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Abstract

This paper describes the UdS-DFKI submis-
sion to the shared task for unsupervised ma-
chine translation (MT) and very low-resource
supervised MT between German (de) and Up-
per Sorbian (hsb) at the Fifth Conference of
Machine Translation (WMT20). We submit
systems for both the supervised and unsuper-
vised tracks. Apart from various experimen-
tal approaches like bitext mining, model pre-
training, and iterative back-translation, we em-
ploy a factored machine translation approach
on a small BPE vocabulary.

1 Introduction

This paper describes the UdS-DFKI submission to
the unsupervised and very low resource supervised
tasks of WMT20 for German to Upper Sorbian
(de—hsb) and Upper Sorbian to German (hsb—de).
Our submitted systems are constrained for the very
low resource supervised and unconstrained for the
unsupervised task, in that we use Wikipedia dumps
as additional data.

Current machine translation systems that deal
with low-resource languages are based on unsuper-
vised neural machine translation, semi-supervised
methods and pre-trained models leveraging mono-
lingual data (Guzmén et al.,, 2019), and mul-
tilingual systems among others. In this work,
we explore different systems which include base-
line NMT, factored NMT (Sennrich and Haddow,
2016a), iterative backtranslation, self-supervised
NMT (SSNMT) (Ruiter et al., 2019) and pre-
training with XLM (Lample and Conneau, 2019)
using transformer-base models (Vaswani et al.,
2017) for the training of the systems.

This paper begins by presenting the data we used
for the tasks and the preprocessing pipeline (Sec-
tion 2). This is followed by an overview of the train-
ing setup (Section 3) and the methods we applied
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(Section 4). Section 5 summarizes our findings,
followed by a discussion of the results in Section 6.
We conclude the paper and propose some possible
future work in Section 7.

2 Data

Unsupervised Task For Sorbian, we use the
given data from the Sorbian Institute (Ins, ), from
Witaj Sprachzentrum (Witajysp), and web-scraped
data (Weby,s,). Table 1 gives a summary of the
data we use in the unsupervised track. We use the
Europarl (EP_monog, (Koehn, 2005)) and News
Commentary (NC_monog,., (Barrault et al., 2019))
datasets for the monolingual German data. Apart
from this, we also use Wikipedia Dumps!' for
both German and Upper Sorbian. We extract arti-
cles using Wikiextractor?, which are aligned using
Wikipedia langlinks® to create a comparable corpus
for SSNMT extraction.

Supervised Task Apart from the provided par-
allel data, we use high-quality EUROPARL (EP,
(Koehn, 2005)) and medium-quality JW300 (Agié¢
and Vuli¢, 2019; Tiedemann, 2012) corpora for
de-cs-hsb. For parallel text mining with LASER
(Schwenk, 2018; Artetxe and Schwenk, 2019), we
use the combination of all the monolingual corpora
of German and Upper Sorbian from the unsuper-
vised section of Table 1, which is discussed in detail
later in Section 4.3.

Preprocessing Our preprocessing steps include
normalization, tokenization, deduplication, and
truecasing. We attach feature labels related to
the source language (<src>), target language
(<tgt>), and the data quality (<quality>), for

"https://dumps.wikimedia.org/ (March 2020)

https://github.com/attardi/
wikiextractor

https://www.mediawiki.org/wiki/API:
Langlinks
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every individual sentence. The quality of a sen-
tence depends on the corpus it is from and the
quality tags of <low>, <medium>, or <high>
are added to all sentences of the corpora according
to the quality labels assigned to the data provided
for the shared task: e.g. Insy gy, is high quality Sor-
bian. A typical sentence from the corpus after our
preprocessing pipeline has the following format:

<src> <tgt> <quality> sentence

After factoring (4.2), we proceed to apply joint
byte-pair encoding (BPE) (Sennrich et al., 2016b)
on the corpora to finally get our preprocessed data
which we use for training all our NMT models.
Unless specified otherwise, we use a default of S5k
merge operations.

Corpus # Sentences # Tokens
Unsupervised
Inspgp 339k 5,044k
Witajpsp 222k 2,672k
Weby,sp 134k 1,677k
EP_monog, 2,107k 55,557k
NC_mono, 422k 8,942k
Wikige 833k 36,531k
Wikip g, 76k 2,402k
Supervised
Bitextg, 60k 1,002k
Bitext,qp 60k 737k
EPg4e. 568k 13,098k
EP, 568k 11,571k
JW3004, 1,179k 20,888k
JW300,4 1,179k 19,144k
Dev & Test
Dev20g4, 2k 24k
Dev20y,4 2k 21k
DevTest204, 2k 24k
DevTest20;,¢p 2k 22k

Table 1: Statistics (in thousands) of different corpora
used for the unsupervised and supervised tasks.

3 Systems

MT Systems We train all our models using the
Transformer-base architecture in the OpenNMT-py
(Klein et al., 2017) framework extended for SS-
NMT* (Ruiter et al., 2019). The setting for the

‘nttps://github.com/ruitedk6/
comparableNMT

Transformer base is the same as in Vaswani et al.
(2017) with 6 encoder-decoder layers after hav-
ing explored other options of Transformer depth.
We set the dropout to 0.4 in all experiments. We
use adam (Kingma and Ba, 2014) for optimiza-
tion with 5; = 0.9 and B3 = 0.998. The learning
rate is varied from O to 2 with a warm update of
4000 and decayed using noam. Lower values of
learning rate were avoided due to slower training
and lower accuracy scores. We use a batch size
of 50. The Phrase-Based Statistical MT systems
(PBSMT) are standard Moses (Koehn et al., 2007)
systems trained without applying BPE to the data.

Initialization The NMT models are initialised
with cross-lingual word embeddings calculated
on the monolingual corpora using word2vec®
(Mikolov et al., 2013) (skip-gram) and unsuper-
vised VecMap® (Artetxe et al., 2017).

Pre-trained Sentence Representations For
XLM (Lample and Conneau, 2019), we pre-train
and fine-tune the model using drop out of 0.1,
batch size of 32 with a joint BPE of 10k (10k
showed better results for XLM), learning rate of
0.0001, and a sequence length of 265 using 512
and 1024 embedding dimensions respectively.

Evaluation Metric We use BLEU’ (Papineni
et al., 2002) scores to evaluate the performance
of our trained models.

4 Techniques

4.1 Iterative Backtranslation

For the unsupervised task, we use an SSNMT sys-
tem as described in Ruiter et al. (2019) to extract
parallel sentences from the Wikipedia dumps. SS-
NMT jointly and iteratively extracts parallel data,
and learns the MT task on the extracted parallel
data. The resulting trained NMT model is our base
model (My).

For iterative back-translation (Hoang et al.,
2018), we take a model M; and use it to translate
the hsb monolingual data monoy,s, and EP_monog,
to generate monoﬁle and EPJnonoZ;L < Tespectively.
Following Sennrich et al. (2016a), we use the gen-
erated data at iteration 7 on the source side with

*https://github.com/tmikolov/word2vec

*https://github.com/artetxem/vecmap

"We use the Moses multi-bleu script for eval-
uation. https://github.com/moses—smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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the original data on the target to train a new model
M; 1. This is done iteratively, in our case until
1=05.

As the translation quality of Mg is very low, this
model is replaced by a PBSMT system which is
trained on the data that M has extracted, in order
to generate the back-translation to be used for M.

Model BLEU
hsb—de de—hsb
Mg 6.46 6.09
M; 8.53 8.31
Ms 9.81 10.04
M; 10.47 13.51
My 11.31 11.57
M5 9.13 13.61

Table 2: BLEU scores of iterative-backtranslation mod-
els per iteration, calculated on Dev20.

The resulting BLEU scores on Dev20 for each
of the iterations is shown in Table 2. The best per-
formance for Asb—de is achieved at 7 = 4 (11.31
BLEU) and for de—hsb at ¢ = 5 (13.61 BLEU).
These constitute two of the models submitted to
the unsupervised task.

4.2 Factorization

Limited monolingual language analysis tools and
few linguistic analysis tools with acceptable per-
formance are available for low-resource (LowRes)
languages. In our experiments, we explore factored
machine translation (Garcia-Martinez et al., 2016;
Sennrich and Haddow, 2016b; Koehn and Knowles,
2017). This approach can play a significant role in
increasing grammatical coherence. Syntactic and
semantic information can be useful to generalize
neural models trained on parallel corpora.

We augment our parallel data to include fac-
tors like lemma (using Snowball Stemmer (Porter,
2001)) and PoS tags (using spaCy® open source
library (Honnibal and Montani, 2017)) for German
words. The language-agnostic UDPipe trainable
pipeline (Straka et al., 2016) has been used for
lemmatization and PoS tagging for Sorbian words.
We follow an approach similar to Bandyopadhyay
(2019, 2020), where we factor the data at word-
level to include the root word (lemma) and the part

$https://github.com/explosion/spaCy

of speech (PoS) of each word along with the word
itself, each component separated with a pipe (|)
symbol.

word_token | lemma | PoS

Byte-pair encoding is implemented after factor-
ization. After training the model, the test dataset
on the source side of the language pair is used to
obtain the output dataset on the target side of the
language pair. Once testing is done, the data is
again decoded using the trained BPE model before.

For the supervised task, we submit a German
to Upper Sorbian factorized model on the German
side of the parallel corpus which resulted in 40.9
and 40.3 cased BLEU score.

For the unsupervised task, Upper Sorbian to
German factorization on the best-performing SS-
NMT model improves the BLEU score by 0.1 to
9.0 on Test20 in comparison to the non-factorized
model.

The results of the factored models are reported
in Tables 3 (supervised) and 4 (unsupervised).

BPE de (fac.)—>hsb hsb (fac.)—de

2k 31.01 37.09
Sk 41.15 32.17
10k 35.67 38.23
20k 34.70 37.62

Table 3: Supervised Source Factored NMT systems
with BLEU scores on DevTest20.

System BLEU
de—hsb (fac.) 5.67
de (fac.)—hsb (fac.) 6.03
hsb—de (fac.) 7.24
hsb (fac.)—de (fac.) 7.49

Table 4: Unsupervised Factored NMT systems with
BLEU scores for 10k BPE on DevTest20.

4.3 Data Mining with LASER

We use LASER (Schwenk, 2018; Artetxe and
Schwenk, 2019) to filter and mine parallel sen-
tences from a list of monolingual corpora of both
German and Upper Sorbian. For German, we use
the Wikig., EP_monog., and NC,, corpora, while
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for the Upper Sorbian counterpart, we use the
monolingual corpora Insysp, Witajpsp, Weby,sp, and
Wikipedia dumps (Wikiy ;) as mentioned in Table
1. We explore a range of LASER extraction thresh-
old values (1.03, 1.04, 1.05, 1.06, and 1.07) for this
process. Table 5 gives a summary of the number of
parallel sentences extracted from the monolingual
corpora combinations from both languages using
different threshold values. Using a lower threshold
value extracts a higher number of parallel sentences
but the quality gradually deteriorates as the thresh-
old value decreases. We train NMT models on
parallel sentences from each threshold and find that
1.04 gives comparatively better results than others.
We use the model My from iterative backtranslation
(Table 2) as the baseline and then add the extracted
sentences to check if the performance improves.
However, all the resulting BLEU scores using ad-
ditional LASER data are much lower than those
of the iterative backtranslation baseline models re-
ported in Table 2, indicating poor quality of the
LASER extractions.

Threshold # Sentences

1.03 18,979
1.04 9,609
1.05 5,200
1.06 2,806
1.07 1,646

Table 5: Number of parallel sentences mined using
LASER with different threshold values.

4.4 Pre-training with Cross-lingual
Language Model XLLM

We explore the option of using pre-trained models
with different embedding sizes to improve the per-
formance of our system in the unsupervised task.
We collected the sentence pairs from Wikipedia
extracted with SSNMT. Also we collected back-
translations for the monolingual data provided for
the task using iterative backtranslation as explained
in Section 4.1. We then pre-train XLM for de-hsb
using all the monolingual data except Wikig, and
Wikiy,. We then fine-tune the pre-trained model
for the supervised translation task using the parallel
data from My and back-translations taken from My
and M5. Table 6 shows the resulting BLEU scores
for this task on Dev20 and DevTest20.

XLM Embedding Size BLEU

hsb—de de—hsb

Dev20
512 8.84 8.41
1024 891 8.15
DevTest20

512 7.58 7.29
1024 7.44 6.78

Table 6: BLEU scores of pre-training with XLM on
Dev20 and DevTest20.

5 Results

Tables 7 (submitted systems) and 8 (unfactored
baseline systems) show a summary of all BLEU
scores.

Model BLEU
Dev20 DevTest20 Test20
Unsupervised
de—hsb 13.6 9.9 10.3
hsh—de 11.3 8.1 8.9
hsb (fac.)—de 9.8 8.7 9.0
Supervised
de (fac.)—~hsb  44.34 41.15 40.9

Table 7: BLEU scores for the submitted models on the
Dev20, DevTest20, and Test20 datasets.

Unsupervised Parallel data extracted with self-
supervised NMT on Wikipedia dumps data and
iterative back-translation on monoy,g, EP_mono .
were used to train the models. For the unsuper-
vised track, we submit three NMT models trained
in the directions from unfactored German to unfac-
tored Upper Sorbian (de—hsb), from unfactored
Upper Sorbian to unfactored German (hsb—de),
and from factored Upper Sorbian to unfactored
German (hsb(fac.)—de). The iterative backtrans-
lation model M5 (Table 2) for de—hsb obtains a
BLEU score of 9.0 on the WMT blind test data.
The hsb—de model (My in Table 2) achieves a
BLEU score of 8.9 while the same model with a
factored Upper Sorbian source slightly pushes the
BLEU score to 9.0.
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Supervised For the supervised task, we submit
a single de(fac.)—hsb NMT model (refer Table
3) where the German side is factored. The model
achieves a BLEU score of 40.9 on the WMT blind
test data.

6 Discussion

System BPE de—hsb hsb—de
PBSMT 36.93 37.65
2k 41.16 40.57

bilingual Sk 37.51 37.47
de-hsb 15k 37.68 36.79
30k 36.02 35.64

2k 28.20 30.98

multilingual Sk 34.05 36.07
de-cs-hsb 15k 32.98 36.61
30k 29.31 36.89

Table 8: Supervised NMT systems with BLEU scores
on DevTest20.

We experimented with different methods in this
shared task for both the supervised as well as un-
supervised tracks. The major challenge in this task
was the small amount of good quality training data
as Upper Sorbian is a very low resource language.
Parallel sentence extraction demands the availabil-
ity of good quality data. Schwenk (2018) and
Artetxe and Schwenk (2019) mention that the pre-
trained LASER model seems to generalize well for
minor languages and dialects including Sorbian®,
but Upper Sorbian itself is not among the languages
on which the model is actually trained. As a result,
LASER does not seem to give very good results
for Upper Sorbian. SSNMT (Ruiter et al., 2019)
however was able to learn better semantic represen-
tations and extracted quality sentence pairs from
Wikipedia articles.

The lack of sufficient data for training is also
one of the reasons why pre-trained language mod-
els using XLM did not give satisfactory results.
The second reason is the low quality of the back-
translations that were used for fine-tuning.

We have used factored machine translation
where we include the lemma and the PoS of each
word along with it in the corpora. Due to the lack
of a proper lemmatizer for Upper Sorbian, we used

‘https://github.com/facebookresearch/
LASER#supported-languages

UDPipe (Straka et al., 2016) for Czech as it is an-
other language from the Slavic family. However,
there are obvious linguistic differences in both the
languages due to which a Czech morphological tool
will not work perfectly for Upper Sorbian. This
is also the reason why our de-cs-hsb multilingual
NMT systems (Table 8) did not achieve satisfac-
tory results. NMT models with factored source
sentences improved the performances of our mod-
els by a small margin.

We have observed that a smaller BPE vocabulary
is generally better for low-resource languages as
expected. Here we have chosen an optimal BPE
vocabulary size as choosing even smaller BPE size
values would result in almost character-level seg-
mentation. We also realise that the availability of
more quality data could have improved our systems
as we can first pre-train language models on good
quality monolingual text data using XLLM and use
this as the initial model for iterative backtranslation
as in the SSNMT approach. We believe that this
will generate better results.

7 Conclusion and Future Work

This paper describes the UdS-DFKI submission
to the shared task of unsupervised and very low
resource supervised machine translation between
German and Upper Sorbian at WMT?20. For all our
systems, we have used the standard Transformer-
base architecture. We have extracted parallel data
from Wikipedia dumps using SSNMT (Ruiter et al.,
2019), followed by iterative back-translation for
the unsupervised task. For the supervised track,
we have tried to factor morphological information
into our data to improve our results further. For
the constrained supervised task, we achieve 40.9
BLEU for de(fac.)—hsb. We obtain BLEU scores
of 10.3, 8.9, and 9.0 for the de—hsb, hsb—de, and
hsb(fac.)—de translation directions respectively in
the unsupervised track.

As discussed in Section 6, one approach for fu-
ture work is to combine XLLM pre-training along
with SSNMT directly to improve system initial-
ization. It would be interesting to explore linguis-
tic and syntactic information from other closely-
related languages to further enhance the perfor-
mance of the multilingual models.
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