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Abstract

We describe the joint submission of the
University of Edinburgh and Charles Uni-
versity, Prague, to the Czech/English track
in the WMT 2020 Shared Task on News
Translation. Our fast and compact stu-
dent models distill knowledge from a larger,
slower teacher. They are designed to offer a
good trade-off between translation quality
and inference efficiency. On the WMT 2020
Czech ↔ English test sets, they achieve
translation speeds of over 700 whitespace-
delimited source words per second1 on a sin-
gle CPU thread, thus making neural transla-
tion feasible on consumer hardware without
a GPU.

1 Introduction

The conventional set-up of the WMT Shared Tasks
on News Translation emphasizes translation qual-
ity (however measured) above all else. Constraints
on the data that may be used for training in the
‘constrained’ track establish a level playing field
in terms of the information available to the trans-
lation model and its training process, but there
are no constraints on the computational power and
effort spent to achieve the results. In contrast,
the WNGT Shared Task on Efficient Translation
(Heafield et al., 2020) encourages participants to
submit systems that are both accurate and efficient
during inference (i.e., translation). So far, there
has been little interaction between the two tasks.

With our joint submission between the University
of Edinburgh (UEDIN) and Charles University,
Prague (CUNI), we strive to bridge this gap. We
submitted small, efficient systems that distilled
knowledge from a more powerful teacher model
via sequence-level knowledge distillation (Kim and

1 Bogoychev et al. (2020) report translation speeds of
up to 3135 source words per second on a single CPU
thread; the actual throughput depends not only on
the computer hardware used for translation but also
on the distribution of translation segment lengths in
the test set.

Rush, 2016). In a nutshell, the procedure can be
described as follows:

1. Train a powerful teacher model on the available
training data set D.

2. Translate the source side of D plus avail-
able monolingual data in the source language
and appropriate text domain with the teacher
model to generate the training set D′.

3. Train a small student model on D′.

While the computational effort to first train a
teacher model and then distill its knowledge into
a student model is considerably greater than just
training the teacher — in addition to training the
teacher, we have to translate the training data and
then train a student on that data —, the advan-
tage is at inference time. Even the larger of the
two student models we present in this paper can
translate on a single CPU core at an acceptable
speed (cf. Tab. 4). Translation can further be sped
up by quantizing parameters to 8 bits of precision
and using Integer General Matrix Multiplication
(IntGEMM) for inference. Even though our sub-
missions to the WMT 2020 Shared Task on News
Translation were produced by unquantized floating
point models, we report performance numbers for
quantized models as well to demonstrate their effi-
cacy and show that they can speed up translation
by about 10% with negligible trade-offs in terms of
BLEU score over unquantized models.

All models used in this work are based on the
Transformer architecture (Vaswani et al., 2017).
Details are discussed in the sections below; the
hyper-parameter settings for each model are listed
in Tab. 1. The student models described in this
paper can be obtained via https://github.com/

browsermt/students.

2 Teacher Models

The teacher models were produced by CUNI, using
the Tensor2Tensor deep-learning toolkit (Vaswani
et al., 2018).2 The teachers were trained on the full

2 https://github.com/tensorflow/tensor2tensor

https://github.com/browsermt/students
https://github.com/browsermt/students
https://github.com/tensorflow/tensor2tensor
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Table 1: Transformer hyper-parameters for T2T teacher and Marian student models.

teacher student
parameter cs→en en→cs base tiny

vocabulary size (spm) 32K 32K 32K 32K
joint vocabulary yes yes yes yes
encoder layers 6 12 6 6
decoder layers 6 6 2 2
decoder auto-reg. self-attention self-attention SSRU SSRU
tied embeddings yes yes yes yes
embedding size 1024 1024 512 256
filter size 4096 4096 2048 1536
number of att. heads 16 16 8 8
att. key size 64 64 64 64
att. value size 64 64 64 64
checkpoints avg. 8 8 exp. smoothinga

back-translation block-BT block BT none none
beam search alpha 1.0 1.0 1.0 1.0
max training length 150 150 200 200

a Exponential smoothing with α = 0.0001.

CzEng 2.0 dataset (Kocmi et al., 2020),3 consist-
ing of genuine (authentic) parallel data as well as
monolingual news data translated by CUNI’s trans-
former systems from WMT 2018 (Popel, 2018) to
generate back-translated synthetic training data
(Sennrich et al., 2016). Rather than shuffling and
mixing authentic and synthetic training data, the
teacher models were trained on alternating blocks of
authentic and synthetic data (“block-regime back-
translation” (block-BT); Popel et al., 2020), spend-
ing about 10 hours of training time on each block.

The model parameters for the final teacher mod-
els were obtained by checkpoint averaging over the
last 8 checkpoints of the training process, saved in
hourly intervals.

The en→cs teacher model used in this work
also produced CUNI’s primary submission to the
WMT 2020 Shared Task on News Translation
(“CUNI-Transformer”; Popel, 2020). However, the
CUNI submission used a beam size of 4 instead of
8 as used in this work, resulting in a BLEU score
on the WMT 2020 en→ test set that is 0.2 lower
than the BLEU score reported in Tab. 4.

The cs→en teacher model used in this work has
only 6 encoder layers as opposed to the 12 en-
coder layers used in CUNI’s primary submission
to the Shared Task, resulting in a BLEU score on
the WMT 2020 test set that is 1.0 BLEU points
lower than the score achieved by the model used
for CUNI’s primary submission.

3 Student Models

The smaller, more efficient student models were
trained by UEDIN with the Marian NMT toolkit

3 http://ufal.mff.cuni.cz/czeng

(Junczys-Dowmunt et al., 2018a).4 The students
were trained on artificial training data produced
by knowledge distillation (Kim and Rush, 2016),
where the target side of the parallel data is the
teacher model’s translation of the source side. The
basic idea is that the teacher guides the student
towards translations that can be achieved with the
teacher’s knowledge.

3.1 Student Model Architectures

The student models use the architecture proposed
by Kim et al. (2019) with improvements by Bogoy-
chev et al. (2020). Apart from using fewer layers
and fewer dimensions in each layer, the main differ-
ence of the students from the conventional trans-
former architecture is the use of Simpler Simple
Recurrent Units (SSRU; Kim et al., 2019) instead
of the self-attention mechanism in decoder part of
the transformer. For the sake of simplicity, our stu-
dent models use exponential smoothing of model
parameters with a smoothing parameter of 0.0001
instead of the checkpoint averaging used to produce
the final teacher models.

For each translation direction, we trained two
models: a base transformer and a ‘tiny’ transformer
with fewer decoder layers and a smaller number of
embedding and filter dimensions; specifications are
shown in Tab. 1.

3.2 Data Preparation

To create artificial training data for the students,
we used the original parallel section of the CzEng
2.0 dataset but no back-translations. Instead, we
translated ca. 40 million sentences from the mono-

4 https://github.com/marian-nmt/marian

http://ufal.mff.cuni.cz/czeng
https://github.com/marian-nmt/marian
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Table 2: Data used for training the models (in millions of sentence pairs).

data set teacher student
cs→en en→cs cs→en en→cs

CzEng 2.0 parallel (original) 61.1m 61.1m
CzEng 2.0 parallel (pre-filtered) 42.3m 42.3m
Back-translated news (CzEng 2.0 ’mono’) 50.6m 76.2m
Teacher-translated news 50.1m 43.0m
Top 90% according to alignment score 83.2m 76.8m

Total used 111.7m 137.3m 83.2m 76.8m

lingual English NewsCrawl corpus5 (2018 and 2019)
for en→cs and 50 million sentences from the mono-
lingual Czech NewsCrawl corpus (2013–2019) for
cs→en.

Prior to translation with the respective teacher
model, we filtered and de-duplicated the data. Fil-
tering consisted of the following steps:

• Sentence-level deduplication.

• Removal of excessively long sentences (longer
than 120 space-separated tokens; note that the
sentence length limit for training in terms of
subword units was 200; cf Tab. 1).

• Removal of sentence pairs that were not iden-
tified as the correct language by the fastText
language identifier (Joulin et al., 2017, 2016)
Python module.6

• For parallel data, removal of sentence pairs
with length ratio larger than 2.5 (in terms of
words of untokenized text), i.e. the longer
sentence could not be more than 2.5 times as
long as the shorter one.

• Removal of sentences in which less than half
the words contain an alphabetical character
or less than half the characters belong to the
alphabet of the specific language.

We translated the cleaned data with the Ten-
sor2Tensor teacher model with a beam size of 8.
A small proportion of ‘odd’ sentences that had es-
caped our cleaning process, for example sentences
with several long URLs that resulted in very long
token sequences after segmentation into subword
units, forced us to use a relatively small batch size
of 8–24 sentences to avoid out-of-memory errors.
For load balancing, we split the translation load
into blocks of 10,000 sentences each and parallelized
the translation process over dozens of machines. Us-
ing comparatively many translation blocks gave us
flexibility in scaling the translation operation in
response to resource availability.

5 http://data.statmt.org/news-crawl/
6 https://pypi.org/project/fasttext/

Despite the small batch size, 32 of our 10,0000-
sentence input chunks still failed to translate due
to memory limitations. A cursory investigation
revealed that these often contained undesirable ma-
terial (such as Javascript and HTML code that had
somehow survived the filtering process), so that we
decided to simply discard those blocks of data.

We made no effort to optimize translation speed
and throughput for the teacher models in Ten-
sor2Tensor; translation time for a single 10,000-
sentence block was ca. 30–45 minutes, depending
on sentence lengths and hardware used.

Table 3: Distribution of teacher-produced trans-
lations chosen by sentence-level BLEU score over
their respective ranks in the decoder beam.

rank en→cs cs→en

1 32.22% 31.24%
2 15.20% 15.63%
3 12.25% 12.21%
4 9.79% 9.87%
5 8.89% 8.88%
6 7.73% 7.85%
7 7.26% 7.40%
8 6.67% 6.93%

For the authentic parallel data, we selected from the
8 top-scoring final translation hypotheses for each
source sentence the one with the highest sentence-
level BLEU score with respect to the original target
side of the data. Table 3 shows the distribution of
the hypotheses selected over the respective beam
ranks. For the monolingual data, for which we ob-
viously have no human reference translations, we
simply chose the highest-scoring translation. Sen-
tence pairs where the translation contained the
same whitespace-separated sequence of words three
or more times in a row, or the same sequence of
one or more characters in five or more subsequent
repetitions (which can happen when the recursive
decoder goes into a loop) were discarded.

We subsequently tokenized the synthetic teaching
data (source and translations by the teacher model)
with SentencePiece (Kudo and Richardson, 2018),

http://data.statmt.org/news-crawl/
https://pypi.org/project/fasttext/
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using a joint vocabulary for both languages with
a size of 32,000 tokens. This vocabulary is also
used by the final systems. The tokenized training
data was word-aligned in both translation directions
with FastAlign (Dyer et al., 2013). Directional word
alignments were then symmetrized with the grow-
diag-final-and symmetrization algorithm (Koehn
et al., 2003).

These word alignments serve mainly three pur-
poses: (a) to guide the attention mechanism during
training of the student models (Liu et al., 2016)
with guided alignment (Chen et al., 2016); (b) to
produce shortlists of translation candidates to limit
the choice of target words that need to be considered
during inference (Junczys-Dowmunt et al., 2018b);
and (c) to give us a rough estimate of translation
quality via average per-token alignment scores for
each sentence pair. We used these scores to discard
the bottom 10% of our artificial training data.

Based on our experiments, the guided alignment
training is neither required for student model train-
ing, nor does it improve BLEU scores on the devel-
opment set. However, it encourages the guided de-
coder layer to mimic word alignments, which can be
useful in post-processing.7 We used default settings
from Marian for the guided alignment training.

3.3 Quantized Models

Floating point operations are computationally more
expensive than integer operations. However, as Han
et al. (2016) have shown, neural network inference
does not require the high precision of representation
and computation that 32-bit floating point numbers
offer. Devlin (2017) suggests a simple quantization
mechanism for quantizing parameters to 16-bit inte-
ger precision and notes that support for off-the-shelf
8-bit integer matrix multiplication is lacking. Bo-
goychev et al. (2020) fill that gap and provide an
8-bit quantization and fine tuning scheme for Mar-
ian based on the intgemm library;8 we used that
scheme for our models. The model parameters are
quantized offline from float32 to int8, and during
translation, the activations are quantized just prior
to each GEMM operation. The GEMM operation
is performed in 8-bit integers, and then the result
is de-quantized back to float32. Despite the extra
quantization and de-quantization involved, the in-
creased speed at which 8-bit integer multiplication
is performed more than compensates for it. Bo-
goychev et al. (2020) observe that smaller student
presets lose BLEU when quantized. In order to
counteract that, we perform model fine tuning fol-
lowing the work of Aji and Heafield (2020): We
replace the GEMM routine implementation with a
custom one that is damaged, according to the quan-

7 For example, for handling HTML tags in translated
texts.

8 https://github.com/kpu/intgemm

tization scheme and perform several thousand mini-
batch updates of the model. The damaged GEMM
implementation can only produce 255 unique float
values (corresponding to the 8-bit integer dequanti-
zation range) and the model quickly learns to work
with those values and recovers some of the BLEU
lost compared to untuned quantized model.

4 Results

In Table 4, we show the performance of the three
models in terms of BLEU scores for the WMT 2020
cs↔en test sets and translation speed. Teacher
models ran on an Nvidia GeForce GTX 1080 with
a batch size of 16. Student models were run on a
single CPU core on an Intel Intel(R) Xeon(R) CPU
E5-2680 0 @ 2.70GHz with a batch size of 64. It
should be noted that we made no effort to optimize
the teachers for translation speed.

Text segments in the WMT 2020 cs↔en test
sets are aligned at the paragraph level; we there-
fore split the provided segments into individual
sentences prior to translation with Moses-style sen-
tence splitting9 and restored paragraphs afterwards.

All BLEU scores were computed with
SacreBLEU.10 For the en→cs teacher model,
removing repetitions and adapting quotation marks
to Czech spelling conventions boosted the BLEU
score by 1.6 BLEU points; for student models,
this post-processing is not necessary. Having
been trained on post-processed teacher output,
the student models have learned this correctly.
Except where indicated, translation was with a
greedy search (beam size 1) and a shortlist of 50
translation candidates per source word.

Due to resource congestion, we were not able to
fully train the models by the submission deadline;
our submissions are based on the systems with
the best validation BLEU score available at the
time. For validation, we used the concatenation
of all parallel data for the respective translation
direction from the WMT test sets from the years
2008 through 2019 where the original language of
the data is the source language for the translation
direction in question.

In terms of BLEU score on the WMT 2020 test
set, the submitted primary system for cs→en is ca.
0.5 BLEU points below the final system; the en→cs
system incidentally outperforms the final system
by 0.5 BLEU points, as shown in Tab. 4.

9 https://github.com/ugermann/ssplit-cpp, which
is a C++ reimplentation of the Moses sentence split-
ter, currently covering only a subset of the languages
supported by the Moses Sentence splitter (no non-
roman scripts).

10 Post (2018); BLEU+case.mixed+lang.${src}-
${trg}+numrefs.1 +smooth.exp+test.wmt20+tok.13a
+version.1.4.13

https://github.com/kpu/intgemm
https://github.com/ugermann/ssplit-cpp
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Table 4: BLEU results for teacher and student models (base, tiny) on the WMT20 test set.

cs→en en→cs
system BLEU timea words/sec. BLEU time words/sec.

teacher (no postprocessing)b 27.6 782 sec. 33 34.0 1131 sec. 39
teacher (with postprocessing)b 35.6 1131 sec. 39
base (float32, primary sub.)b 27.7c 424 sec. 61 36.3d 637 sec. 69
base (float32)b 28.2 294 sec. 88 35.8 465 sec. 95
base (float32) 27.9 101 sec. 256 35.7 151 sec. 292
base (8-bit quant., untuned) 27.5 90 sec. 287 34.4 136 sec. 324
base (8-bit quant., tuned) 27.8 88 sec. 294 35.3 136 sec. 324
base (8-bit quant., tuned, precompe) 27.9 89 sec. 291 35.7 135 sec. 326
tiny (float32) 27.0 38 sec. 681 34.7 59 sec. 746
tiny (8-bit quant., untuned) 25.6 34 sec. 761 31.9 55 sec. 815
tiny (8-bit quant., tuned) 26.9 35 sec. 739 32.9 55 sec. 815
tiny (8-bit quant., tuned, precompe) 26.9 35 sec. 739 32.8 53 sec. 830
a Inference time for core test set without additional test sets.
b Beam size 8; postprocessing: remove repetitions, adapt quotation marks to Czech conventions.
c After 65K updates, shortlist size 100.
d After 190K updates, shortlist size 100.
e Pre-computed scaling factor for quantization, see Sec. 5.1 in Bogoychev et al. (2020) for details.

5 Conclusion

We presented student models that distill knowledge
from a larger teacher model without loss in BLEU
performance. (In fact, for the WMT 2020 test set,
our larger student models technically outperform
the teacher in terms of BLEU, but we consider
that difference accidental.) At the same time, they
are significantly faster and do not require a GPU
for inference, making it possible to perform neural
machine translation on consumer-grade hardware
without the use of a GPU.
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