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Abstract

This report summarizes the Air Force Research
Laboratory (AFRL) machine translation (MT)
systems submitted to the news­translation task
as part of the 2020 Conference on Machine
Translation (WMT20) evaluation campaign.
This year we largely repurpose strategies from
previous years’ efforts with larger datasets
and also train models with precomputed word
alignments under various settings in an effort
to improve translation quality.

1 Introduction

As part of the 2020 Conference on Machine Trans­
lation (wmt, 2020) news­translation shared task,
the AFRL human language technology team par­
ticipated in the Russian–English portion of the
competition. We largely employed our strategies
from last year including language­based filtering
of training corpora with fastText (Joulin et al.,
2016b,a), employing transformer­based (Vaswani
et al., 2017) translation models and once again ut­
litizing system combination to fuse outputs from
OpenNMT (Klein et al., 2018), Marian (Junczys­
Dowmunt et al., 2018) and Moses (Koehn et al.,
2007) systems. We also examine the effects of
training Marian models with externally generated
word alignments as described in (Alkhouli et al.,
2018).

2 Data processing

For purposes of training our systems, we use the
following parallel corpora: Commoncrawl (Smith
et al., 2013), Yandex1, UN v1.0 (Ziemski et al.,
2016), Paracrawl2(Esplà et al., 2019), Wikimatrix
(Schwenk et al., 2019), and backtranslated data
from our WMT17 system (Gwinnup et al., 2017)
as well as Edinburgh’s WMT17 system (Sennrich

1https://translate.yandex.ru/corpus?lang=en
2Version 1 Russian–English parallel data

et al., 2017) yielding a raw corpus of over 76.3 mil­
lion lines.
We prepare training corpora in a similar manner

described in (Gwinnup et al., 2018), however this
year, we utilize SentencePiece (Kudo and Richard­
son, 2018) with a 46k­entry vocabulary3 for pro­
cessing subword units instead of byte­pair encod­
ing (BPE) (Sennrich et al., 2016).

2.1 Language­ID based data filtering
As with last year’s efforts, we again employ fast­
Text (Joulin et al., 2016b,a) to filter the various par­
allel corpora with a utility examining the source
and target sentence pairs, discarding pairs where
either (or both) sentence in the pair falls below a
threshold score of 0.8. We wished to explore dif­
ferent threshold values, but our team did not have
access to the majority of our computational assets
due to the COVID­19 pandemic, limiting the band­
width available for experiments.

We show the results of language­ID based filter­
ing in Table 1. On average, 76.79% of the original
training data is retained, with our WMT17 back­
translated data retaining the largest percentage of
lines at 93.22% ­ this is interesting since that data
originated as English and was translated to Rus­
sianwith a very shallowAmun (Hoang et al., 2018)
model. Again, Paracrawl yielded the least percent­
age of retained lines at 42.90%, but is understand­
able due to the “raw” nature of this particular re­
lease.

2.2 Guided Alignment
Inspired by the results in (Alkhouli et al., 2018),
we’ve examined effects of using precomputed
word alignments as a guide during training; Marian
has a facility to train in this manner. Alignments
were generated using Fastalign (Dyer et al., 2013)

3This vocabulary size performed best in empirical testing
in our WMT19 submission.
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corpus unfiltered lines filtered lines percent remain

commoncrawl 723,256 655,069 90.57%
news­commentary­v15 319,242 286,947 89.88%
yandex 1,000,000 901,318 90.13%
un­2016 11,365,709 9,871,406 86.85%
paracrawl 12,061,155 5,173,675 42.90%
wikimatrix 5,203,872 4,287,881 82.40%
wmt17­afrl­bt 8,921,942 8,317,107 93.22%
wmt17­uedin­bt 36,772,770 29,074,022 79.06%

Total 76,367,946 58,567,425 76.69%

Table 1: Results of language­id based Russian–English corpus filtering with threshold of 0.8

on both “plain” and SentencePiece­processed data;
MGIZA (Gao and Vogel, 2008) alignments were
only generated for the word­based data. In order to
generate these alignments, the language­id filtered
corpus described in the previous section was fur­
ther processed using Moses’s clean­corpus­n­ratio
script as well as escaping various characters and
entities (such as ’ replaced with &amp;) yielding
a final corpus of 49,866,140 lines. Additionally, a
46k entry SentencePiece model is built on this cor­
pus with user­defined vocabularies for the tokens
escaped during processing.
We use a Procrustes alignment projection script4

to effectively map alignments generated on whole
word tokens to the equivalent series of subword to­
kens in the SentencePiece processed data. Compar­
isons are drawn betweenMarian models trained on
these various conditions in Section 3.2.

3 Machine Translation Systems

This year, we focused system­building efforts on
the OpenNMT,Marian, andMoses toolkits. While
most of our experimentation builds off of previ­
ous years’ efforts, this year we examine the effects
of “guided­alignment” training with the Marian
toolkit in an attempt to improve translation qual­
ity.

3.1 Open­NMT

The OpenNMT system trained for this task used
the the configuration for a large transformer net­
work.

We used the following network hyperparame­
ters:

4https://bitbucket.org/ndnlp/procrustes/src/
master

• 1024 embedding size

• 4096 hidden units

• 12 layer encoder

• 12 layer decoder

• 16 transformer heads

• dropout 0.3

• attention dropout 0.1

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warm­up

The corpus was processed with SentencePiece
using a model with a vocabulary size of 40K
trained on the ru­en corpus. The network was
trained for 10 epochs of this training data using
a batch size of 1562, with an effective batch size
of 24,992 using the lazy Adam (Kingma and Ba,
2015) optimizer. The final system was an average
of the last 8 checkpoints of the training. Check­
points were saved every 5000 steps. The system
was then tuned with one epoch of newstest data
from years 2014­2017.

3.2 Marian
Our Marian systems also utilize the transformer ar­
chitecture. We use the WMT14 newstest2014 test
set for validation during training and the following
network hyperparameters:

• 2048 hidden units

https://bitbucket.org/ndnlp/procrustes/src/master
https://bitbucket.org/ndnlp/procrustes/src/master
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• 6 layer encoder

• 6 layer decoder

• 8 transformer heads

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warm­up and cool­down

We first train a baseline system with the 58 mil­
lion line corpus outlined in 2.1 and then train an­
other baseline on the further­filtered 49 million
line corpus outlined in 2.2. Using the word align­
ments generated earlier, we train systems utiliz­
ing alignments on subwords using fastalign (ga­
spm­fastalign), alignments generated by project­
ing word­based fastalign alignments onto Sen­
tencePiece tokens (ga­procrusted­fastalign), and
word­based MGIZA alignments onto Sentence­
Piece tokens (ga­procrustes­mgiza). Results for
decoding newstest2014 for each of these models
are shown in Table 2.

system name newstest2014

full­corpus baseline 39.81
ga­baseline 34.17
ga­spm­fastalign 33.06
ga­procrustes­fastalign 33.49
ga­procrustes­mgiza 31.92

Table 2: Experimental results for both baseline and
guided­alignment systems decoding WMT14 testset
measured in cased, detokenized BLEU.

We see that the best performing system is the
one trained on the larger corpus, which is not sur­
prising. We also see that while none of the guided­
alignment based approaches we tried scored higher
than the baseline on the smaller guided­alignment
corpus, using the fastalign projected alignments
performs better than the fastalign subword­based
alignments by approximately 0.4 BLEU. We did
experience issues getting MGIZA to successfully
run on the 49 million line corpus, which may sug­
gest additional processing of the training corpus is
necessary to generate “correct” alignments using
that approach. However, this specific MGIZA run
provided the word alignments used in the Moses

system described in the next section. This sug­
gests more careful examination may be necessary
before drawing conclusions as to the efficacy of us­
ing guided alignments to the Marian training pro­
cess.

3.3 Moses

As in previous years, we trained a phrase­based
Moses (Koehn et al., 2007) systemwith the guided­
alignment data outlined in Section 2.2 in order to
provide diversity for system combination. This
system employed a hierarchical reordering model
(Galley and Manning, 2008) and 5­gram operation
sequence model (Durrani et al., 2011). The 5­gram
English language model was trained with KenLM
(Heafield, 2011) on the constrained monolingual
corpus from our WMT15 (Gwinnup et al., 2015)
efforts. System weights were tuned with the Drem
(Erdmann andGwinnup, 2015) optimizer using the
“Expected Corpus BLEU” (ECB) metric.

3.4 System Combination

Once again, Jane (Freitag et al., 2014) system com­
bination was used to combine various systems,
tuned on newstest2016. We were able to success­
fully combine variations of three and four input
systems, with results discussed in the following
section.

4 Experimental Results

Results of decoding our various MT systems on
WMT test sets from 2014 through 2019 are shown
in Table 3.
Marian­base is an ensemble of 5 transformer

models trained with identical hyperparameters as
outlined in Section 3.2, with the exception of the
initial random seed and using the language­id fil­
tered corpus described in Section 2.1. Individual
model weights are trained via Drem (Erdmann and
Gwinnup, 2015) as outlined in last year’s system.
Marian­ga is an ensemble of the four guided­

alignment models described in Section 3.2:
ga­baseline, ga­spm­fastalign, ga­procrustes­
fastalign and ga­procrustes­mgiza. Individual
model weights are also trained with Drem.
Onmt­base is the baseline system described in

Section 3.1 and onmt­tune is the system that was
further finetuned on newstest 2014­2017; Scores
on those test sets are not reported due to overfitting
during the fine tuning process.
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Variations of system combinations are also re­
ported ­ again with the absence of onmt­tune due
to concerns of overfitting as newstest2016 is the
test set used for tuning the system combination pro­
cess. Combinations of only two systems resulted
in a segmentation fault during processing due to
fragility in the combination process.
We entered System 8 as our primary submission

due to its performance gain on newstest2019 in a
general (non­finetuned) setting, with the intuition
that this years test set would discuss similar topics
or issues as last years, while the earlier sets may
be dated. In contrast, we submit System 5 as an
alternative due to finetuning adapting the model to
the collection of recent test sets.

5 Conclusion

In addition to our “known­good” approaches with
increased data to submit respectably­performing
translation systems, we conducted several experi­
ments with guided alignments. Although these sys­
tems didn’t outperform our prior approaches, they
did figure into our final system combination sub­
mitted to the evaluation.
The authors wish to thank David Chiang for

his implementation of the Procrustes alignment­
projection script. The authors would also like to
thank Grant Erdmann, Emily Conway and Grace
Smith for their assistance in human evaluation of
MT output.
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