future research.

5 Conclusion

This paper describes SJTU-NICT’s submission to
the WMT20 news translation task. For three typical
scenarios, we adopt different strategies. In this
work, we not only study the pre-trained language
model to enhance MT, but also consider the impact
of document information on translation. We
considered both the way of converting document
alignment into sentence alignment and the use of
BERT’s NSP to recover the structure of documents.
In addition, transfer learning from supervision is
taken into account in unsupervised translation, and
various means are used to enhance low-resource
translation. Our systems performed strongly
among all the submissions: we ranked 1st in
PL→EN, EN→ZH, and DE→HSB respectively,
and stayed Top-3 for the HSB→DE.
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